#课堂作业 理解mpg 数据 变换 x
1+1
## [1] 2
print("Hello world")
## [1] "Hello world"
#install.packages(tidyverse)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(broom)
View(mpg)
names(mpg)
##  [1] "manufacturer" "model"        "displ"        "year"         "cyl"         
##  [6] "trans"        "drv"          "cty"          "hwy"          "fl"          
## [11] "class"
# estimate and print the linear model
lm(hwy ~ displ, data = mpg) %>%
  tidy() %>%
  mutate(term = c("Intercept", "Engine displacement (in liters)")) %>%
  knitr::kable(
    digits = 2,
    col.names = c(
      "Variable", "Estimate", "Standard Error",
      "T-statistic", "P-Value"
    )
  )
Variable Estimate Standard Error T-statistic P-Value
Intercept 35.70 0.72 49.55 0
Engine displacement (in liters) -3.53 0.19 -18.15 0
ggplot(data = mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(method = "lm", se = FALSE, color = "black", alpha = .25) +
  labs(
    x = "Engine displacement (in liters)",
    y = "Highway miles per gallon",
    color = "Car type"
  ) +
  theme_bw(base_size = 16)
## `geom_smooth()` using formula 'y ~ x'

lm(hwy ~ cyl, data = mpg) %>%
  tidy() %>%
  mutate(term = c("Intercept", "number of cylinders")) %>%
  knitr::kable(
    digits = 2,
    col.names = c(
      "Variable", "Estimate", "Standard Error",
      "T-statistic", "P-Value"
    )
  )
Variable Estimate Standard Error T-statistic P-Value
Intercept 40.02 0.96 41.72 0
number of cylinders -2.82 0.16 -17.92 0
ggplot(data = mpg, aes(cyl, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(method = "lm", se = FALSE, color = "black", alpha = .25) +
  labs(
    x = "number of cylinders",
    y = "Highway miles per gallon",
    color = "Car type"
  ) +
  theme_bw(base_size = 16)
## `geom_smooth()` using formula 'y ~ x'