Email : e7ilsaudi@gmail.com
RPubs : https://rpubs.com/jeremyheriyandi23/
Jurusan : Statistika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
list1 =list("dhela","ferdinand","naftali","Yohanes","matius")
print(list1[5])## [[1]]
## [1] "matius"
list1 =list("dhela","ferdinand","naftali","Yohanes","matius")
list1[5] ="kenji"
print(list1)## [[1]]
## [1] "dhela"
##
## [[2]]
## [1] "ferdinand"
##
## [[3]]
## [1] "naftali"
##
## [[4]]
## [1] "Yohanes"
##
## [[5]]
## [1] "kenji"
length(list1)## [1] 5
library (sets)
tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
tuple3 = tuple("honda","Yamaha","suzuki","ducati","kawasaki")tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
print (tuple1 [3])## ("pesawat")
tuple1 = tuple("Mobil","motor","pesawat","bus","becak")
print(tuple1[3:2])## ("pesawat", "motor")
tuple2 = c(tuple3,tuple1)
print(tuple2)## ("honda", "Yamaha", "suzuki", "ducati", "kawasaki", "Mobil", "motor",
## "pesawat", "bus", "becak")
library(Dict)##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
Jeremyheriyand = dict(
Nama = "Jeremi heriyandi",
umur = as.integer (19),
hobi = list("Main musik", "rebahan", "renang"),
menikah = FALSE,
sosmed=tuple(facebook= "jeremyheriyandcucunyaRajasalman",
instagram= "JeremyheriyandcucunyaRajasalman ")
)cat("Nama saya adalah :", Jeremyheriyand$get('Nama'))## Nama saya adalah : Jeremi heriyandi
print(Jeremyheriyand$get('sosmed')['instagram'])## (instagram = "JeremyheriyandcucunyaRajasalman ")
Jeremyheriyand["Nama"] ="habib Jeremi heriyandi saudi"Jeremyheriyand$remove ("Nama")
print(Jeremyheriyand$get("Nama"))## NULL
df1_R <- data.frame(kode =c ( 1 : 5 ),
nama =c ( " Asep " , " Udin " , " Jarwo " , " Bambang " , " Ningsih " ),
gaji =c (783.7 , 895.3 ,778.8,987.6,967.34 ) ,
jenis_kelamin =c("L","L","L","L","P"),
umur =c(27,34,23,45,19),
alamat =c("kendari","kendal","kediri","kupang","kartanegara"),
mulai_kerja = as.Date(c(" 2019-06-01 " , " 2019-06-15 " , " 2019-08-15 " , " 2015-05-11", "2019-01-15")),
divisi =c ( "DS" , "DS" , "BA" , "DA" , "DS" ) , stringsAsFactors = F )
print(df1_R)## kode nama gaji jenis_kelamin umur alamat mulai_kerja divisi
## 1 1 Asep 783.70 L 27 kendari 2019-06-01 DS
## 2 2 Udin 895.30 L 34 kendal 2019-06-15 DS
## 3 3 Jarwo 778.80 L 23 kediri 2019-08-15 BA
## 4 4 Bambang 987.60 L 45 kupang 2015-05-11 DA
## 5 5 Ningsih 967.34 P 19 kartanegara 2019-01-15 DS
typeof ( df1_R ) ## [1] "list"
class ( df1_R )## [1] "data.frame"
df1_R[1,5] ## [1] 27
df1_R $Nama## NULL
df1_R [,c('nama','jenis_kelamin')]## nama jenis_kelamin
## 1 Asep L
## 2 Udin L
## 3 Jarwo L
## 4 Bambang L
## 5 Ningsih P
df1_R [ 1 : 5 ,]## kode nama gaji jenis_kelamin umur alamat mulai_kerja divisi
## 1 1 Asep 783.70 L 27 kendari 2019-06-01 DS
## 2 2 Udin 895.30 L 34 kendal 2019-06-15 DS
## 3 3 Jarwo 778.80 L 23 kediri 2019-08-15 BA
## 4 4 Bambang 987.60 L 45 kupang 2015-05-11 DA
## 5 5 Ningsih 967.34 P 19 kartanegara 2019-01-15 DS
df1_R [ , 1 : 5 ]## kode nama gaji jenis_kelamin umur
## 1 1 Asep 783.70 L 27
## 2 2 Udin 895.30 L 34
## 3 3 Jarwo 778.80 L 23
## 4 4 Bambang 987.60 L 45
## 5 5 Ningsih 967.34 P 19
subset ( df1_R , select = 6 ) ## alamat
## 1 kendari
## 2 kendal
## 3 kediri
## 4 kupang
## 5 kartanegara
subset ( df1_R , select = c ( 6,7 ) ) ## alamat mulai_kerja
## 1 kendari 2019-06-01
## 2 kendal 2019-06-15
## 3 kediri 2019-08-15
## 4 kupang 2015-05-11
## 5 kartanegara 2019-01-15
subset ( df1_R , select = c ( 2 : 5 ) )## nama gaji jenis_kelamin umur
## 1 Asep 783.70 L 27
## 2 Udin 895.30 L 34
## 3 Jarwo 778.80 L 23
## 4 Bambang 987.60 L 45
## 5 Ningsih 967.34 P 19
min ( df1_R $ Gaji )## Warning in min(df1_R$Gaji): no non-missing arguments to min; returning Inf
## [1] Inf
max ( df1_R $ Gaji )## Warning in max(df1_R$Gaji): no non-missing arguments to max; returning -Inf
## [1] -Inf
mean ( df1_R $ Gaji )## Warning in mean.default(df1_R$Gaji): argument is not numeric or logical:
## returning NA
## [1] NA
sd(df1_R $ Gaji)## [1] NA
summary ( df1_R )## kode nama gaji jenis_kelamin
## Min. :1 Length:5 Min. :778.8 Length:5
## 1st Qu.:2 Class :character 1st Qu.:783.7 Class :character
## Median :3 Mode :character Median :895.3 Mode :character
## Mean :3 Mean :882.5
## 3rd Qu.:4 3rd Qu.:967.3
## Max. :5 Max. :987.6
## umur alamat mulai_kerja divisi
## Min. :19.0 Length:5 Min. :2015-05-11 Length:5
## 1st Qu.:23.0 Class :character 1st Qu.:2019-01-15 Class :character
## Median :27.0 Mode :character Median :2019-06-01 Mode :character
## Mean :29.6 Mean :2018-07-30
## 3rd Qu.:34.0 3rd Qu.:2019-06-15
## Max. :45.0 Max. :2019-08-15
rename_1<-df1_R
names(rename_1)<-c("no",
"nama",
"tgl.lahir",
"jenis kelamin",
"umur",
"alamat",
"gaji")
print(rename_1)## no nama tgl.lahir jenis kelamin umur alamat gaji NA
## 1 1 Asep 783.70 L 27 kendari 2019-06-01 DS
## 2 2 Udin 895.30 L 34 kendal 2019-06-15 DS
## 3 3 Jarwo 778.80 L 23 kediri 2019-08-15 BA
## 4 4 Bambang 987.60 L 45 kupang 2015-05-11 DA
## 5 5 Ningsih 967.34 P 19 kartanegara 2019-01-15 DS