Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank          Name            Growth_Rate         Revenue         
##  Min.   :   1   Length:5001        Min.   :  0.340   Min.   :2.000e+06  
##  1st Qu.:1252   Class :character   1st Qu.:  0.770   1st Qu.:5.100e+06  
##  Median :2502   Mode  :character   Median :  1.420   Median :1.090e+07  
##  Mean   :2502                      Mean   :  4.612   Mean   :4.822e+07  
##  3rd Qu.:3751                      3rd Qu.:  3.290   3rd Qu.:2.860e+07  
##  Max.   :5000                      Max.   :421.480   Max.   :1.010e+10  
##                                                                         
##    Industry           Employees           City              State          
##  Length:5001        Min.   :    1.0   Length:5001        Length:5001       
##  Class :character   1st Qu.:   25.0   Class :character   Class :character  
##  Mode  :character   Median :   53.0   Mode  :character   Mode  :character  
##                     Mean   :  232.7                                        
##                     3rd Qu.:  132.0                                        
##                     Max.   :66803.0                                        
##                     NA's   :12

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

# remove NA values
inc <- na.omit(inc)

# explore the data
inc %>% 
  dplyr::select(-Name, -Industry, -City, -State, -Rank) %>% #remove categorical and Rank variable
    gather(key,value) %>%
      ggplot(aes(value)) + geom_boxplot() + facet_wrap(~key, scales = "free")

# every numerical variable has many outliers, can we see why?

psych::describe(inc)
##             vars    n        mean           sd    median     trimmed
## Rank           1 4989     2501.39      1443.42 2.502e+03     2501.47
## Name*          2 4989     2495.00      1440.34 2.495e+03     2495.00
## Growth_Rate    3 4989        4.61        14.14 1.420e+00        2.14
## Revenue        4 4989 48253357.39 240819468.86 1.090e+07 17328099.17
## Industry*      5 4989       12.09         7.33 1.300e+01       12.05
## Employees      6 4989      232.72      1353.13 5.300e+01       81.78
## City*          7 4989      730.98       440.33 7.600e+02      730.70
## State*         8 4989       24.80        15.63 2.300e+01       24.44
##                     mad     min        max      range  skew kurtosis         se
## Rank            1851.77 1.0e+00 5.0000e+03 4.9990e+03  0.00    -1.20      20.44
## Name*           1848.80 1.0e+00 4.9890e+03 4.9880e+03  0.00    -1.20      20.39
## Growth_Rate        1.22 3.4e-01 4.2148e+02 4.2114e+02 12.54   241.94       0.20
## Revenue     10674720.00 2.0e+06 1.0100e+10 1.0098e+10 22.15   721.05 3409454.05
## Industry*          8.90 1.0e+00 2.5000e+01 2.4000e+01 -0.10    -1.18       0.10
## Employees         53.37 1.0e+00 6.6803e+04 6.6802e+04 29.81  1268.67      19.16
## City*            603.42 1.0e+00 1.5170e+03 1.5160e+03 -0.04    -1.26       6.23
## State*            19.27 1.0e+00 5.2000e+01 5.1000e+01  0.12    -1.46       0.22
# there are considerable skews in the three numerical variables,
# as well as high kurtosis (i.e. number of outliers) in each variable

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

# Answer Question 1 here
inc_State <- data.frame(inc) %>%
  group_by(State) %>%
    summarize(
      state_count = n()
    ) %>%
      arrange(desc(state_count))

ggplot(data=inc_State, aes(x=reorder(State, -state_count), y=state_count)) +
  geom_col(fill="darkgrey") + coord_flip() +
  labs(x="State", y="Count", title="Companies by State")

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

# Answer Question 2 here
head(inc_State) # The state with the 3rd most companies is NY with 311
## # A tibble: 6 x 2
##   State state_count
##   <chr>       <int>
## 1 CA            700
## 2 TX            386
## 3 NY            311
## 4 VA            283
## 5 FL            282
## 6 IL            272
# gather the data for NY only from the original data

inc_NY_detail <-  data.frame(inc) %>%
  filter(State=="NY", complete.cases(.))

inc_NY <-  data.frame(inc) %>%
  filter(State=="NY", complete.cases(.)) %>%
    group_by(Industry) %>%
      summarize(
        tot_companies = n(),
        tot_emp = sum(Employees),
        avg_emp = mean(Employees),
        median_emp = median(Employees),
        min_emp = min(Employees),
        max_emp = max(Employees)
      ) %>%
        arrange(desc(tot_emp))  # sort in descending order by total workforce count in the 
                                # industry (i.e. industries with largest total workforce on top)

inc_NY
## # A tibble: 25 x 7
##    Industry             tot_companies tot_emp avg_emp median_emp min_emp max_emp
##    <chr>                        <int>   <int>   <dbl>      <dbl>   <int>   <int>
##  1 Business Products &~            26   38804  1492.        70.5       4   32000
##  2 Consumer Products &~            17   10647   626.        25         5   10000
##  3 IT Services                     43    8776   204.        54         8    3000
##  4 Human Resources                 11    4813   438.        56         7    2081
##  5 Travel & Hospitality             7    3834   548.        61         6    2280
##  6 Advertising & Marke~            57    3331    58.4       38         2     270
##  7 Software                        13    3197   246.        80        15    1271
##  8 Financial Services              13    1876   144.        81        14     483
##  9 Telecommunications              17    1621    95.4       31         6     316
## 10 Media                           11    1188   108         45         4     602
## # ... with 15 more rows
NY_plot <- ggplot(data=inc_NY_detail, aes(x=reorder(Industry,Employees,median), y=Employees)) +
            geom_boxplot() + coord_flip() +
            labs(x = "Industry", y = "Median # Employees", title="Median # Employees per Industry in NY State")

NY_plot + scale_y_log10()  # scale the y axis (x flipped axis) for better presentation

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

# Answer Question 3 here
inc_invest <-  data.frame(inc) %>%
  filter(complete.cases(.)) %>%
    group_by(Industry) %>%
      summarize(
        tot_revenue = sum(Revenue),
        tot_emp = sum(Employees)
      ) %>%
        mutate(rev_per_emp = tot_revenue/tot_emp) %>%
          arrange(desc(rev_per_emp))

inc_invest
## # A tibble: 25 x 4
##    Industry                     tot_revenue tot_emp rev_per_emp
##    <chr>                              <dbl>   <int>       <dbl>
##  1 Computer Hardware            11885700000    9714    1223564.
##  2 Energy                       13771600000   26437     520921.
##  3 Construction                 13174300000   29099     452741.
##  4 Logistics & Transportation   14837800000   39994     371001.
##  5 Consumer Products & Services 14956400000   45464     328972.
##  6 Insurance                     2337900000    7339     318558.
##  7 Manufacturing                12603600000   43942     286824.
##  8 Retail                       10257400000   37068     276718.
##  9 Financial Services           13150900000   47693     275741.
## 10 Environmental Services        2638800000   10155     259852.
## # ... with 15 more rows
Investor_plot <- ggplot(data=inc_invest, aes(x=reorder(Industry,rev_per_emp), y=rev_per_emp)) +
                  geom_bar(stat="identity", fill="darkgreen") + coord_flip() +
                  labs(x = "Industry", y = "Revenue per Employee",
                        title="Revenue per Employee by Industry") +
                  scale_y_continuous(limits=c(0,1450000)) +
                  geom_text(aes(label = round(rev_per_emp,0)), size=3, hjust=-0.25)

Investor_plot