Email             :
RPubs            : https://rpubs.com/jeremyheriyandi23/

Jurusan          : Statistika
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 Membuat Program dengan List R dan Python

list1 =list("dhela","ferdinand","naftali","Yohanes","matius")
print(list1[5])
## [[1]]
## [1] "matius"
list1 =list("dhela","ferdinand","naftali","Yohanes","matius")
list1[5] ="kenji"
print(list1)
## [[1]]
## [1] "dhela"
## 
## [[2]]
## [1] "ferdinand"
## 
## [[3]]
## [1] "naftali"
## 
## [[4]]
## [1] "Yohanes"
## 
## [[5]]
## [1] "kenji"
length(list1)
## [1] 5

2 Buatlah contoh menyimpan sekumpulan tuple dengan R dan Python, dengan mengikuti instruksi berikut:

library (sets)
tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
tuple3 = tuple("honda","Yamaha","suzuki","ducati","kawasaki")
tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
print (tuple1 [3])
## ("pesawat")
tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
print(tuple1[3:2])
## ("pesawat", "motor")
tuple2 = c(tuple3,tuple1)
print(tuple2)
## ("honda", "Yamaha", "suzuki", "ducati", "kawasaki", "Mobil", "motor",
##  "pesawat", "bus", "becak")

3 Buatlah contoh menyimpan sekumpulan Dictionary dengan R dan Python, yang memuat type data float, integer, character, dan logical, list, tuple, dictionary dengan mengikuti instruksi berikut:

library(Dict)
## 
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
## 
##     %>%
 Jeremyheriyand = dict(
     Nama = "Jeremi heriyandi",
     umur =  as.integer (19),
     hobi = list("Main musik", "rebahan", "renang"),
  menikah = FALSE,
   sosmed=tuple(facebook= "jeremyheriyandcucunyaRajasalman",
               instagram= "JeremyheriyandcucunyaRajasalman ")
 


)
cat("Nama saya adalah :", Jeremyheriyand$get('Nama'))
## Nama saya adalah : Jeremi heriyandi
print(Jeremyheriyand$get('sosmed')['instagram'])
## (instagram = "JeremyheriyandcucunyaRajasalman ")
Jeremyheriyand["Nama"] ="habib Jeremi heriyandi saudi"
Jeremyheriyand$remove ("Nama") 
print(Jeremyheriyand$get("Nama"))
## NULL

4 Data frame

df1_R <- data.frame(kode =c ( 1 : 5 ), 
                     nama =c ( " Asep " , " Udin " , " Jarwo " , " Bambang " , " Ningsih " ), 
                     gaji =c (783.7 ,  895.3 ,778.8,987.6,967.34 ) ,
            jenis_kelamin =c("L","L","L","L","P"),
                     umur =c(27,34,23,45,19),
                   alamat =c("kendari","kendal","kediri","kupang","kartanegara"),
              mulai_kerja = as.Date(c(" 2019-06-01 " , " 2019-06-15 " , " 2019-08-15 " , " 2015-05-11", "2019-01-15")),  
                   divisi =c ( "DS" , "DS" , "BA" , "DA" , "DS" ) ,  stringsAsFactors = F )
print(df1_R)
##   kode      nama   gaji jenis_kelamin umur      alamat mulai_kerja divisi
## 1    1     Asep  783.70             L   27     kendari  2019-06-01     DS
## 2    2     Udin  895.30             L   34      kendal  2019-06-15     DS
## 3    3    Jarwo  778.80             L   23      kediri  2019-08-15     BA
## 4    4  Bambang  987.60             L   45      kupang  2015-05-11     DA
## 5    5  Ningsih  967.34             P   19 kartanegara  2019-01-15     DS
typeof ( df1_R ) 
## [1] "list"
class ( df1_R )
## [1] "data.frame"
df1_R[1,5] 
## [1] 27
df1_R $Nama
## NULL
df1_R [,c('nama','jenis_kelamin')]
##        nama jenis_kelamin
## 1     Asep              L
## 2     Udin              L
## 3    Jarwo              L
## 4  Bambang              L
## 5  Ningsih              P
df1_R [ 1 : 5 ,]
##   kode      nama   gaji jenis_kelamin umur      alamat mulai_kerja divisi
## 1    1     Asep  783.70             L   27     kendari  2019-06-01     DS
## 2    2     Udin  895.30             L   34      kendal  2019-06-15     DS
## 3    3    Jarwo  778.80             L   23      kediri  2019-08-15     BA
## 4    4  Bambang  987.60             L   45      kupang  2015-05-11     DA
## 5    5  Ningsih  967.34             P   19 kartanegara  2019-01-15     DS
df1_R [ , 1 : 5 ]
##   kode      nama   gaji jenis_kelamin umur
## 1    1     Asep  783.70             L   27
## 2    2     Udin  895.30             L   34
## 3    3    Jarwo  778.80             L   23
## 4    4  Bambang  987.60             L   45
## 5    5  Ningsih  967.34             P   19
subset ( df1_R , select = 6 ) 
##        alamat
## 1     kendari
## 2      kendal
## 3      kediri
## 4      kupang
## 5 kartanegara
subset ( df1_R , select = c ( 6,7 ) ) 
##        alamat mulai_kerja
## 1     kendari  2019-06-01
## 2      kendal  2019-06-15
## 3      kediri  2019-08-15
## 4      kupang  2015-05-11
## 5 kartanegara  2019-01-15
subset ( df1_R , select = c ( 2 : 5 ) )
##        nama   gaji jenis_kelamin umur
## 1     Asep  783.70             L   27
## 2     Udin  895.30             L   34
## 3    Jarwo  778.80             L   23
## 4  Bambang  987.60             L   45
## 5  Ningsih  967.34             P   19
min ( df1_R $ Gaji )
## Warning in min(df1_R$Gaji): no non-missing arguments to min; returning Inf
## [1] Inf
 max ( df1_R $ Gaji )
## Warning in max(df1_R$Gaji): no non-missing arguments to max; returning -Inf
## [1] -Inf
 mean ( df1_R $ Gaji )
## Warning in mean.default(df1_R$Gaji): argument is not numeric or logical:
## returning NA
## [1] NA
sd(df1_R $ Gaji)
## [1] NA
 summary ( df1_R )
##       kode       nama                gaji       jenis_kelamin     
##  Min.   :1   Length:5           Min.   :778.8   Length:5          
##  1st Qu.:2   Class :character   1st Qu.:783.7   Class :character  
##  Median :3   Mode  :character   Median :895.3   Mode  :character  
##  Mean   :3                      Mean   :882.5                     
##  3rd Qu.:4                      3rd Qu.:967.3                     
##  Max.   :5                      Max.   :987.6                     
##       umur         alamat           mulai_kerja            divisi         
##  Min.   :19.0   Length:5           Min.   :2015-05-11   Length:5          
##  1st Qu.:23.0   Class :character   1st Qu.:2019-01-15   Class :character  
##  Median :27.0   Mode  :character   Median :2019-06-01   Mode  :character  
##  Mean   :29.6                      Mean   :2018-07-30                     
##  3rd Qu.:34.0                      3rd Qu.:2019-06-15                     
##  Max.   :45.0                      Max.   :2019-08-15

5 Buatlah operasi Ganti Nama Variabel pada suatu Data Frame dengan menggunakan R dan Python.

rename_1<-df1_R
names(rename_1)<-c("no",
"nama",
"tgl.lahir",
"jenis kelamin",
"umur",
"alamat",
"gaji")
print(rename_1)
##   no      nama tgl.lahir jenis kelamin umur      alamat       gaji NA
## 1  1     Asep     783.70             L   27     kendari 2019-06-01 DS
## 2  2     Udin     895.30             L   34      kendal 2019-06-15 DS
## 3  3    Jarwo     778.80             L   23      kediri 2019-08-15 BA
## 4  4  Bambang     987.60             L   45      kupang 2015-05-11 DA
## 5  5  Ningsih     967.34             P   19 kartanegara 2019-01-15 DS
LS0tDQp0aXRsZTogIlR1Z2FzIDMiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gc3RydWt0dXIgZGF0YSINCmF1dGhvcjogIkplcmVtaSBoZXJpeWFuZGkgc2F1ZGkgKDIwMjE0OTIwMDA4KSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGh0bWxfZG9jdW1lbnQ6IG51bGwNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJmb3RvZGlyaS5qcGcuanBnIi8+IA0KDQpgYGB7ciBsb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzMwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygibG9nb21hdGFuYS5wbmcucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBlN2lsc2F1ZGlAZ21haWwuY29tIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL2plcmVteWhlcml5YW5kaTIzLyA8YnI+DQoNCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2FdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCg0KIyAgTWVtYnVhdCBQcm9ncmFtIGRlbmdhbiBMaXN0IFIgZGFuIFB5dGhvbg0KDQpgYGB7cn0NCmxpc3QxID1saXN0KCJkaGVsYSIsImZlcmRpbmFuZCIsIm5hZnRhbGkiLCJZb2hhbmVzIiwibWF0aXVzIikNCnByaW50KGxpc3QxWzVdKQ0KDQpgYGANCmBgYHtyfQ0KbGlzdDEgPWxpc3QoImRoZWxhIiwiZmVyZGluYW5kIiwibmFmdGFsaSIsIllvaGFuZXMiLCJtYXRpdXMiKQ0KbGlzdDFbNV0gPSJrZW5qaSINCnByaW50KGxpc3QxKQ0KYGBgDQpgYGB7cn0NCmxlbmd0aChsaXN0MSkNCmBgYA0KIyAgQnVhdGxhaCBjb250b2ggbWVueWltcGFuIHNla3VtcHVsYW4gdHVwbGUgZGVuZ2FuIFIgZGFuIFB5dGhvbiwgZGVuZ2FuIG1lbmdpa3V0aSBpbnN0cnVrc2kgYmVyaWt1dDoNCg0KYGBge3J9DQpsaWJyYXJ5IChzZXRzKQ0KdHVwbGUxID0gdHVwbGUoIk1vYmlsIiwibW90b3IiLCJwZXNhd2F0IiwiYnVzIiwiYmVjYWsiKQ0KdHVwbGUzID0gdHVwbGUoImhvbmRhIiwiWWFtYWhhIiwic3V6dWtpIiwiZHVjYXRpIiwia2F3YXNha2kiKQ0KYGBgDQoNCmBgYHtyfQ0KdHVwbGUxID0gdHVwbGUoIk1vYmlsIiwibW90b3IiLCJwZXNhd2F0IiwiYnVzIiwiYmVjYWsiKQ0KcHJpbnQgKHR1cGxlMSBbM10pDQoNCmBgYA0KYGBge3J9DQp0dXBsZTEgPSB0dXBsZSgiTW9iaWwiLCJtb3RvciIsInBlc2F3YXQiLCJidXMiLCJiZWNhayIpDQpwcmludCh0dXBsZTFbMzoyXSkNCg0KYGBgDQpgYGB7cn0NCnR1cGxlMiA9IGModHVwbGUzLHR1cGxlMSkNCnByaW50KHR1cGxlMikNCg0KYGBgDQojICBCdWF0bGFoIGNvbnRvaCBtZW55aW1wYW4gc2VrdW1wdWxhbiBEaWN0aW9uYXJ5IGRlbmdhbiBSIGRhbiBQeXRob24sIHlhbmcgbWVtdWF0IHR5cGUgZGF0YSBmbG9hdCwgaW50ZWdlciwgY2hhcmFjdGVyLCBkYW4gbG9naWNhbCwgbGlzdCwgdHVwbGUsIGRpY3Rpb25hcnkgZGVuZ2FuIG1lbmdpa3V0aSBpbnN0cnVrc2kgYmVyaWt1dDoNCg0KYGBge3J9DQpsaWJyYXJ5KERpY3QpDQogSmVyZW15aGVyaXlhbmQgPSBkaWN0KA0KICAgICBOYW1hID0gIkplcmVtaSBoZXJpeWFuZGkiLA0KICAgICB1bXVyID0gIGFzLmludGVnZXIgKDE5KSwNCiAgICAgaG9iaSA9IGxpc3QoIk1haW4gbXVzaWsiLCAicmViYWhhbiIsICJyZW5hbmciKSwNCiAgbWVuaWthaCA9IEZBTFNFLA0KICAgc29zbWVkPXR1cGxlKGZhY2Vib29rPSAiamVyZW15aGVyaXlhbmRjdWN1bnlhUmFqYXNhbG1hbiIsDQogICAgICAgICAgICAgICBpbnN0YWdyYW09ICJKZXJlbXloZXJpeWFuZGN1Y3VueWFSYWphc2FsbWFuICIpDQogDQoNCg0KKQ0KYGBgDQoNCg0KYGBge3J9DQpjYXQoIk5hbWEgc2F5YSBhZGFsYWggOiIsIEplcmVteWhlcml5YW5kJGdldCgnTmFtYScpKQ0KcHJpbnQoSmVyZW15aGVyaXlhbmQkZ2V0KCdzb3NtZWQnKVsnaW5zdGFncmFtJ10pDQoNCmBgYA0KYGBge3J9DQpKZXJlbXloZXJpeWFuZFsiTmFtYSJdID0iaGFiaWIgSmVyZW1pIGhlcml5YW5kaSBzYXVkaSINCg0KYGBgDQoNCg0KYGBge3J9DQpKZXJlbXloZXJpeWFuZCRyZW1vdmUgKCJOYW1hIikgDQpwcmludChKZXJlbXloZXJpeWFuZCRnZXQoIk5hbWEiKSkNCg0KYGBgDQoNCiMgRGF0YSBmcmFtZQ0KDQpgYGB7cn0NCmRmMV9SIDwtIGRhdGEuZnJhbWUoa29kZSA9YyAoIDEgOiA1ICksIA0KICAgICAgICAgICAgICAgICAgICAgbmFtYSA9YyAoICIgQXNlcCAiICwgIiBVZGluICIgLCAiIEphcndvICIgLCAiIEJhbWJhbmcgIiAsICIgTmluZ3NpaCAiICksIA0KICAgICAgICAgICAgICAgICAgICAgZ2FqaSA9YyAoNzgzLjcgLCAgODk1LjMgLDc3OC44LDk4Ny42LDk2Ny4zNCApICwNCiAgICAgICAgICAgIGplbmlzX2tlbGFtaW4gPWMoIkwiLCJMIiwiTCIsIkwiLCJQIiksDQogICAgICAgICAgICAgICAgICAgICB1bXVyID1jKDI3LDM0LDIzLDQ1LDE5KSwNCiAgICAgICAgICAgICAgICAgICBhbGFtYXQgPWMoImtlbmRhcmkiLCJrZW5kYWwiLCJrZWRpcmkiLCJrdXBhbmciLCJrYXJ0YW5lZ2FyYSIpLA0KICAgICAgICAgICAgICBtdWxhaV9rZXJqYSA9IGFzLkRhdGUoYygiIDIwMTktMDYtMDEgIiAsICIgMjAxOS0wNi0xNSAiICwgIiAyMDE5LTA4LTE1ICIgLCAiIDIwMTUtMDUtMTEiLCAiMjAxOS0wMS0xNSIpKSwgIA0KICAgICAgICAgICAgICAgICAgIGRpdmlzaSA9YyAoICJEUyIgLCAiRFMiICwgIkJBIiAsICJEQSIgLCAiRFMiICkgLCAgc3RyaW5nc0FzRmFjdG9ycyA9IEYgKQ0KcHJpbnQoZGYxX1IpDQpgYGANCg0KDQpgYGB7cn0NCnR5cGVvZiAoIGRmMV9SICkgDQpjbGFzcyAoIGRmMV9SICkNCmRmMV9SWzEsNV0gDQpkZjFfUiAkTmFtYQ0KZGYxX1IgWyxjKCduYW1hJywnamVuaXNfa2VsYW1pbicpXQ0KZGYxX1IgWyAxIDogNSAsXQ0KZGYxX1IgWyAsIDEgOiA1IF0NCg0KDQpzdWJzZXQgKCBkZjFfUiAsIHNlbGVjdCA9IDYgKSANCnN1YnNldCAoIGRmMV9SICwgc2VsZWN0ID0gYyAoIDYsNyApICkgDQpzdWJzZXQgKCBkZjFfUiAsIHNlbGVjdCA9IGMgKCAyIDogNSApICkNCg0KDQptaW4gKCBkZjFfUiAkIEdhamkgKQ0KIG1heCAoIGRmMV9SICQgR2FqaSApDQogbWVhbiAoIGRmMV9SICQgR2FqaSApDQoNCnNkKGRmMV9SICQgR2FqaSkNCiBzdW1tYXJ5ICggZGYxX1IgKQ0KYGBgDQoNCg0KDQojIEJ1YXRsYWggb3BlcmFzaSBHYW50aSBOYW1hIFZhcmlhYmVsIHBhZGEgc3VhdHUgRGF0YSBGcmFtZSBkZW5nYW4gbWVuZ2d1bmFrYW4gUiBkYW4gUHl0aG9uLg0KYGBge3J9DQpyZW5hbWVfMTwtZGYxX1INCm5hbWVzKHJlbmFtZV8xKTwtYygibm8iLA0KIm5hbWEiLA0KInRnbC5sYWhpciIsDQoiamVuaXMga2VsYW1pbiIsDQoidW11ciIsDQoiYWxhbWF0IiwNCiJnYWppIikNCnByaW50KHJlbmFtZV8xKQ0KDQpgYGANCg0K