

Email : diyasaryanugroho@gmail.com
RPubs : https://rpubs.com/diyasarya/
Jurusan : Statistika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
Soal 1
- Buat sebuah list untuk menyimpan 5 orang teman dekatmu
listnamateman = list("Alipia", "Bagus", "Citra", "Dea", "Helmi")
- Pilihlah satu orang dari list tersebut yang menjadi teman paling dekatmu dengan menggunakan index
listnamateman = list("Alipia", "Bagus", "Citra", "Dea", "Helmi")
print(listnamateman[2]) # index 2 sebagai teman paling dekat
## [[1]]
## [1] "Bagus"
- Gantilah satu orang yang tidak begitu dekat denganmu dengan teman baru yang kamu temui baru-baru ini
listnamateman = list("Alipia", "Bagus", "Citra", "Dea", "Helmi")
listnamateman[1] = "Guruh" # mengganti alipia menjadi guruh
print(listnamateman)
## [[1]]
## [1] "Guruh"
##
## [[2]]
## [1] "Bagus"
##
## [[3]]
## [1] "Citra"
##
## [[4]]
## [1] "Dea"
##
## [[5]]
## [1] "Helmi"
- Bagaimana caranya anda menghitung banyak teman yang ada dalam list tersebut
## [1] 5
Soal 2
- Buatlah Tuple dengan 5 item didalamnya
tuple = tuple("Hari", "Ini", "Aku", "Akan", "Pergi")
- Perlihatkan cara Mengakses Nilai Tuple
library(sets)
tuple = tuple("Hari", "Ini", "Aku", "Akan", "Pergi")
print(tuple[3]) # Mengakses nilai tuple 3
## ("Aku")
- Bagaimana anda melakukan Slicing Nilai Tuple
tuple = tuple("Hari", "Ini", "Aku", "Akan", "Pergi")
print(tuple[3:5]) # Memotong tuple berdasarkan nilai 3 sampai 5
## ("Aku", "Akan", "Pergi")
tuple = tuple("Hari", "Ini", "Aku", "Akan", "Pergi")
tuple1 = tuple("Saya", "Ingin", "Mengunjungi", "Rumah", "Nenek")
tuple2 = c(tuple, tuple1)
print(tuple2)
## ("Hari", "Ini", "Aku", "Akan", "Pergi", "Saya", "Ingin", "Mengunjungi",
## "Rumah", "Nenek")
Soal 3
- Akses suatu nilai Item dari Dictionary
##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
biodata = dict(
nama = "Diyas Arya Nugroho",
umur = as.integer(18),
tempat.tinggal = "Tangerang",
riwayat.pendidikan = tuple(SD = "SDN Binong 2",
SMP = "MTs Al-layyinah",
SMA = "SMAN 4 Kab Tangerang"),
pelajaran.kesukaan = list("Matematika", "Kimia", "Bahasa Inggris"),
menikah = FALSE
)
print(biodata$get('riwayat.pendidikan')['SMA'])
## (SMA = "SMAN 4 Kab Tangerang")
cat("Nama saya adalah :", biodata$get('nama'))
## Nama saya adalah : Diyas Arya Nugroho
- Ubah suatu Nilai Item pada Dictionary
biodata['pelajaran.kesukaan'][3] = "Bahasa Indonesia" # Mengganti Bahasa Inggris menjadi Bahasa Indonesia
print(biodata$get('pelajaran.kesukaan'))
## [[1]]
## [1] "Matematika"
##
## [[2]]
## [1] "Kimia"
##
## [[3]]
## [1] "Bahasa Indonesia"
- Menambahkan Item ke Dictionary
biodata["tempat.tinggal"] = "Tangerang, Karawaci"
print(biodata$get('tempat.tinggal'))
## [1] "Tangerang, Karawaci"
- Menghapus Item dari Dictionary
biodata$remove("tempat.tinggal") # Menghapus item tempat tinggal
print(biodata$get('tempat.tinggal'))
## NULL
Soal 4
Silahkan untuk menemukan operasi Pengindeksan, Pengirisan, dan Subsetting Data Frame dengan Menggunakan R.
furnitur <- data.frame(kode = c(1:5),
Produk = c("Meja", "Bangku", "Lemari", "Kasur", "Kulkas"),
Harga = c("Rp799.999,00", "Rp459.999,00", "Rp1.798.999,00", "Rp1.999.999,00", "Rp10.965.000,00"),
Stock = c("565", "280", "179", "58", "26"),
Status = c(rep("Import", 3), rep("Tidak", 2)),
Kualitas = c("A", "B", "A", "B", "A")
)
furnitur[1,4] # Ekstrak data di baris ke-1 dan kolom ke-4
## [1] "565"
furnitur[3:5,] # Ekstrak lima baris pertama pada data
## kode Produk Harga Stock Status Kualitas
## 3 3 Lemari Rp1.798.999,00 179 Import A
## 4 4 Kasur Rp1.999.999,00 58 Tidak B
## 5 5 Kulkas Rp10.965.000,00 26 Tidak A
furnitur$Produk # Ekstrak kolom produk pada data
## [1] "Meja" "Bangku" "Lemari" "Kasur" "Kulkas"
subset(furnitur, select = c(2,5)) # Subset kolom kedua dan kelima
## Produk Status
## 1 Meja Import
## 2 Bangku Import
## 3 Lemari Import
## 4 Kasur Tidak
## 5 Kulkas Tidak
Soal 5
Buatlah operasi Ganti Nama Variabel pada suatu Data Frame dengan menggunakan R.
names(furnitur)<- c("No", # Merubah nama variabel
"Barang",
"Price",
"Persediaan",
"Status",
"Nilai"
)
furnitur
## No Barang Price Persediaan Status Nilai
## 1 1 Meja Rp799.999,00 565 Import A
## 2 2 Bangku Rp459.999,00 280 Import B
## 3 3 Lemari Rp1.798.999,00 179 Import A
## 4 4 Kasur Rp1.999.999,00 58 Tidak B
## 5 5 Kulkas Rp10.965.000,00 26 Tidak A
LS0tDQp0aXRsZTogIlR1Z2FzIDMiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3RydWt0dXIgRGF0YSINCmF1dGhvcjogIkRpeWFzIEFyeWEgTnVncm9obyAoMjAyMTQ5MjAwMDcpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaHRtbF9kb2N1bWVudDogbnVsbA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBzYW5kc3RvbmUNCiAgICBjc3M6IHN0eWxlMS5jc3MNCiAgICBoaWdobGlnaHQ6IG1vbm9jaHJvbWUNCi0tLQ0KDQoNCjxpbWcgc3R5bGU9ImZsb2F0OiByaWdodDsgbWFyZ2luOiAwcHggMTAwcHggMHB4IDBweDsgd2lkdGg6MjUlIiBzcmM9InByb2ZpbC5wbmciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvbWF0YW5hLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiBkaXlhc2FyeWFudWdyb2hvQGdtYWlsLmNvbSA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9kaXlhc2FyeWEvIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2FdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCg0KDQojIFNvYWwgMSANCg0KKiBCdWF0IHNlYnVhaCBsaXN0IHVudHVrIG1lbnlpbXBhbiA1IG9yYW5nIHRlbWFuIGRla2F0bXUNCmBgYHtyfQ0KbGlzdG5hbWF0ZW1hbiA9IGxpc3QoIkFsaXBpYSIsICJCYWd1cyIsICJDaXRyYSIsICJEZWEiLCAiSGVsbWkiKQ0KYGBgDQoNCiogUGlsaWhsYWggc2F0dSBvcmFuZyBkYXJpIGxpc3QgdGVyc2VidXQgeWFuZyBtZW5qYWRpIHRlbWFuIHBhbGluZyBkZWthdG11ICBkZW5nYW4gbWVuZ2d1bmFrYW4gaW5kZXgNCmBgYHtyfQ0KbGlzdG5hbWF0ZW1hbiA9IGxpc3QoIkFsaXBpYSIsICJCYWd1cyIsICJDaXRyYSIsICJEZWEiLCAiSGVsbWkiKQ0KDQpwcmludChsaXN0bmFtYXRlbWFuWzJdKSAgICAgICAgICAjIGluZGV4IDIgc2ViYWdhaSB0ZW1hbiBwYWxpbmcgZGVrYXQNCmBgYA0KDQoqIEdhbnRpbGFoIHNhdHUgb3JhbmcgeWFuZyB0aWRhayBiZWdpdHUgZGVrYXQgZGVuZ2FubXUgZGVuZ2FuIHRlbWFuIGJhcnUgeWFuZyBrYW11IHRlbXVpIGJhcnUtYmFydSBpbmkNCmBgYHtyfQ0KbGlzdG5hbWF0ZW1hbiA9IGxpc3QoIkFsaXBpYSIsICJCYWd1cyIsICJDaXRyYSIsICJEZWEiLCAiSGVsbWkiKQ0KDQpsaXN0bmFtYXRlbWFuWzFdID0gIkd1cnVoIiAgICAgICMgbWVuZ2dhbnRpIGFsaXBpYSBtZW5qYWRpIGd1cnVoDQoNCnByaW50KGxpc3RuYW1hdGVtYW4pDQpgYGANCg0KKiBCYWdhaW1hbmEgY2FyYW55YSBhbmRhIG1lbmdoaXR1bmcgYmFueWFrIHRlbWFuIHlhbmcgYWRhIGRhbGFtIGxpc3QgdGVyc2VidXQNCmBgYHtyfQ0KbGVuZ3RoKGxpc3RuYW1hdGVtYW4pDQpgYGANCg0KIyBTb2FsIDINCg0KKiBCdWF0bGFoIFR1cGxlIGRlbmdhbiA1IGl0ZW0gZGlkYWxhbW55YQ0KYGBge3IsIGV2YWw9RkFMU0V9DQp0dXBsZSA9IHR1cGxlKCJIYXJpIiwgIkluaSIsICJBa3UiLCAiQWthbiIsICJQZXJnaSIpDQpgYGANCg0KKiBQZXJsaWhhdGthbiBjYXJhIE1lbmdha3NlcyBOaWxhaSBUdXBsZQ0KYGBge3J9DQpsaWJyYXJ5KHNldHMpDQoNCnR1cGxlID0gdHVwbGUoIkhhcmkiLCAiSW5pIiwgIkFrdSIsICJBa2FuIiwgIlBlcmdpIikNCg0KcHJpbnQodHVwbGVbM10pICAgICAgIyBNZW5nYWtzZXMgbmlsYWkgdHVwbGUgMw0KYGBgDQoNCiogQmFnYWltYW5hIGFuZGEgbWVsYWt1a2FuIFNsaWNpbmcgTmlsYWkgVHVwbGUNCmBgYHtyfQ0KdHVwbGUgPSB0dXBsZSgiSGFyaSIsICJJbmkiLCAiQWt1IiwgIkFrYW4iLCAiUGVyZ2kiKQ0KDQpwcmludCh0dXBsZVszOjVdKSAgICMgTWVtb3RvbmcgdHVwbGUgYmVyZGFzYXJrYW4gbmlsYWkgMyBzYW1wYWkgNQ0KYGBgDQoNCiogTmVzdGVkIFR1cGxlDQpgYGB7cn0NCnR1cGxlID0gdHVwbGUoIkhhcmkiLCAiSW5pIiwgIkFrdSIsICJBa2FuIiwgIlBlcmdpIikNCnR1cGxlMSA9IHR1cGxlKCJTYXlhIiwgIkluZ2luIiwgIk1lbmd1bmp1bmdpIiwgIlJ1bWFoIiwgIk5lbmVrIikNCnR1cGxlMiA9IGModHVwbGUsIHR1cGxlMSkNCg0KcHJpbnQodHVwbGUyKQ0KYGBgDQoNCg0KIyBTb2FsIDMNCg0KKiBBa3NlcyBzdWF0dSBuaWxhaSBJdGVtIGRhcmkgRGljdGlvbmFyeQ0KDQpgYGB7cn0NCmxpYnJhcnkoRGljdCkNCg0KYmlvZGF0YSA9IGRpY3QoDQogIG5hbWEgPSAiRGl5YXMgQXJ5YSBOdWdyb2hvIiwNCiAgdW11ciA9IGFzLmludGVnZXIoMTgpLA0KICB0ZW1wYXQudGluZ2dhbCA9ICJUYW5nZXJhbmciLA0KICByaXdheWF0LnBlbmRpZGlrYW4gPSB0dXBsZShTRCA9ICJTRE4gQmlub25nIDIiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU01QID0gIk1UcyBBbC1sYXl5aW5haCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTTUEgPSAiU01BTiA0IEthYiBUYW5nZXJhbmciKSwNCiAgcGVsYWphcmFuLmtlc3VrYWFuID0gbGlzdCgiTWF0ZW1hdGlrYSIsICJLaW1pYSIsICJCYWhhc2EgSW5nZ3JpcyIpLA0KICBtZW5pa2FoID0gRkFMU0UNCiAgKQ0KDQpwcmludChiaW9kYXRhJGdldCgncml3YXlhdC5wZW5kaWRpa2FuJylbJ1NNQSddKQ0KY2F0KCJOYW1hIHNheWEgYWRhbGFoIDoiLCBiaW9kYXRhJGdldCgnbmFtYScpKQ0KYGBgDQoNCiogVWJhaCBzdWF0dSBOaWxhaSBJdGVtIHBhZGEgRGljdGlvbmFyeQ0KDQpgYGB7cn0NCmJpb2RhdGFbJ3BlbGFqYXJhbi5rZXN1a2FhbiddWzNdID0gIkJhaGFzYSBJbmRvbmVzaWEiICAgICAjIE1lbmdnYW50aSBCYWhhc2EgSW5nZ3JpcyBtZW5qYWRpIEJhaGFzYSBJbmRvbmVzaWENCnByaW50KGJpb2RhdGEkZ2V0KCdwZWxhamFyYW4ua2VzdWthYW4nKSkNCmBgYA0KDQoqIE1lbmFtYmFoa2FuIEl0ZW0ga2UgRGljdGlvbmFyeQ0KDQpgYGB7cn0NCmJpb2RhdGFbInRlbXBhdC50aW5nZ2FsIl0gPSAiVGFuZ2VyYW5nLCBLYXJhd2FjaSIgDQpwcmludChiaW9kYXRhJGdldCgndGVtcGF0LnRpbmdnYWwnKSkNCmBgYA0KDQoqIE1lbmdoYXB1cyBJdGVtIGRhcmkgRGljdGlvbmFyeQ0KDQpgYGB7cn0NCmJpb2RhdGEkcmVtb3ZlKCJ0ZW1wYXQudGluZ2dhbCIpICAgICMgTWVuZ2hhcHVzIGl0ZW0gdGVtcGF0IHRpbmdnYWwNCnByaW50KGJpb2RhdGEkZ2V0KCd0ZW1wYXQudGluZ2dhbCcpKQ0KYGBgDQoNCg0KIyBTb2FsIDQNCg0KU2lsYWhrYW4gdW50dWsgbWVuZW11a2FuIG9wZXJhc2kgUGVuZ2luZGVrc2FuLCBQZW5naXJpc2FuLCBkYW4gU3Vic2V0dGluZyBEYXRhIEZyYW1lIGRlbmdhbiBNZW5nZ3VuYWthbiBSLg0KDQpgYGB7cn0NCmZ1cm5pdHVyIDwtIGRhdGEuZnJhbWUoa29kZSA9IGMoMTo1KSwNCiAgICAgICAgICAgICAgICAgIFByb2R1ayA9IGMoIk1lamEiLCAiQmFuZ2t1IiwgIkxlbWFyaSIsICJLYXN1ciIsICJLdWxrYXMiKSwNCiAgICAgICAgICAgICAgICAgIEhhcmdhID0gYygiUnA3OTkuOTk5LDAwIiwgIlJwNDU5Ljk5OSwwMCIsICJScDEuNzk4Ljk5OSwwMCIsICJScDEuOTk5Ljk5OSwwMCIsICJScDEwLjk2NS4wMDAsMDAiKSwNCiAgICAgICAgICAgICAgICAgIFN0b2NrID0gYygiNTY1IiwgIjI4MCIsICIxNzkiLCAiNTgiLCAiMjYiKSwNCiAgICAgICAgICAgICAgICAgIFN0YXR1cyA9IGMocmVwKCJJbXBvcnQiLCAzKSwgcmVwKCJUaWRhayIsIDIpKSwNCiAgICAgICAgICAgICAgICAgIEt1YWxpdGFzID0gYygiQSIsICJCIiwgIkEiLCAiQiIsICJBIikNCiAgICAgICAgICAgICAgICAgICkNCg0KZnVybml0dXJbMSw0XSAgICAgIyBFa3N0cmFrIGRhdGEgZGkgYmFyaXMga2UtMSBkYW4ga29sb20ga2UtNA0KYGBgDQpgYGB7cn0NCmZ1cm5pdHVyWzM6NSxdICAjIEVrc3RyYWsgbGltYSBiYXJpcyBwZXJ0YW1hIHBhZGEgZGF0YQ0KYGBgDQoNCmBgYHtyfQ0KZnVybml0dXIkUHJvZHVrICAjIEVrc3RyYWsga29sb20gcHJvZHVrIHBhZGEgZGF0YQ0KYGBgDQpgYGB7cn0NCnN1YnNldChmdXJuaXR1ciwgc2VsZWN0ID0gYygyLDUpKSAgICAjIFN1YnNldCBrb2xvbSBrZWR1YSBkYW4ga2VsaW1hDQpgYGANCg0KDQojIFNvYWwgNQ0KDQpCdWF0bGFoIG9wZXJhc2kgR2FudGkgTmFtYSBWYXJpYWJlbCBwYWRhIHN1YXR1IERhdGEgRnJhbWUgZGVuZ2FuIG1lbmdndW5ha2FuIFIuDQoNCmBgYHtyfQ0KbmFtZXMoZnVybml0dXIpPC0gYygiTm8iLCAgICAgICAgICAgICAgICAjIE1lcnViYWggbmFtYSB2YXJpYWJlbA0KICAgICAgICAgICAgICAgICAgICAiQmFyYW5nIiwNCiAgICAgICAgICAgICAgICAgICAgIlByaWNlIiwNCiAgICAgICAgICAgICAgICAgICAgIlBlcnNlZGlhYW4iLA0KICAgICAgICAgICAgICAgICAgICAiU3RhdHVzIiwNCiAgICAgICAgICAgICAgICAgICAgIk5pbGFpIg0KKQ0KDQpmdXJuaXR1cg0KYGBgDQoNCg0KDQo=