Email : ferdinand.widjaya@student.matanauniversity.ac.id
RPubs : https://rpubs.com/ferdnw/
Jurusan : Statistika Bisnis
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
list1=list("Marchella", "Calvin", "Karen", "Harris", "Felicia")
print(c(list1)
)## [[1]]
## [1] "Marchella"
##
## [[2]]
## [1] "Calvin"
##
## [[3]]
## [1] "Karen"
##
## [[4]]
## [1] "Harris"
##
## [[5]]
## [1] "Felicia"
print(list1[5])## [[1]]
## [1] "Felicia"
list1[3]="Jesselyn"
print(list1)## [[1]]
## [1] "Marchella"
##
## [[2]]
## [1] "Calvin"
##
## [[3]]
## [1] "Jesselyn"
##
## [[4]]
## [1] "Harris"
##
## [[5]]
## [1] "Felicia"
length(list1)## [1] 5
library(sets)
tuple1 = tuple("Aku", "Umur", 20, "Tahun","Ini")
print(tuple1)## ("Aku", "Umur", 20, "Tahun", "Ini")
library(sets)
tuple2 = tuple ("Tinggi", "Badan", "Saya", 175, "Cm")
print(tuple2)## ("Tinggi", "Badan", "Saya", 175, "Cm")
print(tuple1[4])## ("Tahun")
## Bagaimana anda melakukan Slicing Nilai Tuple
print(tuple2[3:5])## ("Saya", 175, "Cm")
tuple3 = c(tuple1, tuple2)
print(tuple3)## ("Aku", "Umur", 20, "Tahun", "Ini", "Tinggi", "Badan", "Saya", 175,
## "Cm")
Unpacking sequence tidak disupport oleh R
library(Dict)##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
ferdnw = dict(
nama=" Ferdinand Nathaniel Widjaya",
umur= 19L,
tinggi= 175.5,
menikah= FALSE,
hobi=list("gaming", 'Tidur'),
connectme= tuple(insta="fe_nw",
line= "fenw",
ml=4014450) )cat("Nama saya", ferdnw$get('nama'))## Nama saya Ferdinand Nathaniel Widjaya
print(ferdnw$get('connectme')['insta']) ## (insta = "fe_nw")
ferdnw["nama"] = "Ferdinand Nathaniel Saudi"
print(ferdnw$get('nama'))## [1] "Ferdinand Nathaniel Saudi"
ferdnw$remove("tinggi")
print(ferdnw$get('tinggi'))## NULL
df1_R <- data.frame(kode = c ( 1:5 ),
nama = c ( " Jeremy " , " Dhela " , " Felicia " , " Ling " , " Claude " ),
gender=c("L","P","P","L","L"),
gaji = c (666.3 , 585.2 ,711.8,849.0,888.5 ) ,
mulai_kerja = as.Date(c(" 2021-01-01 " , " 2022-08-24 " , " 2012-11-14 " , " 2020-07-07", "2020-02-27")),
divisi = c ( "GL" , "EL" , "M" , "R" , "J" ) , stringsAsFactors = F )
df2_R <- data.frame(kode = c ( 6:10 ),
nama = c ( " Iwan " , " Michelle " , " Harith " , " Asep Bensin " , " Albert " ),
gender=c("L","P","L","L","L"),
gaji = c (526.7 , 433.5 ,911.0,751.0,899.2 ) ,
mulai_kerja = as.Date(c(" 2019-01-01 " , " 2022-10-24 " , " 2012-01-11 " , " 2020-09-09", "2020-07-27")),
divisi = c ( "GL" , "M" , "R" , "J", "EL" ) , stringsAsFactors = F )
df3_R<- rbind(df1_R,df2_R)
print(df3_R)## kode nama gender gaji mulai_kerja divisi
## 1 1 Jeremy L 666.3 2021-01-01 GL
## 2 2 Dhela P 585.2 2022-08-24 EL
## 3 3 Felicia P 711.8 2012-11-14 M
## 4 4 Ling L 849.0 2020-07-07 R
## 5 5 Claude L 888.5 2020-02-27 J
## 6 6 Iwan L 526.7 2019-01-01 GL
## 7 7 Michelle P 433.5 2022-10-24 M
## 8 8 Harith L 911.0 2012-01-11 R
## 9 9 Asep Bensin L 751.0 2020-09-09 J
## 10 10 Albert L 899.2 2020-07-27 EL
typeof(df3_R)## [1] "list"
df3_R$nama## [1] " Jeremy " " Dhela " " Felicia " " Ling "
## [5] " Claude " " Iwan " " Michelle " " Harith "
## [9] " Asep Bensin " " Albert "
df3_R[,c('nama', 'gaji')]## nama gaji
## 1 Jeremy 666.3
## 2 Dhela 585.2
## 3 Felicia 711.8
## 4 Ling 849.0
## 5 Claude 888.5
## 6 Iwan 526.7
## 7 Michelle 433.5
## 8 Harith 911.0
## 9 Asep Bensin 751.0
## 10 Albert 899.2
df3_R[4:7,]## kode nama gender gaji mulai_kerja divisi
## 4 4 Ling L 849.0 2020-07-07 R
## 5 5 Claude L 888.5 2020-02-27 J
## 6 6 Iwan L 526.7 2019-01-01 GL
## 7 7 Michelle P 433.5 2022-10-24 M
subset(df3_R, select = 2:4)## nama gender gaji
## 1 Jeremy L 666.3
## 2 Dhela P 585.2
## 3 Felicia P 711.8
## 4 Ling L 849.0
## 5 Claude L 888.5
## 6 Iwan L 526.7
## 7 Michelle P 433.5
## 8 Harith L 911.0
## 9 Asep Bensin L 751.0
## 10 Albert L 899.2
mean(df3_R$gaji)## [1] 722.22
library(tidyverse) ## Registered S3 method overwritten by 'ggplot2':
## method from
## print.element sets
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x forcats::%>%() masks stringr::%>%(), dplyr::%>%(), purrr::%>%(), tidyr::%>%(), tibble::%>%(), Dict::%>%(), sets::%>%()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
df3_R%>%
rename ( "Salary" = "gaji",
"Nomor" = "kode",
"Name" = "nama",
"Start"="mulai_kerja",
"Division"="divisi")## Nomor Name gender Salary Start Division
## 1 1 Jeremy L 666.3 2021-01-01 GL
## 2 2 Dhela P 585.2 2022-08-24 EL
## 3 3 Felicia P 711.8 2012-11-14 M
## 4 4 Ling L 849.0 2020-07-07 R
## 5 5 Claude L 888.5 2020-02-27 J
## 6 6 Iwan L 526.7 2019-01-01 GL
## 7 7 Michelle P 433.5 2022-10-24 M
## 8 8 Harith L 911.0 2012-01-11 R
## 9 9 Asep Bensin L 751.0 2020-09-09 J
## 10 10 Albert L 899.2 2020-07-27 EL