recapitulatif des données de comparaison
summary(Ig)
## Patient Sexe age_inclusion IMC
## BOULA : 2 F:154 Min. :15.38 Min. :15.00
## BOUMA : 2 M:104 1st Qu.:42.54 1st Qu.:22.00
## CHAMA : 2 Median :53.83 Median :25.00
## MASCH : 2 Mean :52.94 Mean :26.57
## VANFR : 2 3rd Qu.:64.91 3rd Qu.:29.25
## ABDAB : 1 Max. :85.61 Max. :71.00
## (Other):247 NA's :90
## Nb_Exa_an.sans_biotherapie Corticoïde.systémique..dose. CSI_µg
## Min. : 0.000 Min. : 0.000 Min. : 0
## 1st Qu.: 1.000 1st Qu.: 0.000 1st Qu.: 800
## Median : 3.000 Median : 0.000 Median :1600
## Mean : 4.545 Mean : 6.052 Mean :1605
## 3rd Qu.: 6.000 3rd Qu.: 5.500 3rd Qu.:2000
## Max. :104.000 Max. :100.000 Max. :4000
## NA's :49 NA's :27 NA's :11
## Montélukast Biotherapie Biothérapie_type Rep_biotherapie_GETE
## Min. :0.0000 Non:168 :168 Min. :0.0000
## 1st Qu.:0.0000 Oui: 90 Benralizumab: 10 1st Qu.:0.0000
## Median :0.0000 Dupilumab : 4 Median :0.0000
## Mean :0.3711 Mepolizumab : 52 Mean :0.9918
## 3rd Qu.:1.0000 Omalixumab : 24 3rd Qu.:2.0000
## Max. :1.0000 Max. :5.0000
## NA's :2 NA's :14
## Tabac Atopie VEMS_pre_B2_L VEMS_PreB2_Pct Tiffenau
## :47 Non:160 Min. :0.490 Min. : 20.0 Min. :30.36
## Actif :25 Oui: 98 1st Qu.:1.450 1st Qu.: 53.5 1st Qu.:58.00
## Non :91 Median :2.000 Median : 72.0 Median :67.00
## Passif:10 Mean :2.125 Mean : 73.1 Mean :66.19
## Sevré :85 3rd Qu.:2.792 3rd Qu.: 92.0 3rd Qu.:75.75
## Max. :5.000 Max. :128.0 Max. :95.00
## NA's :36 NA's :31 NA's :35
## FeNo FeNo_sup_20_ppb PNN_sup_5 PNE_sup_0.15G_L PNE_sup_0.3.G_L
## Min. : 2.00 :120 : 22 : 23 : 23
## 1st Qu.: 14.00 Non: 56 Non:106 Non: 98 Non:133
## Median : 24.50 Oui: 82 Oui:130 Oui:137 Oui:102
## Mean : 35.64
## 3rd Qu.: 47.25
## Max. :177.00
## NA's :120
## PNE_G_L CRP_sup_5.mg_l IgE_Total IgE_Total_sup_30_kUA_l
## Min. :0.0000 :103 Min. : 2.0 : 77
## 1st Qu.:0.1000 Non:106 1st Qu.: 58.0 Non: 30
## Median :0.2000 Oui: 49 Median : 164.0 Oui:151
## Mean :0.3468 Mean : 410.4
## 3rd Qu.:0.4000 3rd Qu.: 400.0
## Max. :3.9000 Max. :12255.0
## NA's :23 NA's :77
## Profil_T2 IgG_statut IgG2_statut IgG3_statut IgG4_statut
## :128 Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.000
## Neg: 85 1st Qu.:1.0000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Pos: 45 Median :1.0000 Median :1.000 Median :1.000 Median :1.000
## Mean :0.9845 Mean :1.101 Mean :1.027 Mean :1.081
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.0000 Max. :2.000 Max. :2.000 Max. :2.000
##
## IgG_statut_A IgG_deficit IgG2_statut_A IgG2_deficit IgG2_Exces IgG3_statut_A
## Deficit: 8 Non:250 Deficit: 8 Non:250 Non:224 Deficit: 16
## Excès : 4 Oui: 8 Excès : 34 Oui: 8 Oui: 34 Excès : 23
## Normal :246 Normal :216 Normal :219
##
##
##
##
## IgG3_Exces IgG4_statut_A IgG4_Exces
## Non:235 Deficit: 8 Non:229
## Oui: 23 Excès : 29 Oui: 29
## Normal :221
##
##
##
##
la normalité va nous permettre de choisir le type de test pour comparer les données Un test de shapiro pour valider la normalité si la p-value est<0.05 la normalité n’est pas accepté on fait donc un test de Wilcoxon Si la normalité est respecté on fait le test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG_deficit == "Oui"]
## W = 0.92288, p-value = 0.4536
la normalité est acceptée: T-test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG_deficit == "Non"]
## W = 0.98192, p-value = 0.002862
la normalité n’est pas acceptée pour les IgG normaux+excès : test de Wilcoxon
shapiro.test(Ig$IMC[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG_deficit == "Oui"]
## W = 0.87029, p-value = 0.2988
la normalité est acceptée: T-test de Student
shapiro.test(Ig$IMC[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG_deficit == "Non"]
## W = 0.85802, p-value = 2.648e-11
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG_deficit == "Oui"]
## W = 0.77091, p-value = 0.04595
la normalité n’est pas acceptée: Wilcoxon
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG_deficit == "Non"]
## W = 0.41589, p-value < 2.2e-16
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG_deficit == "Oui"]
## W = 0.62607, p-value = 0.0005479
la normalité n’est pas acceptée: Wilcoxon
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG_deficit == "Non"]
## W = 0.54702, p-value < 2.2e-16
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$CSI_µg[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG_deficit == "Oui"]
## W = 0.86768, p-value = 0.143
la normalité est acceptée : T test de student
shapiro.test(Ig$CSI_µg[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG_deficit == "Non"]
## W = 0.87507, p-value = 4.268e-13
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$Montélukast[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG_deficit == "Oui"]
## W = 0.6412, p-value = 0.0004791
la normalité n’est pas acceptée : Wilcoxon
shapiro.test(Ig$Montélukast[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG_deficit == "Non"]
## W = 0.61178, p-value < 2.2e-16
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG_deficit == "Oui"]
## W = 0.86815, p-value = 0.1788
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG_deficit == "Non"]
## W = 0.63823, p-value < 2.2e-16
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG_deficit == "Oui"]
## W = 0.9242, p-value = 0.5574
la normalité est acceptée : t-test de Student
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG_deficit == "Non"]
## W = 0.97611, p-value = 0.0009656
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG_deficit == "Oui"]
## W = 0.99294, p-value = 0.9889
la normalité est acceptée : t-test de Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG_deficit == "Non"]
## W = 0.98073, p-value = 0.003994
la normalité n’est pas acceptés :test de Wilcoxon
shapiro.test(Ig$Tiffenau[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG_deficit == "Oui"]
## W = 0.96903, p-value = 0.869
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Tiffenau[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG_deficit == "Non"]
## W = 0.98818, p-value = 0.06882
la normalité est acceptée : t-test de Student
nous ne nouvons pas calculer la difference entre ceux qui sont en deficit d’IgG et les autres par manque de données. Seul 2 patients avec deficit d’IGG ont une donnée de FeNO
shapiro.test(Ig$FeNo[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG_deficit == "Non"]
## W = 0.79511, p-value = 1.656e-12
la normalité n’est pas acceptée :wilcoxon
shapiro.test(Ig$PNE_G_L[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG_deficit == "Oui"]
## W = 0.59402, p-value = 0.0003882
la normalité n’est pas acceptée : t-test de Wilcoxon
shapiro.test(Ig$PNE_G_L[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG_deficit == "Non"]
## W = 0.68732, p-value < 2.2e-16
#la normalité n’est pas acceptée ;wilcoxon
shapiro.test(Ig$IgE_Total[Ig$IgG_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG_deficit == "Oui"]
## W = 0.7253, p-value = 0.0173
la normalité n’est pas acceptée : t-test de Wilcoxon
shapiro.test(Ig$IgE_Total[Ig$IgG_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG_deficit == "Non"]
## W = 0.32334, p-value < 2.2e-16
#la normalité n’est pas acceptée ;wilcoxon
t.test(Ig$age_inclusion~Ig$IgG_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$age_inclusion by Ig$IgG_deficit
## t = -2.5642, df = 256, p-value = 0.01091
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -25.227814 -3.310486
## sample estimates:
## mean in group Non mean in group Oui
## 52.49460 66.76375
L’hypothèse nulle d’égalité des moyennes est rejetée car la p-value est < 0.05. Le test met en évidence une différence significative, dans le sens ou la moyenne d’age des patients ayant l’IgG en deficit est plus élevé que les autres patients( excès + normaux)
wilcox.test(Ig$age_inclusion~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$age_inclusion by Ig$IgG_deficit
## W = 438, p-value = 0.006881
## alternative hypothesis: true location shift is not equal to 0
même conclusion
t.test(Ig$IMC~Ig$IgG_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IMC by Ig$IgG_deficit
## t = -0.051878, df = 166, p-value = 0.9587
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.168456 6.801383
## sample estimates:
## mean in group Non mean in group Oui
## 26.56646 26.75000
L’hypothèse nulle d’égalité des moyennes n’est pas rejetée car la p-value est > 0.05. Ainsi, rien ne permet d’affirmer que les moyennes des IMC des patients ayant l’IgG en excès et les autres patients sont différentes.
wilcox.test(Ig$IMC~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IMC by Ig$IgG_deficit
## W = 330, p-value = 0.9875
## alternative hypothesis: true location shift is not equal to 0
même conclusion
wilcox.test(Ig$Nb_Exa_an.sans_biotherapie~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Nb_Exa_an.sans_biotherapie by Ig$IgG_deficit
## W = 527.5, p-value = 0.8979
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$Corticoïde.systémique..dose.~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Corticoïde.systémique..dose. by Ig$IgG_deficit
## W = 463, p-value = 0.02416
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$CSI_µg~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$CSI_µg by Ig$IgG_deficit
## W = 799.5, p-value = 0.4282
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$Montélukast~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Montélukast by Ig$IgG_deficit
## W = 988, p-value = 0.9838
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$Rep_biotherapie_GETE~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Rep_biotherapie_GETE by Ig$IgG_deficit
## W = 586, p-value = 0.1085
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$VEMS_pre_B2_L~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_pre_B2_L by Ig$IgG_deficit
## W = 727.5, p-value = 0.1938
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$VEMS_PreB2_Pct~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_PreB2_Pct by Ig$IgG_deficit
## W = 710, p-value = 0.2874
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
t.test(Ig$Tiffenau~Ig$IgG_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Tiffenau by Ig$IgG_deficit
## t = 0.0095199, df = 221, p-value = 0.9924
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.69751 11.81107
## sample estimates:
## mean in group Non mean in group Oui
## 66.19078 66.13400
Le test ne met pas en évidence une différence significative
malgre les données insuffisantes, le test de wilcoxon a été fait ( attention à ne pas prendre en consideration)
wilcox.test(Ig$FeNo~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$FeNo by Ig$IgG_deficit
## W = 172, p-value = 0.527
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$PNE_G_L~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$PNE_G_L by Ig$IgG_deficit
## W = 1046.5, p-value = 0.02701
## alternative hypothesis: true location shift is not equal to 0
Le test met en évidence une différence significative
wilcox.test(Ig$IgE_Total~Ig$IgG_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IgE_Total by Ig$IgG_deficit
## W = 659, p-value = 0.05858
## alternative hypothesis: true location shift is not equal to 0
la p-value est dans la limite de la significativité
comp_qual <- read.csv("C:/Users/mallah.s/Desktop/StatsTheses/Mauro anthony/comp_qual.csv", sep=";", stringsAsFactors=TRUE)
Pour le test de liaison entre deux variables qualitative: verification de la normalité -> selon la validation de la normalité :test de Chi2 ou test de fisher
le test du χ2 d’indépendance sert à étudier la liaison entre deux caractères qualitatifs XetY, lorsque les conditions ne sont pas remplies, il existe des corrections,dans notre cas je vais utiliser le tests exacts de Fisher
xtabs(~Sexe+IgG_deficit, data=comp_qual)
## IgG_deficit
## Sexe Non Oui
## F 150 4
## M 100 4
chisq.test(comp_qual$Sexe,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Sexe, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Sexe Non Oui
## F 149.2248 4.775194
## M 100.7752 3.224806
chisq.test(comp_qual$Sexe,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Sexe, comp_qual$IgG_deficit, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Sexe and comp_qual$IgG_deficit
## X-squared = 0.32218, df = 1, p-value = 0.5703
fisher.test(comp_qual$Sexe,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Sexe and comp_qual$IgG_deficit
## p-value = 0.7179
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2723202 8.2370330
## sample estimates:
## odds ratio
## 1.497543
les variables Sexe et deficit d’IgG sont independantes
xtabs(~Montélukast+IgG_deficit, data=comp_qual)
## IgG_deficit
## Montélukast Non Oui
## Non 156 5
## Oui 92 3
chisq.test(comp_qual$Montélukast,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Montélukast, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Montélukast Non Oui
## Non 155.96875 5.03125
## Oui 92.03125 2.96875
chisq.test(comp_qual$Montélukast,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Montélukast, comp_qual$IgG_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Montélukast and comp_qual$IgG_deficit
## X-squared = 0.00053992, df = 1, p-value = 0.9815
fisher.test(comp_qual$Montélukast,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Montélukast and comp_qual$IgG_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1544207 5.3672921
## sample estimates:
## odds ratio
## 1.01733
Pour les IgG en deficit, il y’a seulement 3 qui sont traités par Montélukast, donc pas assez de patients, ce qui explique le le resultats de la p-value du test exact de fisher
xtabs(~Biotherapie+IgG_deficit, data=comp_qual)
## IgG_deficit
## Biotherapie Non Oui
## Non 165 3
## Oui 85 5
chisq.test(comp_qual$Biotherapie,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Biotherapie, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Biotherapie Non Oui
## Non 162.7907 5.209302
## Oui 87.2093 2.790698
chisq.test(comp_qual$Biotherapie,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Biotherapie, comp_qual$IgG_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biotherapie and comp_qual$IgG_deficit
## X-squared = 2.772, df = 1, p-value = 0.09593
fisher.test(comp_qual$Biotherapie,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biotherapie and comp_qual$IgG_deficit
## p-value = 0.1317
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.609821 21.223824
## sample estimates:
## odds ratio
## 3.219438
xtabs(~Biothérapie_type+IgG_deficit, data=comp_qual)
## IgG_deficit
## Biothérapie_type Non Oui
## Benralizumab 10 0
## Dupilumab 4 0
## Mepolizumab 49 3
## Omalixumab 22 2
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Biothérapie_type Non Oui
## Benralizumab 9.444444 0.5555556
## Dupilumab 3.777778 0.2222222
## Mepolizumab 49.111111 2.8888889
## Omalixumab 22.666667 1.3333333
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG_deficit
## X-squared = 1.181, df = 3, p-value = 0.7576
fisher.test(comp_qual$Biothérapie_type,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG_deficit
## p-value = 0.8522
## alternative hypothesis: two.sided
xtabs(~Tabac+IgG_deficit, data=comp_qual)
## IgG_deficit
## Tabac Non Oui
## Actif 24 1
## Non 88 3
## Passif 10 0
## Sevré 81 4
chisq.test(comp_qual$Tabac,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Tabac Non Oui
## Actif 24.052133 0.9478673
## Non 87.549763 3.4502370
## Passif 9.620853 0.3791469
## Sevré 81.777251 3.2227488
chisq.test(comp_qual$Tabac,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG_deficit, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Tabac and comp_qual$IgG_deficit
## X-squared = 0.65298, df = 3, p-value = 0.8842
fisher.test(comp_qual$Tabac,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Tabac and comp_qual$IgG_deficit
## p-value = 0.9225
## alternative hypothesis: two.sided
xtabs(~Atopie+IgG_deficit, data=comp_qual)
## IgG_deficit
## Atopie Non Oui
## Non 152 8
## Oui 98 0
chisq.test(comp_qual$Atopie,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Atopie, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Atopie Non Oui
## Non 155.03876 4.96124
## Oui 94.96124 3.03876
chisq.test(comp_qual$Atopie,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Atopie, comp_qual$IgG_deficit, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Atopie and comp_qual$IgG_deficit
## X-squared = 5.0568, df = 1, p-value = 0.02453
fisher.test(comp_qual$Atopie,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Atopie and comp_qual$IgG_deficit
## p-value = 0.02587
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.9345261
## sample estimates:
## odds ratio
## 0
la p-value =0.025, IC[0.0000000 ;0.9345261]; OR=0 :Il y’a donc une correlation significative entre l’atopie et les IgG en deficit dans le sens de l’absence d’atopie
xtabs(~FeNo_sup_20_ppb+IgG_deficit, data=comp_qual)
## IgG_deficit
## FeNo_sup_20_ppb Non Oui
## Non 55 1
## Oui 81 1
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$FeNo_sup_20_ppb Non Oui
## Non 55.18841 0.8115942
## Oui 80.81159 1.1884058
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG_deficit
## X-squared = 0.074689, df = 1, p-value = 0.7846
fisher.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.008554044 54.237797647
## sample estimates:
## odds ratio
## 0.6809822
il n’y a clairement pas assez de patients pour pouvoir affirmer ou refuter une relation de dependance ou independance des données
xtabs(~PNN_sup_5+IgG_deficit, data=comp_qual)
## IgG_deficit
## PNN_sup_5 Non Oui
## Non 105 1
## Oui 125 5
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$PNN_sup_5, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$PNN_sup_5 Non Oui
## Non 103.3051 2.694915
## Oui 126.6949 3.305085
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNN_sup_5, comp_qual$IgG_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG_deficit
## X-squared = 1.9857, df = 1, p-value = 0.1588
fisher.test(comp_qual$PNN_sup_5,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG_deficit
## p-value = 0.2274
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4573631 200.3188242
## sample estimates:
## odds ratio
## 4.178951
Les deux variable sont independantes
xtabs(~PNE_sup_0.15G_L+IgG_deficit, data=comp_qual)
## IgG_deficit
## PNE_sup_0.15G_L Non Oui
## Non 93 5
## Oui 136 1
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$PNE_sup_0.15G_L, comp_qual$IgG_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$PNE_sup_0.15G_L Non Oui
## Non 95.49787 2.502128
## Oui 133.50213 3.497872
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNE_sup_0.15G_L, comp_qual$IgG_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG_deficit
## X-squared = 4.3895, df = 1, p-value = 0.03616
fisher.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG_deficit
## p-value = 0.08468
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.002876064 1.259896153
## sample estimates:
## odds ratio
## 0.1378348
xtabs(~PNE_sup_0.3.G_L+IgG_deficit, data=comp_qual)
## IgG_deficit
## PNE_sup_0.3.G_L Non Oui
## Non 128 5
## Oui 101 1
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$PNE_sup_0.3.G_L, comp_qual$IgG_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$PNE_sup_0.3.G_L Non Oui
## Non 129.60426 3.395745
## Oui 99.39574 2.604255
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNE_sup_0.3.G_L, comp_qual$IgG_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG_deficit
## X-squared = 1.7919, df = 1, p-value = 0.1807
fisher.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG_deficit
## p-value = 0.2374
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.005311982 2.327576263
## sample estimates:
## odds ratio
## 0.2546856
xtabs(~CRP_sup_5.mg_l+IgG_deficit, data=comp_qual)
## IgG_deficit
## CRP_sup_5.mg_l Non Oui
## Non 103 3
## Oui 47 2
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$CRP_sup_5.mg_l Non Oui
## Non 102.58065 3.419355
## Oui 47.41935 1.580645
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG_deficit
## X-squared = 0.16811, df = 1, p-value = 0.6818
fisher.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG_deficit
## p-value = 0.6515
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1180417 13.1608675
## sample estimates:
## odds ratio
## 1.457236
xtabs(~IgE_Total_sup_30_kUA_l+IgG_deficit, data=comp_qual)
## IgG_deficit
## IgE_Total_sup_30_kUA_l Non Oui
## Non 28 2
## Oui 148 3
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG_deficit):
## Chi-squared approximation may be incorrect
## comp_qual$IgG_deficit
## Non Oui
## Non 29.17127 0.8287293
## Oui 146.82873 4.1712707
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG_deficit, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG_deficit
## X-squared = 2.0407, df = 1, p-value = 0.1531
fisher.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG_deficit
## p-value = 0.1926
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.03134404 3.57596023
## sample estimates:
## odds ratio
## 0.2865624
xtabs(~Profil_T2+IgG_deficit, data=comp_qual)
## IgG_deficit
## Profil_T2 Non Oui
## Neg 83 2
## Pos 45 0
chisq.test(comp_qual$Profil_T2,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Profil_T2 Non Oui
## Neg 83.69231 1.3076923
## Pos 44.30769 0.6923077
chisq.test(comp_qual$Profil_T2,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Profil_T2 and comp_qual$IgG_deficit
## X-squared = 1.0754, df = 1, p-value = 0.2997
fisher.test(comp_qual$Profil_T2,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Profil_T2 and comp_qual$IgG_deficit
## p-value = 0.5438
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.00000 10.08195
## sample estimates:
## odds ratio
## 0
xtabs(~Rep_biotherapie_GETE+IgG_deficit, data=comp_qual)
## IgG_deficit
## Rep_biotherapie_GETE Non Oui
## 177 4
## Aggravation 8 1
## Bonne 24 1
## Excellent 5 0
## Faible 27 1
## modérée 9 1
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG_deficit)$expected
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG_deficit):
## Chi-squared approximation may be incorrect
## comp_qual$IgG_deficit
## comp_qual$Rep_biotherapie_GETE Non Oui
## 175.387597 5.6124031
## Aggravation 8.720930 0.2790698
## Bonne 24.224806 0.7751938
## Excellent 4.844961 0.1550388
## Faible 27.131783 0.8682171
## modérée 9.689922 0.3100775
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG_deficit, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG_deficit
## X-squared = 4.2322, df = 5, p-value = 0.5165
fisher.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG_deficit
## p-value = 0.1948
## alternative hypothesis: two.sided