Concentration is the key variable in mass transport, and can be defined in a number of ways, including the following:
We identify the following variables:
\[ J(x) = -D \frac{dC}{dx} \]
\[ J(x,t) = -D \frac {\partial C}{\partial x} \]
\[ J(x,t) = -D \frac {\partial C}{\partial x} \]
\[ \left[ D \right] = \frac{m^{2}}{s} \]
\[ \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, mass} \\ \mathrm{within \, \, region} \end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, mass} \\ \mathrm{ flowing \, in \, at } \\ \mathrm{ \, x \, } \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, of \, mass} \\ \mathrm{ flowing \, out \, at} \\ \mathrm{ \, x + \Delta x \, } \end{Bmatrix} \]
\[ \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, mass} \\ \mathrm{within \, \, region} \end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, of \, mass} \\ \mathrm{ flowing \, in \, at } \\ \mathrm{ \, x \, } \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, of \, mass} \\ \mathrm{ flowing \, out \, at} \\ \mathrm{ \, x + \Delta x \, } \end{Bmatrix} \]
\[ J(x)A-J(x+\Delta x)A=0 \]
\[ J(x)A-J(x+\Delta x)A=0 \]
\[ \frac{J(x+\Delta x)-J(x)}{\Delta x} =0 \]
\[ \frac{dJ}{dx}=0 \]
\[ \frac{dJ}{dx}=0 \]
\[ J(x) = -D\frac{dC}{dx} \]
\[ \frac{d^2C}{dx^2}=0 \]
\[ \frac{d^2C}{dx^2}=0 \]
\[ \frac{d}{dr} \left( r \frac{dC}{dr} \right) = 0 \]
\[ \frac{d}{dr} \left( r^2 \frac{dC}{dr} \right) = 0 \]
\[ D \frac{1}{r^2} \frac{d}{dr} \left( r \frac{dC}{dr} \right) + M(r) = 0 \]
\[ D \frac{1}{r^2} \frac{d}{dr} \left( r \frac{dC}{dr} \right) + M(r) = 0 \]