library(tidyverse)
library(openintro)
library(dplyr)
data('arbuthnot', package='openintro')arbuthnot$girls## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
The number of girls baptized over the years trends to rise consistenlty with the exception of 20 years between 1640 and 1660 where we observe a drop in baptizms.
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
geom_point()Over the time period represented by the data there are consistently more boys than girls born in a single year. The percentage of boys born is a single year varies between just over 50% to over 53%.
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
arbuthnot <- arbuthnot %>%
mutate(boy_ratio = boys / total)
ggplot(data = arbuthnot, aes(x = year, y = boy_ratio)) +
geom_point()The data sets includes the years 1940 to 2002 inclusively. The dimensions of the dataset are 3 columns with 63 rows of data.
data('present', package='openintro')
present## # A tibble: 63 × 3
## year boys girls
## <dbl> <dbl> <dbl>
## 1 1940 1211684 1148715
## 2 1941 1289734 1223693
## 3 1942 1444365 1364631
## 4 1943 1508959 1427901
## 5 1944 1435301 1359499
## 6 1945 1404587 1330869
## 7 1946 1691220 1597452
## 8 1947 1899876 1800064
## 9 1948 1813852 1721216
## 10 1949 1826352 1733177
## # … with 53 more rows
present %>% summarize(min = min(year), max = max(year))## # A tibble: 1 × 2
## min max
## <dbl> <dbl>
## 1 1940 2002
The data sets includes the years 1620 to 1710 inclusively. The dimensions of the original data set are 3 columns with 82 rows of data.
arbuthnot## # A tibble: 82 × 5
## year boys girls total boy_ratio
## <int> <int> <int> <int> <dbl>
## 1 1629 5218 4683 9901 0.527
## 2 1630 4858 4457 9315 0.522
## 3 1631 4422 4102 8524 0.519
## 4 1632 4994 4590 9584 0.521
## 5 1633 5158 4839 9997 0.516
## 6 1634 5035 4820 9855 0.511
## 7 1635 5106 4928 10034 0.509
## 8 1636 4917 4605 9522 0.516
## 9 1637 4703 4457 9160 0.513
## 10 1638 5359 4952 10311 0.520
## # … with 72 more rows
arbuthnot %>% summarize(min = min(year), max = max(year))## # A tibble: 1 × 2
## min max
## <int> <int>
## 1 1629 1710
The authors observations do hold up there were more boys born in over the time period represented in the present data set.
present <- present %>%
mutate(total = boys + girls)
present <- present %>%
mutate(boy_ratio = boys / total)
ggplot(data = present, aes(x = year, y = boy_ratio)) +
geom_point()In the data set the most births were recorded in 1961
present %>%
arrange(desc(total))## # A tibble: 63 × 5
## year boys girls total boy_ratio
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1961 2186274 2082052 4268326 0.512
## 2 1960 2179708 2078142 4257850 0.512
## 3 1957 2179960 2074824 4254784 0.512
## 4 1959 2173638 2071158 4244796 0.512
## 5 1958 2152546 2051266 4203812 0.512
## 6 1962 2132466 2034896 4167362 0.512
## 7 1956 2133588 2029502 4163090 0.513
## 8 1990 2129495 2028717 4158212 0.512
## 9 1991 2101518 2009389 4110907 0.511
## 10 1963 2101632 1996388 4098020 0.513
## # … with 53 more rows