Laporan 1 Praktikum Analisis Statistik Spatial - Tugas Satria June Adwendi

Link Rpubs : klik disini

Praktikum Pertemuan 1 - Pengenalan Struktur R untuk Data Spasial

Instaling R and R studio

If you do not have R and RStudio on your computer, proceed as follows: 1. Download base R for your operating system from https://cran.r-project.org. 2. Install it on your system. 3. Download RStudio desktop version for your operating system from https://www.rstudio.com/products/RStudio/. 4. Install it on your system.

Installing Packages

Jalankan R Jika terhubung ke internet: >install.packages(“namapackage”)

Contoh:

#install.packages(c("sp", "gstat"))

Jika sudah download binary (*.zip):

install.packages(“drive:/namafile.zip”,repos=NULL)

Contoh:

install.packages(“C:/Program Files/R/nama file.zip”,repos=NULL)

atau melalui menu: Packages > Install packages(s) from local files…

Loading Interacton With R

Task 1: Compute the number of radians in one circular degree.

In this document, input and output are shown as follows

2 * pi/360
## [1] 0.01745329

Task 2: Load the sp and gstat packages into the workspace.

You can load these in RStudio by checking the small checkbox next to the packages name in the Packages tab; see Figure 3.

You can also load these this from the R console with the library function. This loads a packages into the R workspace:

library(sp)
## Warning: package 'sp' was built under R version 4.1.1
library(gstat)
## Warning: package 'gstat' was built under R version 4.1.1

Loading Meuse Dataset

Task 3: Load the meuse dataset into the workspace.

The data function loads a dataset. We show the contents of the workspace before and after with the ls() function:

ls()
## character(0)
data(meuse)
ls()
## [1] "meuse"

Task 4: Examine the structure of the meuse dataset

The str() function shows the structure of an R object:

str(meuse)
## 'data.frame':    155 obs. of  14 variables:
##  $ x      : num  181072 181025 181165 181298 181307 ...
##  $ y      : num  333611 333558 333537 333484 333330 ...
##  $ cadmium: num  11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
##  $ copper : num  85 81 68 81 48 61 31 29 37 24 ...
##  $ lead   : num  299 277 199 116 117 137 132 150 133 80 ...
##  $ zinc   : num  1022 1141 640 257 269 ...
##  $ elev   : num  7.91 6.98 7.8 7.66 7.48 ...
##  $ dist   : num  0.00136 0.01222 0.10303 0.19009 0.27709 ...
##  $ om     : num  13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
##  $ ffreq  : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ soil   : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
##  $ lime   : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
##  $ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
##  $ dist.m : num  50 30 150 270 380 470 240 120 240 420 ...

Description of meuse dataset

help(meuse)
## starting httpd help server ... done

Description This data set gives locations and topsoil heavy metal concentrations, along with a number of soil and landscape variables at the observation locations, collected in a flood plain of the river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite samples of an area of approximately 15 m x 15 m.

Usage data(meuse) Format This data frame contains the following columns:

x a numeric vector; Easting (m) in Rijksdriehoek (RDH) (Netherlands topographical) map coordinates

y a numeric vector; Northing (m) in RDH coordinates

Introduction to Spatial Data Type

Types of spatial Data

Plot the data

Poin

coordinates(meuse) <- c("x", "y")
plot(meuse)
title("points")

Polygons

data(meuse.riv)
meuse.1st <- list(Polygons(list(Polygon(meuse.riv)),"meuse.riv"))
meuse.sr <- SpatialPolygons(meuse.1st)
plot(meuse.sr, col = "grey")
title("polygons")

Grid

data(meuse.grid)
coordinates(meuse.grid) <- c("x", "y")
meuse.grid <- as(meuse.grid, "SpatialPixels")
image(meuse.grid, col = "grey")
title("grid")

image(meuse.grid, col = "lightgrey")
plot(meuse.sr, col = "grey", add = TRUE)
plot(meuse,add = TRUE)

Raster

f <- system.file("external/test.grd", package="raster")
library(raster)
## Warning: package 'raster' was built under R version 4.1.1
r <- raster(f)
plot(r)

image(meuse.grid, col = "lightblue")
plot(r, add=TRUE)
plot(meuse.sr, col = "blue", add = TRUE)
plot(meuse,add = TRUE)

External Data Input

Selain menggunakan data yang berada di dalam package R, bisa memasukkan data dari luar package.

data pertumbuhan penduduk.

datapop <- read.csv('http://bit.ly/Popgrowth2000', header=T, sep=',')
datapop
##                   City                         Country   Latitude   Longitude
## 1              Abidjan                   Cote d'Ivoire   5.309660   -4.012660
## 2                Adana                          Turkey  37.001670   35.328890
## 3          Addis Ababa                        Ethiopia   9.024970   38.746890
## 4             Adelaide                       Australia -34.928660  138.598630
## 5            Ahmadabad                           India  23.039568   72.566004
## 6               Aleppo                           Syria  36.216700   37.166700
## 7           Alexandria                           Egypt  31.200092   29.918739
## 8              Algiers                         Algeria  36.752500    3.041970
## 9               Almaty                      Kazakhstan  43.255058   76.912628
## 10               Amman                          Jordan  31.955220   35.945030
## 11              Ankara                          Turkey  39.919870   32.854270
## 12              Anshan                           China  41.116700  122.983300
## 13             Baghdad                            Iraq  33.340580   44.400880
## 14                Baku                      Azerbaijan  40.377670   49.892010
## 15             Bandung                       Indonesia  -6.914744  107.609814
## 16           Bangalore                           India  12.971940   77.593690
## 17             Bangkok                        Thailand  13.753980  100.501440
## 18              Baotou                           China  40.657440  109.840540
## 19           Barcelona                           Spain  41.388790    2.158990
## 20        Barranquilla                        Columbia  10.968540  -74.781320
## 21               Bauru                          Brazil -22.314700  -49.060600
## 22             Beijing                           China  39.907500  116.397230
## 23               Belem                          Brazil  -1.455800  -48.503900
## 24            Belgrade                          Serbia  44.804010   20.465130
## 25      Belo Horizonte                          Brazil -19.920830  -43.937780
## 26              Berlin                         Germany  52.524370   13.410530
## 27              Bhopal                           India  23.250000   77.416700
## 28          Birmingham                  United Kindgom  52.481420   -1.899830
## 29               Bogor                       Indonesia  -6.600000  106.800000
## 30              Bogota                        Columbia   4.598056  -74.075833
## 31            Brasilia                          Brazil -15.779720  -47.929720
## 32            Brisbane                       Australia -27.467940  153.028090
## 33             Brussel                         Belgium  50.850450    4.348780
## 34           Bucharest                         Romania  44.432250   26.106260
## 35            Budapest                         Hungary  47.498010   19.039910
## 36        Buenos Aires                       Argentina -34.613150  -58.377230
## 37               Bursa                          Turkey  40.192660   29.084030
## 38               Busan               Republic of Korea  35.179550  129.075600
## 39               Cairo                           Egypt  30.062630   31.249670
## 40            Calcutta                           India  22.562630   88.363040
## 41                Cali                        Columbia   3.437220  -76.522500
## 42       Caloocan City                     Philippines  14.650000  120.970000
## 43             Caracas                       Venezuela  10.488010  -66.879190
## 44          Casablanca                         Morocco  33.588310   -7.611380
## 45           Changchun                           China  43.900000  125.200000
## 46             Changde                           China  29.033300  111.683300
## 47            Changsha                           China  28.196111  112.972222
## 48            Changshu                           China  31.665000  120.822000
## 49           Changzhou                           China  31.773580  119.954010
## 50         Chelyabinsk              Russian Federation  55.154020   61.429150
## 51             Chengdu                           China  30.666670  104.066670
## 52             Chicago        United States of America  41.850030  -87.650100
## 53          Chittagong                      Bangladesh  22.338400   91.831680
## 54           Chongqing                           China  29.563010  106.551557
## 55             Cirebon                       Indonesia  -6.716700  108.566700
## 56             Cordoba                       Argentina -31.413500  -64.181050
## 57            Curitiba                          Brazil -25.427800  -49.273100
## 58               Daegu               Republic of Korea  35.871440  128.601400
## 59             Daejeon               Republic of Korea  36.350410  127.384500
## 60               Dakar                         Senegal  14.693700  -17.444060
## 61              Dalian                           China  38.920800  121.639200
## 62              Dallas        United States of America  32.780140  -96.800500
## 63            Damascus                           Syria  33.510200   36.291280
## 64             Danzhou                           China  19.500000  109.583300
## 65              Daqing                           China  46.583300  125.000000
## 66       Dar-es-Salaam                        Tanzania  -6.822921   39.269661
## 67              Datong                           China  40.083333  113.300000
## 68               Davao                     Philippines   7.066700  125.600000
## 69               Delhi                           India  28.653810   77.228970
## 70               Dhaka                      Bangladesh  23.709921   90.407143
## 71            Dingzhou                           China  38.516700  114.983300
## 72      Dnipropetrovsk                         Ukraine  48.464717   35.046183
## 73             Donetsk                         Ukraine  48.015883   37.802850
## 74            Dongguan                           China  23.033300  113.716700
## 75             Dongtai                           China  32.795000  120.519000
## 76            Ecatepec                          Mexico  19.609722  -99.060000
## 77             Esfahan                            Iran  32.651389   51.679192
## 78          Faisalabad                        Pakistan  31.416670   73.083330
## 79       Fangchenggang                           China  21.600000  108.300000
## 80           Fortaleza                          Brazil  -3.717220  -38.543060
## 81             Fukuoka                           Japan  33.591389  130.414722
## 82              Fushun                           China  41.855830  123.923330
## 83              Fuzhou                           China  26.076111  119.306389
## 84                Giza                           Egypt  30.016700   31.216700
## 85             Goiania                          Brazil -16.678610  -49.253890
## 86           Guangzhou                           China  23.116670  113.250000
## 87           Guarulhos                          Brazil -23.466700  -46.533300
## 88      Guatemala City                       Guatemala  14.640720  -90.513270
## 89           Guayaquil                         Ecuador  -2.181940  -79.891670
## 90             Guiyang                           China  26.650000  106.633300
## 91          Gujranwala                        Pakistan  32.150000   74.183300
## 92             Gwangju               Republic of Korea  35.166667  126.916667
## 93            Haicheng                           China  40.883300  122.683300
## 94             Hamburg                         Germany  53.575320   10.015340
## 95              Handan                           China  36.600000  114.483300
## 96            Hangzhou                           China  30.250000  120.166700
## 97               Hanoi                         Vietnam  21.033333  105.850000
## 98              Harare                        Zimbabwe -17.863900   31.029700
## 99              Harbin                           China  45.750000  126.650000
## 100             Havana                            Cuba  23.133020  -82.383040
## 101              Hefei                           China  31.866667  117.283333
## 102               Heze                           China  35.233300  115.433300
## 103          Hiroshima                           Japan  34.396775  132.460017
## 104          Hong Kong                           China  22.285520  114.157690
## 105            Houston        United States of America  29.760190  -95.369400
## 106            Huadian                           China  42.950000  126.733300
## 107            Huainan                           China  32.626390  116.996940
## 108             Huzhou                           China  30.866700  120.100000
## 109          Hyderabad                           India  17.384050   78.456360
## 110          Hyderabad                        Pakistan  25.379167   68.368333
## 111            Incheon               Republic of Korea  37.456256  126.705206
## 112             Indore                           India  22.717920   75.833300
## 113           Istanbul                          Turkey  41.005275   28.976944
## 114             Jaipur                           India  26.919620   75.787810
## 115            Jakarta                       Indonesia  -6.214620  106.845130
## 116             Jeddah                    Saudi Arabia  21.543333   39.172778
## 117           Jiangyin                           China  31.839000  120.295000
## 118              Jilin                           China  43.896536  125.325990
## 119               Jimo                           China  36.383300  120.466700
## 120              Jinan                           China  36.650997  117.120497
## 121            Jingmen                           China  31.043600  112.200800
## 122              Kabul                     Afghanistan  34.533300   69.166700
## 123             Kanpur                           India  26.447800   80.346270
## 124          Kaohsiung                          Taiwan  22.616260  120.313330
## 125            Karachi                        Pakistan  24.905600   67.082200
## 126           Kawasaki                           Japan  35.516700  139.700000
## 127              Kazan              Russian Federation  55.790278   49.134722
## 128             Kediri                       Indonesia  -7.816600  112.011900
## 129            Kharkov                         Ukraine  49.993500   36.230384
## 130               Kiev                         Ukraine  50.454660   30.523800
## 131           Kinshasa                           Congo  -4.325000   15.322200
## 132         Kitakyushu                           Japan  33.833330  130.833330
## 133               Kobe                           Japan  34.691269  135.183072
## 134       Kuala Lumpur                        Malaysia   3.141200  101.686530
## 135            Kunming                           China  25.038890  102.718330
## 136              Kyoto                           Japan  35.021070  135.753850
## 137 La Matanza Partido                       Argentina -34.716700  -58.633300
## 138              Lagos                         Nigeria   6.524379    3.379206
## 139             Lahore                        Pakistan  31.549720   74.343610
## 140              Laiwu                           China  36.183300  117.666700
## 141            Lanzhou                           China  36.061089  103.834304
## 142            Leiyang                           China  26.400000  112.929000
## 143             Leshan                           China  29.552106  103.765568
## 144           Lianyuan                           China  27.692000  111.664000
## 145               Lima                            Peru -12.043180  -77.028240
## 146              Linyi                           China  35.050000  118.350000
## 147             London                  United Kingdom  51.511210   -0.119830
## 148        Los Angeles        United States of America  34.052230 -118.244000
## 149            Lucknow                           India  26.839280   80.923130
## 150           Ludhiana                           India  30.900150   75.852290
## 151            Luoyang                           China  34.669700  112.442200
## 152             Lusaka                          Zambia -15.406690   28.287130
## 153            Macheng                           China  31.316700  115.100000
## 154             Madras                           India  13.087840   80.278470
## 155             Madrid                           Spain  40.416780   -3.703790
## 156           Magelang                       Indonesia  -7.466700  110.216700
## 157             Manado                       Indonesia   1.493100  124.841300
## 158             Manaus                          Brazil  -3.101940  -60.025000
## 159             Manila                     Philippines  14.580000  121.000000
## 160             Maputo                      Mozambique -25.966700   32.583300
## 161          Maracaibo                       Venezuela  10.631670  -71.640560
## 162            Mashhad                            Iran  36.300000   59.600000
## 163              Medan                       Indonesia   3.583300   98.666700
## 164           Medellin                        Columbia   6.251840  -75.563590
## 165          Melbourne                       Australia -37.814000  144.963320
## 166        Mexico City                          Mexico  19.428470  -99.127700
## 167              Milan                           Italy  45.465450    9.198786
## 168              Minsk                         Belarus  53.900000   27.566670
## 169          Monterrey                          Mexico  25.666700 -100.300000
## 170         Montevideo                         Uruguay -34.817311  -56.158866
## 171           Montreal                          Canada  45.508840  -73.587800
## 172             Moscow              Russian Federation  55.752220   37.615560
## 173             Multan                        Pakistan  30.195560   71.475280
## 174             Mumbai                           India  19.072830   72.882610
## 175             Munich                         Germany  48.136740   11.576760
## 176             Nagoya                           Japan  35.181447  136.906397
## 177             Nagpur                           India  21.150000   79.100000
## 178            Nairobi                           Kenya  -1.283330   36.816670
## 179           Nanchang                           China  28.683330  115.883330
## 180            Nanjing                           China  32.050000  118.766700
## 181            Nanning                           China  22.816670  108.316670
## 182             Naples                           Italy  40.851780   14.268120
## 183           Neijiang                           China  29.583300  105.066700
## 184           New York        United States of America  40.714350  -74.006000
## 185     Nezahualcoyotl                          Mexico  19.400000  -98.988889
## 186             Ningbo                           China  29.866700  121.550000
## 187   Nizhniy Novgorod              Russian Federation  56.326900   44.007500
## 188        Novosibirsk              Russian Federation  55.041500   82.934600
## 189             Odessa                         Ukraine  46.477470   30.732620
## 190           Omdurman                           Sudan  15.644530   32.477730
## 191               Omsk              Russian Federation  54.992440   73.368590
## 192               Oran                         Algeria  35.691110   -0.641670
## 193              Osaka                           Japan  34.693216  135.502082
## 194             Padang                       Indonesia  -0.949240  100.354270
## 195          Palembang                       Indonesia  -2.916730  104.745800
## 196              Paris                          France  48.856610    2.352222
## 197         Pekalongan                       Indonesia  -6.888600  109.675300
## 198               Perm              Russian Federation  58.013889   56.248889
## 199              Perth                       Australia -31.952240  115.861400
## 200       Philadelphia        United States of America  39.950000  -75.166700
## 201            Phoenix        United States of America  33.448380 -112.074143
## 202             Pingdu                           China  36.783300  119.955600
## 203          Pingxiang                           China  27.633300  113.850000
## 204       Porto Alegre                          Brazil -30.033100  -51.230000
## 205             Prague                  Czech Republic  50.088040   14.420760
## 206        Probolinggo                       Indonesia  -7.750000  113.216700
## 207             Puebla                          Mexico  19.033333  -98.183333
## 208               Pune                           India  18.520430   73.856744
## 209          Pyongyang Dem. People's Republic of Korea  39.033850  125.754300
## 210             Qidong                           China  31.870000  121.703000
## 211            Qingdao                           China  36.067082  120.382640
## 212            Qinzhou                           China  21.950000  108.616700
## 213            Qiqihar                           China  47.350000  123.916700
## 214          Queimados                          Brazil -22.715800  -43.555000
## 215        Quezon City                     Philippines  14.633300  121.033300
## 216              Quito                         Ecuador  -0.229850  -78.524950
## 217              Rabat                         Morocco  34.013250   -6.832550
## 218         Rawalpindi                        Pakistan  33.600700   73.067900
## 219             Recife                          Brazil  -8.053890  -34.881100
## 220     Rio de Janeiro                          Brazil -22.902780  -43.207500
## 221             Riyadh                    Saudi Arabia  24.633300   46.716700
## 222             Rizhao                           China  35.415800  119.527100
## 223               Rome                           Italy  41.894740   12.483900
## 224      Rostov-on-Don              Russian Federation  47.233300   39.413940
## 225              Ruian                           China  27.783300  120.625000
## 226   Saint Petersburg              Russian Federation  59.894440   30.264170
## 227           Salvador                          Brazil -12.971110  -38.510830
## 228             Samara              Russian Federation  53.202800   50.140800
## 229        San Antonio        United States of America  29.424120  -98.493600
## 230          San Diego        United States of America  32.715330 -117.157000
## 231           Santiago                           Chile -33.450000  -70.666667
## 232      Santo Domingo              Dominican Republic  18.466700  -69.950000
## 233          Sao Paolo                          Brazil -23.547500  -46.636110
## 234            Sapporo                           Japan  43.064170  141.346940
## 235           Semarang                       Indonesia  -6.993200  110.420300
## 236             Sendai                           Japan  38.266667  140.866667
## 237              Seoul               Republic of Korea  37.568260  126.977830
## 238              Setif                         Algeria  36.183300    5.400000
## 239           Shanghai                           China  31.222220  121.458060
## 240           Shenyang                           China  41.792220  123.432780
## 241       Shijiazhuang                           China  38.042308  114.514861
## 242             Shiraz                            Iran  29.610310   52.531140
## 243          Singapore                       Singapore   1.289670  103.850070
## 244            Suining                           China  30.532847  105.592898
## 245            Suizhou                           China  31.683300  113.383300
## 246           Sukabumi                       Indonesia  -6.919600  106.927200
## 247             Suqian                           China  33.933300  118.283300
## 248           Surabaya                       Indonesia  -7.249170  112.750830
## 249              Surat                           India  21.195940   72.830230
## 250             Sydney                       Australia -33.867850  151.207320
## 251             Tabriz                            Iran  38.080000   46.291900
## 252              Taian                           China  36.200000  117.083300
## 253             Taipei                          Taiwan  25.047760  121.531850
## 254            Taiyuan                           China  37.870590  112.548879
## 255           Tangshan                           China  39.633330  118.183330
## 256           Tashkent                      Uzbekistan  41.264650   69.216270
## 257            Tbilisi                         Georgia  41.709975   44.792989
## 258              Tegal                       Indonesia  -6.866700  109.133300
## 259             Tehran                            Iran  35.694390   51.421510
## 260            Tianjin                           China  39.142220  117.176670
## 261            Tianmen                           China  30.663337  113.166078
## 262           Tianshui                           China  34.579520  105.742380
## 263              Tokyo                           Japan  35.689500  139.691710
## 264            Tripoli                           Libya  32.876175   13.187508
## 265                Ufa              Russian Federation  54.785170   56.045620
## 266             Urumqi                           China  43.825000   87.600000
## 267           Vadodara                           India  22.307310   73.181098
## 268           Valencia                           Spain  39.469908   -0.376289
## 269             Vienna                         Austria  48.208490   16.372080
## 270      Visakhapatnam                           India  17.688300   83.218600
## 271         Wafangdian                           China  39.631000  121.974000
## 272             Warsaw                          Poland  52.229770   21.011780
## 273            Weifang                           China  36.716700  119.100000
## 274              Wuhan                           China  30.583330  114.266670
## 275               Wuxi                           China  31.491170  120.311910
## 276               Xian                           China  34.341485  108.940404
## 277            Xiantao                           China  30.366700  113.450000
## 278            Xiaogan                           China  30.916700  113.900000
## 279            Xinghua                           China  32.930000  119.830000
## 280            Xingtai                           China  37.063100  114.494000
## 281          Yangcheng                           China  34.455278  113.025278
## 282             Yangon                         Myanmar  16.805280   96.156110
## 283      Yekaterinburg              Russian Federation  56.833333   60.600000
## 284            Yerevan                        Aremenia  40.183300   44.516700
## 285             Yixing                           China  31.030000  119.300000
## 286           Yokohama                           Japan  35.443708  139.638026
## 287              Yulin                           China  22.633300  110.150000
## 288             Yuzhou                           China  34.163400  113.460800
## 289          Zaozhuang                           China  34.866700  117.550000
## 290          Zhanjiang                           China  21.200000  110.400000
## 291          Zhongshan                           China  22.517646  113.392782
## 292           Zhucheng                           China  36.010000  119.416700
## 293               Zibo                           China  36.790560  118.063330
##     PopGrowth_2000
## 1          1929000
## 2          1041000
## 3          2424000
## 4          1092000
## 5          2954000
## 6          1582000
## 7          3339000
## 8          2562000
## 9          1135000
## 10         1147000
## 11         2984000
## 12         1442000
## 13         3841000
## 14         1792000
## 15         5919000
## 16         3302000
## 17         7506000
## 18         1248000
## 19         1454000
## 20         1549000
## 21         3014000
## 22         7362000
## 23         1200000
## 24         1594000
## 25         2154000
## 26         3387000
## 27         1062000
## 28         1020000
## 29         5000000
## 30         6288000
## 31         2017000
## 32         1598000
## 33         1122000
## 34         2016000
## 35         1825000
## 36         2965000
## 37         1066000
## 38         3814000
## 39         6801000
## 40         4400000
## 41         2128000
## 42         1023000
## 43         1975000
## 44         2943000
## 45         2192000
## 46         1232000
## 47         1376000
## 48         1036000
## 49         1293000
## 50         1064000
## 51         2954000
## 52         2896000
## 53         1364000
## 54         3127000
## 55         2080000
## 56         1115000
## 57         1612000
## 58         2449000
## 59         1272000
## 60         1097000
## 61         2484000
## 62         1189000
## 63         1394000
## 64         1391000
## 65         1026000
## 66         1361000
## 67         1277000
## 68         1006000
## 69         7207000
## 70         3397000
## 71         1025000
## 72         1109000
## 73         1050000
## 74         1742000
## 75         1163000
## 76         2218000
## 77         1266000
## 78         2009000
## 79         1090000
## 80         2139000
## 81         1341000
## 82         1388000
## 83         1403000
## 84         2222000
## 85         1073000
## 86         3935000
## 87         1135000
## 88         1007000
## 89         2118000
## 90         1665000
## 91         1133000
## 92         1258000
## 93         1036000
## 94         1704000
## 95         1152000
## 96         1276000
## 97         1073000
## 98         1189000
## 99         2991000
## 100        2192000
## 101        1111000
## 102        1154000
## 103        1126000
## 104        6843000
## 105        1954000
## 106        1133000
## 107        1240000
## 108        1028000
## 109        3146000
## 110        1167000
## 111        2308000
## 112        1092000
## 113        8260000
## 114        1458000
## 115        9373000
## 116        1450000
## 117        1108000
## 118        1320000
## 119        1019000
## 120        2404000
## 121        1043000
## 122        1424000
## 123        1879000
## 124        1969000
## 125        9339000
## 126        1250000
## 127        1091000
## 128        1663000
## 129        1494000
## 130        2589000
## 131        2664000
## 132        1011000
## 133        1494000
## 134        1145000
## 135        1612000
## 136        1468000
## 137        1120000
## 138        1061000
## 139        5143000
## 140        1105000
## 141        1618000
## 142        1112000
## 143        1070000
## 144        1007000
## 145        7201000
## 146        1590000
## 147        7074000
## 148        3695000
## 149        1619000
## 150        1043000
## 151        1202000
## 152        1270000
## 153        1063000
## 154        3841000
## 155        2823000
## 156        1174000
## 157        3173000
## 158        1286000
## 159        1654000
## 160        1015000
## 161        1706000
## 162        1887000
## 163        1988000
## 164        1885000
## 165        3414000
## 166        8235000
## 167        1306000
## 168        1677000
## 169        1069000
## 170       13303000
## 171        1016000
## 172        8297000
## 173        1197000
## 174        9926000
## 175        1195000
## 176        2171000
## 177        1625000
## 178        1346000
## 179        1369000
## 180        1200000
## 181        1164000
## 182        1046000
## 183        1289000
## 184        8008000
## 185        1255000
## 186        1142000
## 187        1357000
## 188        1400000
## 189        1002000
## 190        1271000
## 191        1253000
## 192        1214000
## 193        2599000
## 194        1153000
## 195        1415000
## 196        2152000
## 197        1093000
## 198        1014000
## 199        1362000
## 200        1518000
## 201        1321000
## 202        1296000
## 203        1388000
## 204        1322000
## 205        1193000
## 206        1174000
## 207        1007000
## 208        1567000
## 209        2741000
## 210        1136000
## 211        2102000
## 212        1006000
## 213        1425000
## 214        1388000
## 215        1989000
## 216        1615000
## 217        1220000
## 218        1409000
## 219        1400000
## 220        5613000
## 221        1800000
## 222        1028000
## 223        2648000
## 224        1003000
## 225        1046000
## 226        4678000
## 227        2332000
## 228        1165000
## 229        1145000
## 230        1223000
## 231        4788000
## 232        2677000
## 233       10009000
## 234        1822000
## 235        2221000
## 236        1009000
## 237       10231000
## 238        1311000
## 239        8214000
## 240        4670000
## 241        1390000
## 242        1053000
## 243        3894000
## 244        1260000
## 245        1440000
## 246        2138000
## 247        1077000
## 248        2801000
## 249        1506000
## 250        4032000
## 251        1191000
## 252        1413000
## 253        2640000
## 254        2052000
## 255        1518000
## 256        2142000
## 257        1268000
## 258        1633000
## 259        6758000
## 260        5855000
## 261        1507000
## 262        1040000
## 263        8130000
## 264        1500000
## 265        1087000
## 266        1131000
## 267        1062000
## 268        1363000
## 269        1560000
## 270        1504000
## 271        1001000
## 272        1615000
## 273        1151000
## 274        4040000
## 275        1013000
## 276        2873000
## 277        1371000
## 278        1302000
## 279        1497000
## 280        1306000
## 281        1367000
## 282        2513000
## 283        1267000
## 284        1249000
## 285        1075000
## 286        3427000
## 287        1323000
## 288        1073000
## 289        1793000
## 290        1399000
## 291        1237000
## 292        1039000
## 293        2484000

dimensi data

dim(datapop)
## [1] 293   5

Struktur Data

str(datapop)
## 'data.frame':    293 obs. of  5 variables:
##  $ City          : chr  "Abidjan" "Adana" "Addis Ababa" "Adelaide" ...
##  $ Country       : chr  "Cote d'Ivoire" "Turkey" "Ethiopia" "Australia" ...
##  $ Latitude      : num  5.31 37 9.02 -34.93 23.04 ...
##  $ Longitude     : num  -4.01 35.33 38.75 138.6 72.57 ...
##  $ PopGrowth_2000: int  1929000 1041000 2424000 1092000 2954000 1582000 3339000 2562000 1135000 1147000 ...

Tabel data

View(datapop)

Plot the Data Point

coordinates(datapop) <- c("Longitude", "Latitude")
plot(datapop)

size<-datapop$PopGrowth_2000/sum(datapop$PopGrowth_2000) 
plot(datapop,pch=20, col="steelblue", cex=size*100)

Menambahkan Peta Dunia

library(rworldmap)
## Warning: package 'rworldmap' was built under R version 4.1.1
## ### Welcome to rworldmap ###
## For a short introduction type :   vignette('rworldmap')
data(package="rworldmap")
data(countriesCoarse,envir=environment(),package="rworldmap")
#str(countriesCoarse)

Menampilkan peta dunia dalam bentuk dasar berupa garis-garis wilayah.

plot(countriesCoarse)  
## Warning in wkt(obj): CRS object has no comment

Menggabungkan peta dunia + data pertumbuhan penduduk:

plot(countriesCoarse) 
## Warning in wkt(obj): CRS object has no comment

plot(countriesCoarse) 
## Warning in wkt(obj): CRS object has no comment
plot(datapop,add=TRUE, pch=20)

Coba tampilkan data pertumbuhan penduduk dengan ukuran titik sesuai dengan besarnya pertumbuhan, pada peta dunia.!

plot(countriesCoarse) 
## Warning in wkt(obj): CRS object has no comment
plot(datapop,add=TRUE, pch=20, col="green", cex=size*150)

#### Rasterize

library(raster)
r <- raster(datapop)
res(r)<-c(5,5)
nc <- rasterize(coordinates(datapop), r, fun=mean, background=NA)
plot(nc)
plot(countriesCoarse, add=TRUE)

Tugas Mandiri: Peta Pulau Jawa

Load package untuk mengimpor data polygon (shape file):

library(rgdal)
## rgdal: version: 1.5-23, (SVN revision 1121)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.2.1, released 2020/12/29
## Path to GDAL shared files: C:/Users/ADWENDI/OneDrive/Documents/R/win-library/4.1/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/ADWENDI/OneDrive/Documents/R/win-library/4.1/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.4-5
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
## Overwritten PROJ_LIB was C:/Users/ADWENDI/OneDrive/Documents/R/win-library/4.1/rgdal/proj

Menggunakan fungsi readOGR:

readOGR(dsn=‘folder (direktori) tempat shape file disimpan’, layer=‘nama shape file (tanpa .shp extension)’)

jawa <- readOGR(dsn='D:\\S2 Bismillah\\03_SEMESTER 2\\_STA553 Analisis Statistik Spasial\\PRAKTIKUM\\Map of Jawa (original)', layer='jawa')
## Warning in OGRSpatialRef(dsn, layer, morphFromESRI = morphFromESRI, dumpSRS
## = dumpSRS, : Discarded datum D_unknown in Proj4 definition: +proj=longlat
## +ellps=GRS80 +no_defs
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\S2 Bismillah\03_SEMESTER 2\_STA553 Analisis Statistik Spasial\PRAKTIKUM\Map of Jawa (original)", layer: "jawa"
## with 116 features
## It has 5 fields

Pratinjau data:

head(jawa@data)
##   MISKIN KODE_KAB    NAMA_KAB KODE_PROP  NAMA_PROP
## 0      0     3501     Pacitan        35 Jawa Timur
## 1      0     3502    Ponorogo        35 Jawa Timur
## 2      0     3503  Trenggalek        35 Jawa Timur
## 3      0     3504 Tulungagung        35 Jawa Timur
## 4      0     3508    Lumajang        35 Jawa Timur
## 5      0     3511   Bondowoso        35 Jawa Timur

Menampilkan peta Pulau Jawa

Menampilkan nama kota/kabupaten

plot(jawa)
text(jawa,'NAMA_KAB',cex=0.5)

Memberi warna yang berbeda utk setiap Propinsi

plot(jawa,col=jawa$KODE_PROP-30)

Mengganti referensi warna:

palette(rainbow(6))
plot(jawa, col=jawa$KODE_PROP-30)

palette(terrain.colors(6))
plot(jawa, col=jawa$KODE_PROP-30)

Praktikum 2 - Konfigurasi Titik Ruang dalam Ruang

Review

Titik adalah objek dalam dimensi nol dan menggambarkan sifat dari titik menduduki ruang. Pola keseluruhan titik dalam ruang mencerminkan sifat keseluruhan titik tersebut. Pembahasan bukan membicarakan sebuah titik tapi keseluruhan titik dalam ruang.

Ada tiga pola titik:

  • Acak : setiap titik mempunyai peluang yang sama untuk menduduki suatu ruang dan tidak dipengaruhi oleh titik yang lain

  • Uniform : setiap titik adalah sejauh mungkin dari titik-titik tetangganya.

  • Cluster : Banyak titik terkonsentrasi menduduki pada ruang yang sama, dan ruang yang lain sangat sedikit ditempati oleh titik.

First Approach: Quadrant Method

Metode Kuadran

  • Bagilah Daerah Studi menjadi beberapa sel yang berukuran sama. Ukuran Sel Ditentukan oleh skala yang diinginkan

  • Tentukan Rata-rata Banyaknya Titik per sel

  • Tentukan Variance banyaknya titik per sel

  • Hitung perbandingan Ragam dengan Rata-rata (VMR)

\(\overline{x} = \frac{N}{m}\) \(S^2 = \frac{\sum_{i = 1}^{m}(x_i - \overline{x})^2}{m - 1}\) \(VMR = \frac{S^2}{\overline{x}}\)

\(N = \text{banyaknya titik}\\\) \(m = \text{banyaknya sel}\\\) $x_i = \ $ \(\overline{x} = \text{rata-rata banyaknya titik persel}\\\) \(S^2 = \text{ragam banyaknya titik persel}\\\) \(VMR = \text{perbandingan ragam dengan rata-rata}\\\)

  • VMR = 0 titik menyebar Uniform (sistematik)
  • VMR = 1 titik menyebar acak
  • VMR > 1 titik menyebar lebih mengelompok

Hipotesis

  • H0: Titik menyebar acak

  • H1: Titik tidak menyebar acak

Jika m < 30 maka didekati dengan sebaran Khi Kuadrat \(\chi^2 = (m - 1)VMR = \frac{(m - 1)S^2}{\overline{x}}\)

Jika m >= 30 maka didekati dengan sebaran Z \(Z = \frac{(m - 1)(VMR-(m-1))}{\sqrt{2(m-1)}} = \sqrt{\frac{m-1}{2}}(VMR - 1)\)

  • Bila alpha 5%, Z > 1.96 menolak H0 dan menerima H1 dengan kesimpulan Kluster

  • Bila alpha 5%, Z < -1.96 menolak H0 dan menerima H1 dengan kesimpulan Uniform

Aplikasi pada R

library(spatstat)
## Warning: package 'spatstat' was built under R version 4.1.1
## Loading required package: spatstat.data
## Warning: package 'spatstat.data' was built under R version 4.1.1
## Loading required package: spatstat.geom
## Warning: package 'spatstat.geom' was built under R version 4.1.1
## spatstat.geom 2.2-2
## 
## Attaching package: 'spatstat.geom'
## The following objects are masked from 'package:raster':
## 
##     area, rotate, shift
## Loading required package: spatstat.core
## Warning: package 'spatstat.core' was built under R version 4.1.1
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:raster':
## 
##     getData
## Loading required package: rpart
## spatstat.core 2.3-0
## 
## Attaching package: 'spatstat.core'
## The following object is masked from 'package:gstat':
## 
##     idw
## Loading required package: spatstat.linnet
## Warning: package 'spatstat.linnet' was built under R version 4.1.1
## spatstat.linnet 2.3-0
## 
## spatstat 2.2-0       (nickname: 'That's not important right now') 
## For an introduction to spatstat, type 'beginner'
data(swedishpines)
help(swedishpines)

Swedish Pines Point Pattern

Description > The data give the locations of pine saplings in a Swedish forest.

Usage > data(swedishpines)

Format An object of class “ppp” representing the point pattern of tree locations in a rectangular plot 9.6 by 10 metres.

Cartesian coordinates are given in decimetres (multiples of 0.1 metre) rounded to the nearest decimetre. Type rescale(swedishpines) to get an equivalent dataset where the coordinates are expressed in metres.

See ppp.object for details of the format of a point pattern object.

X <- swedishpines
plot(X)

summary(X)
## Planar point pattern:  71 points
## Average intensity 0.007395833 points per square unit (one unit = 0.1 metres)
## 
## Coordinates are integers
## i.e. rounded to the nearest unit (one unit = 0.1 metres)
## 
## Window: rectangle = [0, 96] x [0, 100] units
## Window area = 9600 square units
## Unit of length: 0.1 metres

Plot Contour seperti memprediksi ketinggian kepekatan menjadi dua dimensi.

contour(density(X,10),axes = F)

nx dan ny default nya 5 x 5

q <- quadratcount(X, nx = 4, ny = 3)
q
##              x
## y             [0,24) [24,48) [48,72) [72,96]
##   [66.7,100]       7       3       6       5
##   [33.3,66.7)      5       9       7       7
##   [0,33.3)         4       3       6       9
plot(q)

mu <- mean(q)
sigma <- sd(q)^2
VMR <- sigma/mu
VMR
## [1] 0.6901408
quadrat.test(q)#H1 tidak sama dengan
## 
##  Chi-squared test of CSR using quadrat counts
## 
## data:  
## X2 = 7.5915, df = 11, p-value = 0.5013
## alternative hypothesis: two.sided
## 
## Quadrats: 4 by 3 grid of tiles

p-value = 0.5013 > alpha = 0.05 sehingga tidak tolak Ho berarti pada taraf alpha 5%, tidak ada bukti untuk menyatakan bahwa titik tidak menyebar acak.

quadrat.test(q, alt = "regular")
## 
##  Chi-squared test of CSR using quadrat counts
## 
## data:  
## X2 = 7.5915, df = 11, p-value = 0.2506
## alternative hypothesis: regular
## 
## Quadrats: 4 by 3 grid of tiles

p-value = 0.2506 > alpha = 0.05 sehingga tidak tolak Ho berarti pada taraf alpha 5%, tidak ada bukti untuk menyatakan bahwa titik tidak menyebar acak atau regular.

Second Approach: Empirical K-Function

nn <- nndist(swedishpines)
hist(nn)

The Empirical K-Function

\(\hat{K}(r) = \frac{|W|}{n(n-1)}\sum_{i=1}^{n}\sum_{j=1\text{ },\text{ } j\neq{i}}^{n}1\{d_{ij}\le{r}\}e_{ij}(r)\\\) \(\text{ }\\\) \(d_{ij} = \text{observed pairwise distance}\\\) \(r = \text{distance value}(r\ge{0})\\\) \(e_{ij} = \text{edge correction weight}\\\) \(n = \text{number of points}\\\) \(|W| = \text{the area of observation window}\)

In summary, the empirical K-function \(\hat{K}(r)\) is the cumulative average number of data points lying within a distance r of a typical data point, corrected for edge effects, and standardised by dividing by the intensity.

Possible pattern for \(\hat{K}(r)\)

Theoritical K-Function \(K_{pois}(r) = \pi r^2\)

This is the K function for a homogeneous Poisson process

Use of empirical K-Function

Aplikasi pada R

K<- Kest(swedishpines, correction="Ripley")
plot(K)

E<-envelope(swedishpines,Kest, nsim=99)
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.
## 
## Done.
plot(E)

graphical test

mad.test(swedishpines, Kest, nsim=99, alternative="two.sided")
## Generating 99 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
## 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
## 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.
## 
## Done.
## 
##  Maximum absolute deviation test of CSR
##  Monte Carlo test based on 99 simulations
##  Summary function: K(r)
##  Reference function: theoretical
##  Alternative: two.sided
##  Interval of distance values: [0, 24] units (one unit = 0.1 metres)
##  Test statistic: Maximum absolute deviation
##  Deviation = observed minus theoretical
## 
## data:  swedishpines
## mad = 150.69, rank = 20, p-value = 0.2

Menggunakan data external

Jenis data yang diperlukan

Import Data

Data dapat diunduh di: city.rds crime.rds

library(raster)
library(spatstat)
city <- readRDS('city.rds')
crime <- readRDS('crime.rds')

Konversi data menjadi titik point pattern

border<-city
coord.city<-city@polygons[[1]]@Polygons[[1]]@coords
window<-owin(poly=data.frame(x=rev(coord.city[,1]),
y=rev(coord.city[,2])))
plot(window)

Menghitung titik di dalam kuadran

crime2 <- remove.duplicates(crime)
## Warning in wkt(obj): CRS object has no comment

## Warning in wkt(obj): CRS object has no comment
crime2 <- crime2[crime,]
## Warning in wkt(obj): CRS object has no comment

## Warning in wkt(obj): CRS object has no comment
crime2.ppp<-ppp(x=crime2@coords[,1],y=crime2@coords[,2],
window=window)
## Warning: 5 points were rejected as lying outside the specified window
quad<-quadratcount(crime2.ppp)
plot(quad, col="red")
plot(crime2.ppp, add=T, pch=20, cex = 0.5)
## Warning in plot.ppp(crime2.ppp, add = T, pch = 20, cex = 0.5): 5 illegal points
## also plotted

quadrat.test(crime2.ppp,alt="cluster")
## Warning: Some expected counts are small; chi^2 approximation may be inaccurate
## 
##  Chi-squared test of CSR using quadrat counts
## 
## data:  crime2.ppp
## X2 = 480.83, df = 22, p-value < 2.2e-16
## alternative hypothesis: clustered
## 
## Quadrats: 23 tiles (irregular windows)

Using K-funtion

K<- Kest(crime2.ppp,
correction="Ripley")
plot(K)

mad.test(crime2.ppp, Kest, nsim = 20, alternative = "greater")
## Generating 20 simulations of CSR  ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,  20.
## 
## Done.
## 
##  Maximum signed deviation test of CSR
##  Monte Carlo test based on 20 simulations
##  Summary function: K(r)
##  Reference function: theoretical
##  Alternative: greater
##  Interval of distance values: [0, 3697.26712973043]
##  Test statistic: Maximum signed deviation
##  Deviation = observed minus theoretical
## 
## data:  crime2.ppp
## mad = 16518845, rank = 1, p-value = 0.04762

Simulasi Data

Poisson process

To create a Poisson process with uniform intensity of 50 over [0; 1] [0; 1]

pp0 <- rpoispp(50)
plot(pp0)

### Matern Clustering

pp3 <- rMatClust(12, 0.1, 4)
plot(pp3)

Apakah data yang dibangkitkan selalu sesuai dengan yg diinginkan? > Belum Tentu

Other generator function

  • rThomas
  • rCauchy
  • rVarGamma
  • rNeymanScott
  • rGaussPoisson

Other point pattern data

  • amacrine (rabbit amacrine cells, locations and 2 types)
  • anemones (sea anemones data, locations and sizes)
  • ants (ant nests data, location and 2 types)
  • bei (tropical rainforest trees, locations)
  • betacells (cat retinal ganglia data, locations, 2 types and sizes)
  • bramblecanes (Bramble Canes data, locations and 3 types)
  • cells (biological cells data, locations)
  • chorley (cancer data, locations and 2 types)
  • finpines (Finnish Pines data, locations and 2 size measures)
  • hamster (hamster tumour data, locations and 2 types)
  • japanesepines (Japanese Pines data, locations)
  • lansing (Lansing Woods data, locations and 6 types)
  • longleaf (Longleaf Pines data, locations and sizes)
  • nztrees (trees data, locations)
  • ponderosa (ponderosa pine trees data, locations)
  • redwood (redwood samplings data, locations)
  • spruces (Spruce trees in Saxonia, locations and sizes)

Referensi

  • Anisa, R. 2021. Pengenalan Struktur R untuk Data Spasial.Retrieved from newlms.ipb.ac.id
  • Anisa, R. 2021. Konfigurasi Titik Ruang. Retrieved from newlms.ipb.ac.id

Demikian, Terima Kasih


  1. Satria June Adwendi, IPB University, ↩︎