

Email : rizal.andriana@student.matanauniversity.ac.id
RPubs : https://rpubs.com/rizalandriana
Github : https://github.com/rizalandriana
Jurusan : Teknik Informatika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
DUA DATA FRAME
producers <- data.frame(
surname = c("Oswaldo","Noel","Dio","Bimo","Kocun"),
nationality = c("US","US","UK","US","Poland"),
stringsAsFactors=FALSE)
# Data Frame yang akan digabungkan
movies <- data.frame(
surname = c("Oswaldo",
"Noel",
"Dio",
"Dio",
"Oswaldo",
"Bimo",
"Kocun"),
title = c("Super 8",
"Taxi Driver",
"Psycho",
"North by Northwest",
"Catch Me If You Can",
"Reservoir Dogs","Chinatown"),
stringsAsFactors=FALSE)
# Menggabungkan Dua Data Frame
m1 <- merge(producers, movies, by.x = "surname")
m1
## surname nationality title
## 1 Bimo US Reservoir Dogs
## 2 Dio UK Psycho
## 3 Dio UK North by Northwest
## 4 Kocun Poland Chinatown
## 5 Noel US Taxi Driver
## 6 Oswaldo US Super 8
## 7 Oswaldo US Catch Me If You Can
DATA FRAME
emp.data <- data.frame(
No = c (1:5),
Nama = c("Ricki","Daan","Megi","Ryan","Budi"),
Gaji = c(623.3,515.2,611.0,729.0,843.25),
Tanggal = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Menambah kolom Departemen.
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)
## No Nama Gaji Tanggal dept
## 1 1 Ricki 623.30 2012-01-01 IT
## 2 2 Daan 515.20 2013-09-23 Operations
## 3 3 Megi 611.00 2014-11-15 IT
## 4 4 Ryan 729.00 2014-05-11 HR
## 5 5 Budi 843.25 2015-03-27 Finance
DATA FRAME 1
nama <- c("Ana","Banu", "Cici", "Dido", "Erik")
tahun <- c(1992,1995,1993,1999,1994)
lahir <- data.frame(nama, tahun)
lahir
## nama tahun
## 1 Ana 1992
## 2 Banu 1995
## 3 Cici 1993
## 4 Dido 1999
## 5 Erik 1994
Mengganti nama Colom
# Data Frame Utama {Producers}
producers <- data.frame(
surname = c("Oswaldo","Noel","Dio","Bimo","Kocun"),
nationality = c("US","US","UK","US","Poland"),
stringsAsFactors=FALSE)
# Data Frame yang akan digabungkan
movies <- data.frame(
surname = c("Oswaldo",
"Noel",
"Dio",
"Dio",
"Oswaldo",
"Bimo",
"Kocun"),
title = c("Super 8",
"Taxi Driver",
"Psycho",
"North by Northwest",
"Catch Me If You Can",
"Reservoir Dogs","Chinatown"),
stringsAsFactors=FALSE)
# Menggabungkan Dua Data Frame
m1 <- merge(producers, movies, by.x = "surname")
m1
## surname nationality title
## 1 Bimo US Reservoir Dogs
## 2 Dio UK Psycho
## 3 Dio UK North by Northwest
## 4 Kocun Poland Chinatown
## 5 Noel US Taxi Driver
## 6 Oswaldo US Super 8
## 7 Oswaldo US Catch Me If You Can
# Mengganti nama kolom "movies"
colnames(movies)[colnames(movies) == 'surname'] <- 'name'
LS0tDQp0aXRsZTogIlR1Z2FzIg0Kc3VidGl0bGU6ICJUdWdhcyAyIg0KYXV0aG9yOiAiUml6YWwgQW5kcmlhbmEgKDIwMjA1NTIwMDcpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaHRtbF9kb2N1bWVudDogbnVsbA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBzYW5kc3RvbmUNCiAgICBjc3M6IHN0eWxlMS5jc3MNCiAgICBoaWdobGlnaHQ6IG1vbm9jaHJvbWUNCi0tLQ0KDQoNCjxpbWcgc3R5bGU9ImZsb2F0OiByaWdodDsgbWFyZ2luOiAwcHggMTAwcHggMHB4IDBweDsgd2lkdGg6MjUlIiBzcmM9Im1lLmpwZWciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgcml6YWwuYW5kcmlhbmFAc3R1ZGVudC5tYXRhbmF1bml2ZXJzaXR5LmFjLmlkIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL3JpemFsYW5kcmlhbmEgPGJyPg0KR2l0aHViICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IGh0dHBzOi8vZ2l0aHViLmNvbS9yaXphbGFuZHJpYW5hIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1Rla25payBJbmZvcm1hdGlrYV0oaHR0cHM6Ly9tYXRhbmF1bml2ZXJzaXR5LmFjLmlkLz9seT1hY2FkZW1pYyZjPXRpKSA8YnI+DQpBZGRyZXNzICAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgOiBBUkEgQ2VudGVyLCBNYXRhbmEgVW5pdmVyc2l0eSBUb3dlciA8YnI+DQombmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOyBKbC4gQ0JEIEJhcmF0IEthdiwgUlQuMSwgQ3VydWcgU2FuZ2VyZW5nLCBLZWxhcGEgRHVhLCBUYW5nZXJhbmcsIEJhbnRlbiAxNTgxMC4NCg0KKioqKg0KDQojIERVQSBEQVRBIEZSQU1FDQpgYGB7cn0NCnByb2R1Y2VycyA8LSBkYXRhLmZyYW1lKCAgIA0KICBzdXJuYW1lID0gIGMoIk9zd2FsZG8iLCJOb2VsIiwiRGlvIiwiQmltbyIsIktvY3VuIiksICAgIA0KICBuYXRpb25hbGl0eSA9IGMoIlVTIiwiVVMiLCJVSyIsIlVTIiwiUG9sYW5kIiksICAgIA0KICBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFKQ0KDQojIERhdGEgRnJhbWUgeWFuZyBha2FuIGRpZ2FidW5na2FuDQptb3ZpZXMgPC0gZGF0YS5mcmFtZSggICAgDQogIHN1cm5hbWUgPSBjKCJPc3dhbGRvIiwNCiAgICAgICAgICAgICAgIk5vZWwiLA0KICAgICAgICAgICAgICAiRGlvIiwNCiAgICAgICAgICAgICAgIkRpbyIsDQogICAgICAgICAgICAgICJPc3dhbGRvIiwNCiAgICAgICAgICAgICAgIkJpbW8iLA0KICAgICAgICAgICAgICAiS29jdW4iKSwgICAgDQogIHRpdGxlID0gYygiU3VwZXIgOCIsDQogICAgICAgICAgICAiVGF4aSBEcml2ZXIiLA0KICAgICAgICAgICAgIlBzeWNobyIsDQogICAgICAgICAgICAiTm9ydGggYnkgTm9ydGh3ZXN0IiwNCiAgICAgICAgICAgICJDYXRjaCBNZSBJZiBZb3UgQ2FuIiwNCiAgICAgICAgICAgICJSZXNlcnZvaXIgRG9ncyIsIkNoaW5hdG93biIpLCAgICAgICAgICAgICAgICANCiAgc3RyaW5nc0FzRmFjdG9ycz1GQUxTRSkNCg0KIyBNZW5nZ2FidW5na2FuIER1YSBEYXRhIEZyYW1lIA0KbTEgPC0gbWVyZ2UocHJvZHVjZXJzLCBtb3ZpZXMsIGJ5LnggPSAic3VybmFtZSIpDQptMQ0KYGBgDQoNCiMgREFUQSBGUkFNRQ0KYGBge3J9DQplbXAuZGF0YSA8LSBkYXRhLmZyYW1lKA0KICBObyA9IGMgKDE6NSksIA0KICBOYW1hID0gYygiUmlja2kiLCJEYWFuIiwiTWVnaSIsIlJ5YW4iLCJCdWRpIiksDQogIEdhamkgPSBjKDYyMy4zLDUxNS4yLDYxMS4wLDcyOS4wLDg0My4yNSksIA0KICANCiAgVGFuZ2dhbCAgPSBhcy5EYXRlKGMoIjIwMTItMDEtMDEiLCAiMjAxMy0wOS0yMyIsICIyMDE0LTExLTE1IiwgIjIwMTQtMDUtMTEiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICIyMDE1LTAzLTI3IikpLA0KICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UNCikNCg0KIyBNZW5hbWJhaCBrb2xvbSBEZXBhcnRlbWVuLg0KZW1wLmRhdGEkZGVwdCA8LSBjKCJJVCIsIk9wZXJhdGlvbnMiLCJJVCIsIkhSIiwiRmluYW5jZSIpDQp2IDwtIGVtcC5kYXRhDQpwcmludCh2KQ0KYGBgDQoNCiMgREFUQSBGUkFNRSAxDQpgYGB7cn0NCm5hbWEgPC0gYygiQW5hIiwiQmFudSIsICJDaWNpIiwgIkRpZG8iLCAiRXJpayIpDQp0YWh1biA8LSBjKDE5OTIsMTk5NSwxOTkzLDE5OTksMTk5NCkNCmxhaGlyIDwtIGRhdGEuZnJhbWUobmFtYSwgdGFodW4pDQpsYWhpcg0KYGBgDQoNCg0KIyBNZW5nZ2FudGkgbmFtYSBDb2xvbQ0KYGBge3J9DQojIERhdGEgRnJhbWUgVXRhbWEge1Byb2R1Y2Vyc30NCnByb2R1Y2VycyA8LSBkYXRhLmZyYW1lKCAgIA0KICBzdXJuYW1lID0gIGMoIk9zd2FsZG8iLCJOb2VsIiwiRGlvIiwiQmltbyIsIktvY3VuIiksICAgIA0KICBuYXRpb25hbGl0eSA9IGMoIlVTIiwiVVMiLCJVSyIsIlVTIiwiUG9sYW5kIiksICAgIA0KICBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFKQ0KICANCiMgRGF0YSBGcmFtZSB5YW5nIGFrYW4gZGlnYWJ1bmdrYW4NCm1vdmllcyA8LSBkYXRhLmZyYW1lKCAgICANCiAgc3VybmFtZSA9IGMoIk9zd2FsZG8iLA0KICAgICAgICAgICAgICAiTm9lbCIsDQogICAgICAgICAgICAgICJEaW8iLA0KICAgICAgICAgICAgICAiRGlvIiwNCiAgICAgICAgICAgICAgIk9zd2FsZG8iLA0KICAgICAgICAgICAgICAiQmltbyIsDQogICAgICAgICAgICAgICJLb2N1biIpLCAgICANCiAgdGl0bGUgPSBjKCJTdXBlciA4IiwNCiAgICAgICAgICAgICJUYXhpIERyaXZlciIsDQogICAgICAgICAgICAiUHN5Y2hvIiwNCiAgICAgICAgICAgICJOb3J0aCBieSBOb3J0aHdlc3QiLA0KICAgICAgICAgICAgIkNhdGNoIE1lIElmIFlvdSBDYW4iLA0KICAgICAgICAgICAgIlJlc2Vydm9pciBEb2dzIiwiQ2hpbmF0b3duIiksICAgICAgICAgICAgICAgIA0KICBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFKQ0KDQojIE1lbmdnYWJ1bmdrYW4gRHVhIERhdGEgRnJhbWUgDQptMSA8LSBtZXJnZShwcm9kdWNlcnMsIG1vdmllcywgYnkueCA9ICJzdXJuYW1lIikNCm0xDQojIE1lbmdnYW50aSBuYW1hIGtvbG9tICJtb3ZpZXMiIA0KY29sbmFtZXMobW92aWVzKVtjb2xuYW1lcyhtb3ZpZXMpID09ICdzdXJuYW1lJ10gPC0gJ25hbWUnDQoNCg0KYGBgDQoNCg0KDQoNCg0K