fitmeasures(fit, "chisq")
## chisq
## 30.723
fitmeasures(fit, "chisq")/10
## chisq
## 3.072
fitmeasures(fit,"ifi")
## ifi
## 0.946
fitmeasures(fit,"cfi")
## cfi
## 0.937
The null model when there are causal paths would be to have all exogenous variables are correlated but the endogenous variables are uncorrelated with each other and the exogenous variables. The degrees of freedom for this null model are \(\frac{\left[k \cdot (k-1) - p \cdot (p-1) \right]}{2}\) where \(k\) is the number of variables in the model and \(p\) the number of exogenous variables or indicators in the model.
fitmeasures(fit,"nfi")
## nfi
## 0.922
fitmeasures(fit,"tli")
## tli
## 0.584
fitmeasures(fit,"rmsea")
## rmsea
## 0.234
fitmeasures(fit,"srmr")
## srmr
## 0.06
fitmeasures(fit,"aic")
## aic
## 2362.83
fitmeasures(fit,"bic")
## bic
## 2472.549
Barrett, P. (2007). Structural equation modelling: adjudging model fit. Personality and Individual Differences, 42, 815–824.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-600.
Bentler, P. M., & Chou, C. P. (1987) Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117.
Bollen, K. A., & Long, J. S., Eds. (1993). Testing structural equation models. Newbury Park, CA: Sage.
Enders, C.K., & Tofighi, D. (2008). The impact of misspecifying class-specific residual variances in growth mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 15, 75-95.
Hayduk, L., Cummings, G. G., Boadu, K., Pazderka-Robinson, H., & Boulianne, S. (2007). Testing! Testing! One, two three – Testing the theory in structural equation models! Personality and Individual Differences, 42, 841-50.
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44, 486-507.
Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10, 333-3511.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.
O’Boyle, E. H., Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs. theory in organizational research using latent variables. Journal of Applied Psychology, 96, 1-12.
Satorra, A., & Saris,W. E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83–90.
Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W.R. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. Journal of Business Research, 58, 935-43.
Tanaka, J.S. (1987). “How big is big enough?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146.
Tofghi, D., & Enders, C. K. (2007). Identifying the correct number of classes in mixture models. In G. R. Hancock & K. M. Samulelsen (Eds.), Advances in latent variable mixture models (pp. 317-341). Greenwich, CT: Information Age.
Wui, W., West, S. B., & Taylor, A. B. (2009). Evaluating model fit for growth curve models: Integration of fit indices from SEM and MLM frameworks. Psychological Methods, 14,183-201.
Carmines, E. G., & McIver, J. P. (1981). Analyzing Models with Unobserved Variables. In Steffel R. V., & Ellis, R. S. (Eds.). Structural and Social Bond of Commitment in Inter-Firm Relationsships. Journal of Applied Business and Economics, 10(1), 1-18.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In Byrne, B. M. (Ed.). Structural equation modeling with AMOS: Basic Concepts, Applications, and Programming. (2th ed.)
Jaccard, J., & Wan, C. K. (1996). Lisrel Approaches to Interaction Effect in Multiple Regression. California, USA: Sage Publications Inc.
Hu, L.-T., & Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.