Email             :
RPubs            : https://rpubs.com/evelintrivena
Jurusan          : fisika medis
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 Membuat Program dengan List R dan Python

# Buat sebuah list untuk menyimpan 5 orang teman dekatmu
list=list("Fatma","Sharon","Novia","Yeni","Ainun")
# Pilihlah satu orang dari list tersebut yang menjadi teman paling dekatmu  dengan menggunakan index
print(list[1])
## [[1]]
## [1] "Fatma"
# Gantilah satu orang yang tidak begitu dekat denganmu dengan teman baru yang kamu temui baru-baru ini
list=list("Fatma","Sharon","Novia","Yeni","Ainun")
list[3]="Angel"
# Bagaimana caranya anda menghitung banyak teman yang ada dalam list tersebut
print(list)
## [[1]]
## [1] "Fatma"
## 
## [[2]]
## [1] "Sharon"
## 
## [[3]]
## [1] "Angel"
## 
## [[4]]
## [1] "Yeni"
## 
## [[5]]
## [1] "Ainun"

2 Buatlah contoh menyimpan sekumpulan tuple dengan R dan Python

library(sets)
# Membuat Tuple dengan 5 item
tuple1=tuple("Hutan","Gunung","Sawah","Laut","Bukit")
tuple2=tuple("Danau")

# Cara Mengakses nilai Tuple
print(tuple1[2])
## ("Gunung")
# Slicing nilai Tuple
tuple=tuple("Hutan","Gunung","Sawah","Laut","Bukit")
print(tuple1[3:5])
## ("Sawah", "Laut", "Bukit")
# Nested Tuple
tuple3=c(tuple1, tuple2)
print(tuple3)
## ("Hutan", "Gunung", "Sawah", "Laut", "Bukit", "Danau")
tuple4=rep(tuple1, 3)
print(tuple4)
## ("Hutan", "Gunung", "Sawah", "Laut", "Bukit", "Hutan", "Gunung",
##  "Sawah", "Laut", "Bukit", "Hutan", "Gunung", "Sawah", "Laut", "Bukit")

3 Buatlah contoh menyimpan sekumpulan Dictionary dengan R dan Python, yang memuat type data float, integer, character, dan logical, list, tuple, dan dictionary.

library(Dict)
## 
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
## 
##     %>%
evelin = dict(
  nama = "Evelin Trivena S",
  umur = as.integer(17),
  tinggi_badan = (154.5), 
  minuman_favorite = list ("milk tea boba","yoghurt cimory","green tea"),
  vaksin_covid = FALSE,
  sosmed = tuple(instagram = "evelintryvena",
                 facebook = "Evelin Trivena"
                 )
)
# Mengakses isi dictionary
cat("Nama saya adalah", evelin$get('nama'))
## Nama saya adalah Evelin Trivena S
# Ubah suatu nilai item pada dictionary
evelin["nama"]="Evelin Trivena Samaliwu"
# Menghapus item dari dictionary
evelin$remove("sosmed")

4 Silahkan untuk menemukan operasi Pengindeksan, Pengirisan, dan Subsetting Data Frame dengan Menggunkan R dan Python

saudara_R<-data.frame(kode=c(1:5),
nama=c("Join", "Shary", "Vena", "Christy", "Dhea"),
usia=c(19,26,17,11,18),
tanggal_lahir=as.Date(c("2001-12-11", "1995-02-19", "2003-12-20", "2009-12-19", "2002-02-12")),
perkerjaan=c("Rohaniawan","TK2D","Mahasiswa","Pelajar","Mahasiswa"), stringsAsFactors = F
)
print(saudara_R)
##   kode    nama usia tanggal_lahir perkerjaan
## 1    1    Join   19    2001-12-11 Rohaniawan
## 2    2   Shary   26    1995-02-19       TK2D
## 3    3    Vena   17    2003-12-20  Mahasiswa
## 4    4 Christy   11    2009-12-19    Pelajar
## 5    5    Dhea   18    2002-02-12  Mahasiswa
typeof(saudara_R)
## [1] "list"
class(saudara_R)
## [1] "data.frame"
saudara_R[3,4]
## [1] "2003-12-20"
saudara_R$usia
## [1] 19 26 17 11 18
saudara_R[,c('nama','perkerjaan')]
##      nama perkerjaan
## 1    Join Rohaniawan
## 2   Shary       TK2D
## 3    Vena  Mahasiswa
## 4 Christy    Pelajar
## 5    Dhea  Mahasiswa
saudara_R[1:3,]
##   kode  nama usia tanggal_lahir perkerjaan
## 1    1  Join   19    2001-12-11 Rohaniawan
## 2    2 Shary   26    1995-02-19       TK2D
## 3    3  Vena   17    2003-12-20  Mahasiswa
saudara_R[,2:4]
##      nama usia tanggal_lahir
## 1    Join   19    2001-12-11
## 2   Shary   26    1995-02-19
## 3    Vena   17    2003-12-20
## 4 Christy   11    2009-12-19
## 5    Dhea   18    2002-02-12
subset(saudara_R, select = usia)
##   usia
## 1   19
## 2   26
## 3   17
## 4   11
## 5   18
subset(saudara_R, select = 2)
##      nama
## 1    Join
## 2   Shary
## 3    Vena
## 4 Christy
## 5    Dhea
subset(saudara_R, select = c(2,3))
##      nama usia
## 1    Join   19
## 2   Shary   26
## 3    Vena   17
## 4 Christy   11
## 5    Dhea   18
subset(saudara_R, select = c(1:3))
##   kode    nama usia
## 1    1    Join   19
## 2    2   Shary   26
## 3    3    Vena   17
## 4    4 Christy   11
## 5    5    Dhea   18

5 Buatlah operasi Ganti Nama Variabel pada suatu Data Frame dengan menggunakan R dan Python

perempuan<-saudara_R
names(perempuan)<-c("number",
                    "name",
                    "age",
                    "birth date",
                    "job")
perempuan
##   number    name age birth date        job
## 1      1    Join  19 2001-12-11 Rohaniawan
## 2      2   Shary  26 1995-02-19       TK2D
## 3      3    Vena  17 2003-12-20  Mahasiswa
## 4      4 Christy  11 2009-12-19    Pelajar
## 5      5    Dhea  18 2002-02-12  Mahasiswa
LS0tDQp0aXRsZTogIkFMR09SSVRNQSBEQU4gU1RSVUtUVVIgREFUQSINCnN1YnRpdGxlOiAiflR1Z2FzIDN+Ig0KYXV0aG9yOiAiRXZlbGluIFRyaWVuYSBTICgyMDIxNDUyMDAxMCkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0idmVuYS5qcGciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgdHJpdmVuYXNhbWFsaXd1QGdtYWlsLmNvbSA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9ldmVsaW50cml2ZW5hIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW2Zpc2lrYSBtZWRpc10oaHR0cHM6Ly9tYXRhbmF1bml2ZXJzaXR5LmFjLmlkLz9seT1hY2FkZW1pYyZjPXNiKSA8YnI+DQpBZGRyZXNzICAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgOiBBUkEgQ2VudGVyLCBNYXRhbmEgVW5pdmVyc2l0eSBUb3dlciA8YnI+DQombmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOyBKbC4gQ0JEIEJhcmF0IEthdiwgUlQuMSwgQ3VydWcgU2FuZ2VyZW5nLCBLZWxhcGEgRHVhLCBUYW5nZXJhbmcsIEJhbnRlbiAxNTgxMC4NCg0KKioqKg0KDQojIE1lbWJ1YXQgUHJvZ3JhbSBkZW5nYW4gTGlzdCBSIGRhbiBQeXRob24NCg0KYGBge3J9DQojIEJ1YXQgc2VidWFoIGxpc3QgdW50dWsgbWVueWltcGFuIDUgb3JhbmcgdGVtYW4gZGVrYXRtdQ0KbGlzdD1saXN0KCJGYXRtYSIsIlNoYXJvbiIsIk5vdmlhIiwiWWVuaSIsIkFpbnVuIikNCmBgYA0KDQpgYGB7cn0NCiMgUGlsaWhsYWggc2F0dSBvcmFuZyBkYXJpIGxpc3QgdGVyc2VidXQgeWFuZyBtZW5qYWRpIHRlbWFuIHBhbGluZyBkZWthdG11ICBkZW5nYW4gbWVuZ2d1bmFrYW4gaW5kZXgNCnByaW50KGxpc3RbMV0pDQpgYGANCg0KYGBge3J9DQojIEdhbnRpbGFoIHNhdHUgb3JhbmcgeWFuZyB0aWRhayBiZWdpdHUgZGVrYXQgZGVuZ2FubXUgZGVuZ2FuIHRlbWFuIGJhcnUgeWFuZyBrYW11IHRlbXVpIGJhcnUtYmFydSBpbmkNCmxpc3Q9bGlzdCgiRmF0bWEiLCJTaGFyb24iLCJOb3ZpYSIsIlllbmkiLCJBaW51biIpDQpsaXN0WzNdPSJBbmdlbCINCmBgYA0KDQpgYGB7cn0NCiMgQmFnYWltYW5hIGNhcmFueWEgYW5kYSBtZW5naGl0dW5nIGJhbnlhayB0ZW1hbiB5YW5nIGFkYSBkYWxhbSBsaXN0IHRlcnNlYnV0DQpwcmludChsaXN0KQ0KYGBgDQoNCiMgIEJ1YXRsYWggY29udG9oIG1lbnlpbXBhbiBzZWt1bXB1bGFuIHR1cGxlIGRlbmdhbiBSIGRhbiBQeXRob24NCg0KYGBge3J9DQpsaWJyYXJ5KHNldHMpDQojIE1lbWJ1YXQgVHVwbGUgZGVuZ2FuIDUgaXRlbQ0KdHVwbGUxPXR1cGxlKCJIdXRhbiIsIkd1bnVuZyIsIlNhd2FoIiwiTGF1dCIsIkJ1a2l0IikNCnR1cGxlMj10dXBsZSgiRGFuYXUiKQ0KDQojIENhcmEgTWVuZ2Frc2VzIG5pbGFpIFR1cGxlDQpwcmludCh0dXBsZTFbMl0pDQoNCiMgU2xpY2luZyBuaWxhaSBUdXBsZQ0KdHVwbGU9dHVwbGUoIkh1dGFuIiwiR3VudW5nIiwiU2F3YWgiLCJMYXV0IiwiQnVraXQiKQ0KcHJpbnQodHVwbGUxWzM6NV0pDQoNCiMgTmVzdGVkIFR1cGxlDQp0dXBsZTM9Yyh0dXBsZTEsIHR1cGxlMikNCnByaW50KHR1cGxlMykNCnR1cGxlND1yZXAodHVwbGUxLCAzKQ0KcHJpbnQodHVwbGU0KQ0KYGBgDQojIEJ1YXRsYWggY29udG9oIG1lbnlpbXBhbiBzZWt1bXB1bGFuIERpY3Rpb25hcnkgZGVuZ2FuIFIgZGFuIFB5dGhvbiwgeWFuZyBtZW11YXQgdHlwZSBkYXRhIGZsb2F0LCBpbnRlZ2VyLCBjaGFyYWN0ZXIsIGRhbiBsb2dpY2FsLCBsaXN0LCB0dXBsZSwgZGFuIGRpY3Rpb25hcnkuDQoNCmBgYHtyfSANCmxpYnJhcnkoRGljdCkNCmV2ZWxpbiA9IGRpY3QoDQogIG5hbWEgPSAiRXZlbGluIFRyaXZlbmEgUyIsDQogIHVtdXIgPSBhcy5pbnRlZ2VyKDE3KSwNCiAgdGluZ2dpX2JhZGFuID0gKDE1NC41KSwgDQogIG1pbnVtYW5fZmF2b3JpdGUgPSBsaXN0ICgibWlsayB0ZWEgYm9iYSIsInlvZ2h1cnQgY2ltb3J5IiwiZ3JlZW4gdGVhIiksDQogIHZha3Npbl9jb3ZpZCA9IEZBTFNFLA0KICBzb3NtZWQgPSB0dXBsZShpbnN0YWdyYW0gPSAiZXZlbGludHJ5dmVuYSIsDQogICAgICAgICAgICAgICAgIGZhY2Vib29rID0gIkV2ZWxpbiBUcml2ZW5hIg0KICAgICAgICAgICAgICAgICApDQopDQpgYGANCmBgYHtyfSANCiMgTWVuZ2Frc2VzIGlzaSBkaWN0aW9uYXJ5DQpjYXQoIk5hbWEgc2F5YSBhZGFsYWgiLCBldmVsaW4kZ2V0KCduYW1hJykpDQpgYGANCmBgYHtyfSANCiMgVWJhaCBzdWF0dSBuaWxhaSBpdGVtIHBhZGEgZGljdGlvbmFyeQ0KZXZlbGluWyJuYW1hIl09IkV2ZWxpbiBUcml2ZW5hIFNhbWFsaXd1Ig0KYGBgDQpgYGB7cn0gDQojIE1lbmdoYXB1cyBpdGVtIGRhcmkgZGljdGlvbmFyeQ0KZXZlbGluJHJlbW92ZSgic29zbWVkIikNCmBgYA0KDQojIFNpbGFoa2FuIHVudHVrIG1lbmVtdWthbiBvcGVyYXNpIFBlbmdpbmRla3NhbiwgUGVuZ2lyaXNhbiwgZGFuIFN1YnNldHRpbmcgRGF0YSBGcmFtZSBkZW5nYW4gTWVuZ2d1bmthbiBSIGRhbiBQeXRob24NCg0KYGBge3J9DQpzYXVkYXJhX1I8LWRhdGEuZnJhbWUoa29kZT1jKDE6NSksDQpuYW1hPWMoIkpvaW4iLCAiU2hhcnkiLCAiVmVuYSIsICJDaHJpc3R5IiwgIkRoZWEiKSwNCnVzaWE9YygxOSwyNiwxNywxMSwxOCksDQp0YW5nZ2FsX2xhaGlyPWFzLkRhdGUoYygiMjAwMS0xMi0xMSIsICIxOTk1LTAyLTE5IiwgIjIwMDMtMTItMjAiLCAiMjAwOS0xMi0xOSIsICIyMDAyLTAyLTEyIikpLA0KcGVya2VyamFhbj1jKCJSb2hhbmlhd2FuIiwiVEsyRCIsIk1haGFzaXN3YSIsIlBlbGFqYXIiLCJNYWhhc2lzd2EiKSwgc3RyaW5nc0FzRmFjdG9ycyA9IEYNCikNCnByaW50KHNhdWRhcmFfUikNCg0KdHlwZW9mKHNhdWRhcmFfUikNCmNsYXNzKHNhdWRhcmFfUikNCnNhdWRhcmFfUlszLDRdDQpzYXVkYXJhX1IkdXNpYQ0Kc2F1ZGFyYV9SWyxjKCduYW1hJywncGVya2VyamFhbicpXQ0Kc2F1ZGFyYV9SWzE6MyxdDQpzYXVkYXJhX1JbLDI6NF0NCg0Kc3Vic2V0KHNhdWRhcmFfUiwgc2VsZWN0ID0gdXNpYSkNCnN1YnNldChzYXVkYXJhX1IsIHNlbGVjdCA9IDIpDQpzdWJzZXQoc2F1ZGFyYV9SLCBzZWxlY3QgPSBjKDIsMykpDQpzdWJzZXQoc2F1ZGFyYV9SLCBzZWxlY3QgPSBjKDE6MykpDQpgYGANCg0KIyBCdWF0bGFoIG9wZXJhc2kgR2FudGkgTmFtYSBWYXJpYWJlbCBwYWRhIHN1YXR1IERhdGEgRnJhbWUgZGVuZ2FuIG1lbmdndW5ha2FuIFIgZGFuIFB5dGhvbg0KDQpgYGB7cn0NCnBlcmVtcHVhbjwtc2F1ZGFyYV9SDQpuYW1lcyhwZXJlbXB1YW4pPC1jKCJudW1iZXIiLA0KICAgICAgICAgICAgICAgICAgICAibmFtZSIsDQogICAgICAgICAgICAgICAgICAgICJhZ2UiLA0KICAgICAgICAgICAgICAgICAgICAiYmlydGggZGF0ZSIsDQogICAgICAgICAgICAgICAgICAgICJqb2IiKQ0KcGVyZW1wdWFuDQpgYGANCg0KDQoNCg0K