ex_item_domain_id_train <- train_data_meta2 %>% filter(item_domain_id=="SNEAKERS", country=="MLM") %>% group_by(date) %>% summarise(y=sum(sold_quantity))
ex_item_domain_id_val <- val_data_meta %>% filter(item_domain_id=="SNEAKERS", country=="MLM") %>% group_by(date) %>% summarise(y=sum(sold_quantity))
ex_item_domain_id_val<-ex_item_domain_id_val %>% mutate(ds=ymd(date))
ex_item_domain_id_train<-ex_item_domain_id_train %>% mutate(ds=ymd(date))
ex_item_domain_id_train
library(prophet)
m<-prophet(ex_item_domain_id_train)
Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
n.changepoints greater than number of observations. Using 22
future <- make_future_dataframe(m, periods = 30)
future %>% tail()
forecast <- predict(m, future)
tail(forecast[c('ds', 'yhat', 'yhat_lower', 'yhat_upper')])
NA
plot(m,forecast)+
#ggplot(ex_item_domain_id_train)+
geom_line(aes(x=as.POSIXct(ds),y=y),color='red',data=ex_item_domain_id_train,linetype = 2)+
geom_line(aes(x=as.POSIXct(ds),y=y),data=ex_item_domain_id_val,color='white',linetype = 2)+
ggdark::dark_theme_bw()+
geom_vline(xintercept=as.POSIXct(dmy("01-03-2021")),color='orange',size=1)+
labs(title="prophet: SNEAKERS demand forecast", subtitle = "RED line train data, WHITE line validation data, BLUE, prophet prediction")

m<-prophet(ex_sku_id_train)
Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
n.changepoints greater than number of observations. Using 22
future <- make_future_dataframe(m, periods = 30)
future %>% tail()
forecast <- predict(m, future)
plot(m,forecast)+
#ggplot(ex_item_domain_id_train)+
geom_line(aes(x=as.POSIXct(ds),y=y),color='red',data=ex_sku_id_train,linetype = 2)+
geom_line(aes(x=as.POSIXct(ds),y=y),data=ex_sku_id_val,color='white',linetype = 2)+
ggdark::dark_theme_bw()+
geom_vline(xintercept=as.POSIXct(dmy("01-03-2021")),color='orange',size=1)+
labs(title="prophet: SNEAKERS demand forecast", subtitle = "RED line train data, WHITE line validation data, BLUE, prophet prediction")

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQpgYGB7cn0KZXhfaXRlbV9kb21haW5faWRfdHJhaW4gPC0gdHJhaW5fZGF0YV9tZXRhMiAlPiUgZmlsdGVyKGl0ZW1fZG9tYWluX2lkPT0iU05FQUtFUlMiLCBjb3VudHJ5PT0iTUxNIikgJT4lIGdyb3VwX2J5KGRhdGUpICU+JSBzdW1tYXJpc2UoeT1zdW0oc29sZF9xdWFudGl0eSkpCgoKZXhfaXRlbV9kb21haW5faWRfdmFsIDwtIHZhbF9kYXRhX21ldGEgJT4lIGZpbHRlcihpdGVtX2RvbWFpbl9pZD09IlNORUFLRVJTIiwgY291bnRyeT09Ik1MTSIpICU+JSBncm91cF9ieShkYXRlKSAlPiUgc3VtbWFyaXNlKHk9c3VtKHNvbGRfcXVhbnRpdHkpKQoKZXhfaXRlbV9kb21haW5faWRfdmFsPC1leF9pdGVtX2RvbWFpbl9pZF92YWwgJT4lIG11dGF0ZShkcz15bWQoZGF0ZSkpCmV4X2l0ZW1fZG9tYWluX2lkX3RyYWluPC1leF9pdGVtX2RvbWFpbl9pZF90cmFpbiAlPiUgbXV0YXRlKGRzPXltZChkYXRlKSkKZXhfaXRlbV9kb21haW5faWRfdHJhaW4KYGBgCgpgYGB7cn0KbGlicmFyeShwcm9waGV0KQptPC1wcm9waGV0KGV4X2l0ZW1fZG9tYWluX2lkX3RyYWluKQpgYGAKYGBge3J9CmZ1dHVyZSA8LSBtYWtlX2Z1dHVyZV9kYXRhZnJhbWUobSwgcGVyaW9kcyA9IDMwKQpmdXR1cmUgJT4lIHRhaWwoKQpgYGAKCmBgYHtyfQpmb3JlY2FzdCA8LSBwcmVkaWN0KG0sIGZ1dHVyZSkKdGFpbChmb3JlY2FzdFtjKCdkcycsICd5aGF0JywgJ3loYXRfbG93ZXInLCAneWhhdF91cHBlcicpXSkKCmBgYApgYGB7cn0KcGxvdChtLGZvcmVjYXN0KSsKICAjZ2dwbG90KGV4X2l0ZW1fZG9tYWluX2lkX3RyYWluKSsKICBnZW9tX2xpbmUoYWVzKHg9YXMuUE9TSVhjdChkcykseT15KSxjb2xvcj0ncmVkJyxkYXRhPWV4X2l0ZW1fZG9tYWluX2lkX3RyYWluLGxpbmV0eXBlID0gMikrCiBnZW9tX2xpbmUoYWVzKHg9YXMuUE9TSVhjdChkcykseT15KSxkYXRhPWV4X2l0ZW1fZG9tYWluX2lkX3ZhbCxjb2xvcj0nd2hpdGUnLGxpbmV0eXBlID0gMikrCiAgZ2dkYXJrOjpkYXJrX3RoZW1lX2J3KCkrCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0PWFzLlBPU0lYY3QoZG15KCIwMS0wMy0yMDIxIikpLGNvbG9yPSdvcmFuZ2UnLHNpemU9MSkrCiAgbGFicyh0aXRsZT0icHJvcGhldDogU05FQUtFUlMgZGVtYW5kIGZvcmVjYXN0Iiwgc3VidGl0bGUgPSAiUkVEIGxpbmUgdHJhaW4gZGF0YSwgV0hJVEUgbGluZSB2YWxpZGF0aW9uIGRhdGEsIEJMVUUsIHByb3BoZXQgcHJlZGljdGlvbiIpCmBgYApgYGB7cn0KCgp2YWxfZGF0YV9tZXRhICU+JSBmaWx0ZXIoaXRlbV9kb21haW5faWQ9PSJTTkVBS0VSUyIsY291bnRyeT09Ik1MTSIpICU+JSBncm91cF9ieShza3UpICU+JSBzdW1tYXJpc2Uoc29sZF9xdWFudGl0eT1zdW0oc29sZF9xdWFudGl0eSkpICU+JSBzZWxlY3Qoc2t1LHNvbGRfcXVhbnRpdHkpCgp0cmFpbl9kYXRhX21ldGEyICU+JSBmaWx0ZXIoaXRlbV9kb21haW5faWQ9PSJTTkVBS0VSUyIsY291bnRyeT09Ik1MTSIpICU+JSBncm91cF9ieShza3UpICU+JSBzdW1tYXJpc2Uoc29sZF9xdWFudGl0eT1zdW0oc29sZF9xdWFudGl0eSkpICU+JSBzZWxlY3Qoc2t1LHNvbGRfcXVhbnRpdHkpCgp2YWxfZGF0YV9maW5hbCAlPiUgZmlsdGVyKHNrdSA9PSA1MzIpCgoKYGBgCmBgYHtyfQppdGVtX2RvbWFpbl9pZF90b3RhbF9zb2xkX3F0eTwtdHJhaW5fZGF0YV9tZXRhMiAlPiUgZmlsdGVyKGl0ZW1fZG9tYWluX2lkPT0iU05FQUtFUlMiICYgY291bnRyeT09Ik1MTSIpICU+JSBzdW1tYXJpc2UodG90YWxfc29sZF9xdHk9c3VtKHNvbGRfcXVhbnRpdHkpKQoKZXhfc2t1X2lkX3RyYWluX3RvdGFsX3NvbGRfcXR5IDwtIHRyYWluX2RhdGFfbWV0YTIgJT4lIAogIGZpbHRlcihza3U9PTUzMikgJT4lCiAgc3VtbWFyaXNlKHRvdGFsX3NvbGRfcXR5PXN1bShzb2xkX3F1YW50aXR5KSkKCmV4X3NrdV9pZF90cmFpbiA8LSB0cmFpbl9kYXRhX21ldGEyICU+JSAKICBmaWx0ZXIoaXRlbV9kb21haW5faWQ9PSJTTkVBS0VSUyIgICYgY291bnRyeT09Ik1MTSIpICU+JSBncm91cF9ieShkYXRlKSAlPiUgCiAgc3VtbWFyaXNlKHk9KHN1bShzb2xkX3F1YW50aXR5KS90b3RhbF9zb2xkX3F0eSAlPiUgdW5saXN0KCkpKmV4X3NrdV9pZF90cmFpbl90b3RhbF9zb2xkX3F0eSAlPiUgdW5saXN0KCkpCgoKZXhfc2t1X2lkX3ZhbCA8LSB2YWxfZGF0YV9tZXRhICU+JSBmaWx0ZXIoc2t1PT01MzIpICU+JSBncm91cF9ieShkYXRlKSAlPiUgc3VtbWFyaXNlKHk9c3VtKHNvbGRfcXVhbnRpdHkpKQoKZXhfc2t1X2lkX3ZhbDwtZXhfc2t1X2lkX3ZhbCAlPiUgbXV0YXRlKGRzPXltZChkYXRlKSkKZXhfc2t1X2lkX3RyYWluPC1leF9za3VfaWRfdHJhaW4gJT4lIG11dGF0ZShkcz15bWQoZGF0ZSkpCmV4X3NrdV9pZF90cmFpbgpgYGAKCmBgYHtyfQptPC1wcm9waGV0KGV4X3NrdV9pZF90cmFpbikKZnV0dXJlIDwtIG1ha2VfZnV0dXJlX2RhdGFmcmFtZShtLCBwZXJpb2RzID0gMzApCmZ1dHVyZSAlPiUgdGFpbCgpCmZvcmVjYXN0IDwtIHByZWRpY3QobSwgZnV0dXJlKQpgYGAKYGBge3J9CgpwbG90KG0sZm9yZWNhc3QpKwogICNnZ3Bsb3QoZXhfaXRlbV9kb21haW5faWRfdHJhaW4pKwogIGdlb21fbGluZShhZXMoeD1hcy5QT1NJWGN0KGRzKSx5PXkpLGNvbG9yPSdyZWQnLGRhdGE9ZXhfc2t1X2lkX3RyYWluLGxpbmV0eXBlID0gMikrCiBnZW9tX2xpbmUoYWVzKHg9YXMuUE9TSVhjdChkcykseT15KSxkYXRhPWV4X3NrdV9pZF92YWwsY29sb3I9J3doaXRlJyxsaW5ldHlwZSA9IDIpKwogIGdnZGFyazo6ZGFya190aGVtZV9idygpKwogIGdlb21fdmxpbmUoeGludGVyY2VwdD1hcy5QT1NJWGN0KGRteSgiMDEtMDMtMjAyMSIpKSxjb2xvcj0nb3JhbmdlJyxzaXplPTEpKwogIGxhYnModGl0bGU9InByb3BoZXQ6IFNORUFLRVJTIGRlbWFuZCBmb3JlY2FzdCIsIHN1YnRpdGxlID0gIlJFRCBsaW5lIHRyYWluIGRhdGEsIFdISVRFIGxpbmUgdmFsaWRhdGlvbiBkYXRhLCBCTFVFLCBwcm9waGV0IHByZWRpY3Rpb24iKQpgYGAKCg==