Email : natalieekaren@gmail.com
RPubs : https://rpubs.com/karennatalie/
Jurusan : Statistika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
list0 = list() #membuat list kosong
list1 = list("Je","Glory","Mark","Johhny","Jeno") #membuat list isi 5 item karakter(nama)
print(c(list0,list1)) #print kedua list## [[1]]
## [1] "Je"
##
## [[2]]
## [1] "Glory"
##
## [[3]]
## [1] "Mark"
##
## [[4]]
## [1] "Johhny"
##
## [[5]]
## [1] "Jeno"
list2 = list("Je","Glory","Mark","Johhny","Jeno") #membuat list isi 5 item karakter(nama)
print(list2[3]) #print karakter pada indeks 3## [[1]]
## [1] "Mark"
list3 = list("Je","Glory","Mark","Johhny","Jeno") #membuat list isi 5 item karakter(nama)
list3[4]= "Haechan" #mengubah item Johnny menjadi Haechan
print(list3)## [[1]]
## [1] "Je"
##
## [[2]]
## [1] "Glory"
##
## [[3]]
## [1] "Mark"
##
## [[4]]
## [1] "Haechan"
##
## [[5]]
## [1] "Jeno"
length(list1) # mengetahui Jumlah anggota dari list1## [1] 5
Buatlah contoh menyimpan sekumpulan tuple dengan R, dengan mengikuti instruksi berikut:
* Buatlah Tuple dengan 5 item didalamnya
* Perlihatkan cara Mengakses Nilai Tuple
* Bagaimana anda melakukan Slicing Nilai Tuple
* Nested Tuple
* Unpacking Sequence
library(sets)
#menyisipkan 5 item
tuple1 = tuple("always", "bring", "your", "own", "sunshine") #Membuat tuple1 dengan 5 item
tuple2 = tuple("today", "is", "a", "great", "day") #Membuat tuple2 dengan 5 item
print(tuple1)## ("always", "bring", "your", "own", "sunshine")
print(tuple2)## ("today", "is", "a", "great", "day")
print(tuple1[1])## ("always")
print(tuple1[2])## ("bring")
print(tuple1[3])## ("your")
print(tuple1[4])## ("own")
print(tuple1[5])## ("sunshine")
print(tuple1[1:2])## ("always", "bring")
print(tuple1[3])## ("your")
print(tuple1[5])## ("sunshine")
print(tuple1[4:5])## ("own", "sunshine")
print(tuple1[1:5])## ("always", "bring", "your", "own", "sunshine")
print(tuple1[2])## ("bring")
tuple3 = c(tuple1, tuple2) #Memasukkan tuple 1 dan tuple 2 secara bersama
tuple4 = rep(tuple2, 23) #Mengulang Tuple2 sebanyak 23 kali
tuple5 = rep(tuple1, 22) #Mengulang Tuple1 sebanyak 22 kali
print(tuple3) ## ("always", "bring", "your", "own", "sunshine", "today", "is", "a",
## "great", "day")
print(tuple4)## ("today", "is", "a", "great", "day", "today", "is", "a", "great",
## "day", "today", "is", "a", "great", "day", "today", "is", "a",
## "great", "day", "today", "is", "a", "great", "day", "today", "is",
## "a", "great", "day", "today", "is", "a", "great", "day", "today",
## "is", "a", "great", "day", "today", "is", "a", "great", "day",
## "today", "is", "a", "great", "day", "today", "is", "a", "great",
## "day", "today", "is", "a", "great", "day", "today", "is", "a",
## "great", "day", "today", "is", "a", "great", "day", "today", "is",
## "a", "great", "day", "today", "is", "a", "great", "day", "today",
## "is", "a", "great", "day", "today", "is", "a", "great", "day",
## "today", "is", "a", "great", "day", "today", "is", "a", "great",
## "day", "today", "is", "a", "great", "day", "today", "is", "a",
## "great", "day", "today", "is", "a", "great", "day")
print(tuple5)## ("always", "bring", "your", "own", "sunshine", "always", "bring",
## "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine", "always",
## "bring", "your", "own", "sunshine", "always", "bring", "your", "own",
## "sunshine", "always", "bring", "your", "own", "sunshine")
tuple1 = tuple("always", "bring", "your", "own", "sunshine") #Membuat tuple1 dengan 5 item
names (tuple1) = c("index1", "index2", "index3", "index4", "index5")
print(tuple1)## (index1 = "always", index2 = "bring", index3 = "your", index4 = "own",
## index5 = "sunshine")
tuple2 = tuple("today", "is", "a", "great", "day") #Membuat tuple2 dengan 5 item
names(tuple2) = c("index1", "index2", "index3", "index4", "index5")
print(tuple2)## (index1 = "today", index2 = "is", index3 = "a", index4 = "great",
## index5 = "day")
Buatlah contoh menyimpan sekumpulan Dictionary dengan R, yang memuat type data float, integer, character, dan logical, list, tuple, dictionary dengan mengikuti instruksi berikut:
* Akses suatu nilai Item dari Dictionary
* Ubah suatu Nilai Item pada Dictionary
* Menambahkan Item ke Dictionary
* Menghapus Item dari Dictionary
library(Dict)##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
karennatalie <- dict(
"nama" ="Karen Natalie",
"umur" = as.integer(18),
"hobi" = list("membuat beads keyring", "painting digital", "nonton film"),
"asal" = "Bandar Lampung")
cat("nama saya adalah :", karennatalie$get('nama'))## nama saya adalah : Karen Natalie
print(karennatalie$get('asal'))## [1] "Bandar Lampung"
## Ubah suatu Nilai Item pada Dictionary
```r
karennatalie['nama']= "Karen Natalie"
karennatalie['hobi']= "membuat beads keyring";"painting digital";"nonton film"
## [1] "painting digital"
## [1] "nonton film"
karennatalie['asal']= "Bandar Lampung"
print(karennatalie)## # A tibble: 4 × 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 hobi <chr [1]>
## 3 nama <chr [1]>
## 4 umur <int [1]>
karennatalie$add(umur=18L)
print(karennatalie)## # A tibble: 4 × 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 hobi <chr [1]>
## 3 nama <chr [1]>
## 4 umur <int [1]>
karennatalie$remove("hobi")
print(karennatalie)## # A tibble: 3 × 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 nama <chr [1]>
## 3 umur <int [1]>
Silahkan untuk menemukan operasi Pengindeksan, Pengirisan, dan Subsetting Data Frame dengan Menggunakan R
## Data frame
# membentuk data frame 1
df1_R <- data.frame(nomor =c(1:5),
"nama" =c("glory","je","nopi","mark","johnny"),
"angkatan" =c("2019","2019","2020","2020","2018"),
"jurusan sma" =c("ips","ipa","ipa","ips","ips"),
"pelajaran favorit" =c("mtk","biologi","kalkulus","sosiologi","sejarah"),
"rank" =c("3","5","6","9","2"),
"ekstrakurikuler" = c("english club","robotic","modern dance","memahat,","pramuka")
)
#membentuk data frame 2
df2_R <- data.frame(nomor =c(1:5),
"nama" =c("evie","dian","yanti","jhonson","suh"),
"angkatan" =c("2020","2020","2021","2021","2019"),
"jurusan sma" =c("ips","ipa","ipa","ips","ips"),
"pelajaran favorit" =c("pkn","kimia","fisika","geografi","inggris"),
"rank" =c("1","4","2","3","5"),
"ekstrakurikuler" = c("kolintang","band","paduan suara","futsal,","basket")
)df3_R = rbind(df1_R,df2_R) # menggabungkan data frame 1 dan 2print(df3_R)## nomor nama angkatan jurusan.sma pelajaran.favorit rank ekstrakurikuler
## 1 1 glory 2019 ips mtk 3 english club
## 2 2 je 2019 ipa biologi 5 robotic
## 3 3 nopi 2020 ipa kalkulus 6 modern dance
## 4 4 mark 2020 ips sosiologi 9 memahat,
## 5 5 johnny 2018 ips sejarah 2 pramuka
## 6 1 evie 2020 ips pkn 1 kolintang
## 7 2 dian 2020 ipa kimia 4 band
## 8 3 yanti 2021 ipa fisika 2 paduan suara
## 9 4 jhonson 2021 ips geografi 3 futsal,
## 10 5 suh 2019 ips inggris 5 basket
dim(df3_R) #memeriksa dimensi data frame## [1] 10 7
str(df3_R) #memeriksa strukrut data frame## 'data.frame': 10 obs. of 7 variables:
## $ nomor : int 1 2 3 4 5 1 2 3 4 5
## $ nama : chr "glory" "je" "nopi" "mark" ...
## $ angkatan : chr "2019" "2019" "2020" "2020" ...
## $ jurusan.sma : chr "ips" "ipa" "ipa" "ips" ...
## $ pelajaran.favorit: chr "mtk" "biologi" "kalkulus" "sosiologi" ...
## $ rank : chr "3" "5" "6" "9" ...
## $ ekstrakurikuler : chr "english club" "robotic" "modern dance" "memahat," ...
summary(df3_R) #summary statistik data frame## nomor nama angkatan jurusan.sma
## Min. :1 Length:10 Length:10 Length:10
## 1st Qu.:2 Class :character Class :character Class :character
## Median :3 Mode :character Mode :character Mode :character
## Mean :3
## 3rd Qu.:4
## Max. :5
## pelajaran.favorit rank ekstrakurikuler
## Length:10 Length:10 Length:10
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
No=(1:52)
Nama= c(LETTERS,letters)
Jenis_Kelamin= sample(rep(c("Wanita","Pria"), times=26))
# Menghasilkan tanggal lahir dengan time series
tiga_tahun = seq(as.Date("2017/12/01"), by="year",length.out=4)
Tanggal_Lahir = rep(tiga_tahun,times=13)
# Kategori Universitas
univ1= rep("Negeri", times=26)
univ2= rep("Swasta", times=16)
univ3= rep("LN", times=10)
Universitas= sample(c(univ1,univ2,univ3))
gpa= runif(52,min=3.00,max=4.00)
GPA= round(gpa,digits=2)
Gaji= sample(600:1200,52, replace=T)
Karyawan_R = data.frame(No,
Nama,
Jenis_Kelamin,
Tanggal_Lahir,
Universitas,
GPA,
Gaji)
print(Karyawan_R)## No Nama Jenis_Kelamin Tanggal_Lahir Universitas GPA Gaji
## 1 1 A Wanita 2017-12-01 Swasta 3.41 1157
## 2 2 B Wanita 2018-12-01 Negeri 3.94 1087
## 3 3 C Pria 2019-12-01 Negeri 3.22 1140
## 4 4 D Pria 2020-12-01 LN 3.51 606
## 5 5 E Pria 2017-12-01 Swasta 3.53 953
## 6 6 F Pria 2018-12-01 Negeri 3.83 1180
## 7 7 G Wanita 2019-12-01 Swasta 3.11 661
## 8 8 H Wanita 2020-12-01 Negeri 3.61 769
## 9 9 I Pria 2017-12-01 Swasta 3.50 1068
## 10 10 J Wanita 2018-12-01 Negeri 3.17 1058
## 11 11 K Wanita 2019-12-01 LN 3.83 998
## 12 12 L Wanita 2020-12-01 Negeri 3.75 976
## 13 13 M Pria 2017-12-01 Swasta 3.40 1153
## 14 14 N Pria 2018-12-01 Negeri 3.44 626
## 15 15 O Wanita 2019-12-01 Negeri 3.27 1140
## 16 16 P Pria 2020-12-01 LN 3.19 1117
## 17 17 Q Wanita 2017-12-01 Negeri 3.14 827
## 18 18 R Wanita 2018-12-01 Negeri 3.28 969
## 19 19 S Wanita 2019-12-01 Swasta 3.54 643
## 20 20 T Pria 2020-12-01 Swasta 3.78 785
## 21 21 U Wanita 2017-12-01 Swasta 3.61 987
## 22 22 V Wanita 2018-12-01 Negeri 3.01 828
## 23 23 W Pria 2019-12-01 LN 3.47 744
## 24 24 X Wanita 2020-12-01 Negeri 3.16 1031
## 25 25 Y Pria 2017-12-01 Negeri 3.22 696
## 26 26 Z Wanita 2018-12-01 Negeri 3.32 730
## 27 27 a Wanita 2019-12-01 Negeri 3.93 811
## 28 28 b Pria 2020-12-01 Negeri 3.48 671
## 29 29 c Pria 2017-12-01 Swasta 3.61 989
## 30 30 d Pria 2018-12-01 LN 3.29 630
## 31 31 e Wanita 2019-12-01 Swasta 3.27 1039
## 32 32 f Pria 2020-12-01 Negeri 3.33 1189
## 33 33 g Wanita 2017-12-01 Negeri 3.09 940
## 34 34 h Pria 2018-12-01 Negeri 3.83 864
## 35 35 i Pria 2019-12-01 Negeri 3.62 685
## 36 36 j Wanita 2020-12-01 Negeri 3.88 713
## 37 37 k Pria 2017-12-01 Swasta 3.63 1134
## 38 38 l Pria 2018-12-01 LN 3.56 885
## 39 39 m Wanita 2019-12-01 LN 3.08 684
## 40 40 n Wanita 2020-12-01 Negeri 3.06 1131
## 41 41 o Wanita 2017-12-01 Negeri 3.96 702
## 42 42 p Pria 2018-12-01 Negeri 3.46 920
## 43 43 q Pria 2019-12-01 Swasta 3.55 832
## 44 44 r Wanita 2020-12-01 Swasta 3.10 653
## 45 45 s Wanita 2017-12-01 Swasta 3.82 757
## 46 46 t Pria 2018-12-01 LN 3.80 1031
## 47 47 u Wanita 2019-12-01 Negeri 3.81 657
## 48 48 v Pria 2020-12-01 Swasta 3.30 1134
## 49 49 w Pria 2017-12-01 Negeri 3.48 1104
## 50 50 x Pria 2018-12-01 LN 3.72 791
## 51 51 y Pria 2019-12-01 Swasta 3.92 1148
## 52 52 z Wanita 2020-12-01 LN 3.47 1059
Karyawan_R$GPA # mengekstrak spesifik kolom pada GPA## [1] 3.41 3.94 3.22 3.51 3.53 3.83 3.11 3.61 3.50 3.17 3.83 3.75 3.40 3.44 3.27
## [16] 3.19 3.14 3.28 3.54 3.78 3.61 3.01 3.47 3.16 3.22 3.32 3.93 3.48 3.61 3.29
## [31] 3.27 3.33 3.09 3.83 3.62 3.88 3.63 3.56 3.08 3.06 3.96 3.46 3.55 3.10 3.82
## [46] 3.80 3.81 3.30 3.48 3.72 3.92 3.47
class(Karyawan_R)## [1] "data.frame"
typeof(Karyawan_R)## [1] "list"
Karyawan_R [1:5] # ekstrak elemen dibaris ke 1 dan kolom ke-5## No Nama Jenis_Kelamin Tanggal_Lahir Universitas
## 1 1 A Wanita 2017-12-01 Swasta
## 2 2 B Wanita 2018-12-01 Negeri
## 3 3 C Pria 2019-12-01 Negeri
## 4 4 D Pria 2020-12-01 LN
## 5 5 E Pria 2017-12-01 Swasta
## 6 6 F Pria 2018-12-01 Negeri
## 7 7 G Wanita 2019-12-01 Swasta
## 8 8 H Wanita 2020-12-01 Negeri
## 9 9 I Pria 2017-12-01 Swasta
## 10 10 J Wanita 2018-12-01 Negeri
## 11 11 K Wanita 2019-12-01 LN
## 12 12 L Wanita 2020-12-01 Negeri
## 13 13 M Pria 2017-12-01 Swasta
## 14 14 N Pria 2018-12-01 Negeri
## 15 15 O Wanita 2019-12-01 Negeri
## 16 16 P Pria 2020-12-01 LN
## 17 17 Q Wanita 2017-12-01 Negeri
## 18 18 R Wanita 2018-12-01 Negeri
## 19 19 S Wanita 2019-12-01 Swasta
## 20 20 T Pria 2020-12-01 Swasta
## 21 21 U Wanita 2017-12-01 Swasta
## 22 22 V Wanita 2018-12-01 Negeri
## 23 23 W Pria 2019-12-01 LN
## 24 24 X Wanita 2020-12-01 Negeri
## 25 25 Y Pria 2017-12-01 Negeri
## 26 26 Z Wanita 2018-12-01 Negeri
## 27 27 a Wanita 2019-12-01 Negeri
## 28 28 b Pria 2020-12-01 Negeri
## 29 29 c Pria 2017-12-01 Swasta
## 30 30 d Pria 2018-12-01 LN
## 31 31 e Wanita 2019-12-01 Swasta
## 32 32 f Pria 2020-12-01 Negeri
## 33 33 g Wanita 2017-12-01 Negeri
## 34 34 h Pria 2018-12-01 Negeri
## 35 35 i Pria 2019-12-01 Negeri
## 36 36 j Wanita 2020-12-01 Negeri
## 37 37 k Pria 2017-12-01 Swasta
## 38 38 l Pria 2018-12-01 LN
## 39 39 m Wanita 2019-12-01 LN
## 40 40 n Wanita 2020-12-01 Negeri
## 41 41 o Wanita 2017-12-01 Negeri
## 42 42 p Pria 2018-12-01 Negeri
## 43 43 q Pria 2019-12-01 Swasta
## 44 44 r Wanita 2020-12-01 Swasta
## 45 45 s Wanita 2017-12-01 Swasta
## 46 46 t Pria 2018-12-01 LN
## 47 47 u Wanita 2019-12-01 Negeri
## 48 48 v Pria 2020-12-01 Swasta
## 49 49 w Pria 2017-12-01 Negeri
## 50 50 x Pria 2018-12-01 LN
## 51 51 y Pria 2019-12-01 Swasta
## 52 52 z Wanita 2020-12-01 LN
subset(Karyawan_R, select=Universitas) # ekstrak spesifik kolom Universitas## Universitas
## 1 Swasta
## 2 Negeri
## 3 Negeri
## 4 LN
## 5 Swasta
## 6 Negeri
## 7 Swasta
## 8 Negeri
## 9 Swasta
## 10 Negeri
## 11 LN
## 12 Negeri
## 13 Swasta
## 14 Negeri
## 15 Negeri
## 16 LN
## 17 Negeri
## 18 Negeri
## 19 Swasta
## 20 Swasta
## 21 Swasta
## 22 Negeri
## 23 LN
## 24 Negeri
## 25 Negeri
## 26 Negeri
## 27 Negeri
## 28 Negeri
## 29 Swasta
## 30 LN
## 31 Swasta
## 32 Negeri
## 33 Negeri
## 34 Negeri
## 35 Negeri
## 36 Negeri
## 37 Swasta
## 38 LN
## 39 LN
## 40 Negeri
## 41 Negeri
## 42 Negeri
## 43 Swasta
## 44 Swasta
## 45 Swasta
## 46 LN
## 47 Negeri
## 48 Swasta
## 49 Negeri
## 50 LN
## 51 Swasta
## 52 LN
subset(Karyawan_R, select= GPA) #subsetting spesifik kolom## GPA
## 1 3.41
## 2 3.94
## 3 3.22
## 4 3.51
## 5 3.53
## 6 3.83
## 7 3.11
## 8 3.61
## 9 3.50
## 10 3.17
## 11 3.83
## 12 3.75
## 13 3.40
## 14 3.44
## 15 3.27
## 16 3.19
## 17 3.14
## 18 3.28
## 19 3.54
## 20 3.78
## 21 3.61
## 22 3.01
## 23 3.47
## 24 3.16
## 25 3.22
## 26 3.32
## 27 3.93
## 28 3.48
## 29 3.61
## 30 3.29
## 31 3.27
## 32 3.33
## 33 3.09
## 34 3.83
## 35 3.62
## 36 3.88
## 37 3.63
## 38 3.56
## 39 3.08
## 40 3.06
## 41 3.96
## 42 3.46
## 43 3.55
## 44 3.10
## 45 3.82
## 46 3.80
## 47 3.81
## 48 3.30
## 49 3.48
## 50 3.72
## 51 3.92
## 52 3.47
subset(Karyawan_R, select=c(1,4)) # mengekstrak kolom 1 dan kolom 4## No Tanggal_Lahir
## 1 1 2017-12-01
## 2 2 2018-12-01
## 3 3 2019-12-01
## 4 4 2020-12-01
## 5 5 2017-12-01
## 6 6 2018-12-01
## 7 7 2019-12-01
## 8 8 2020-12-01
## 9 9 2017-12-01
## 10 10 2018-12-01
## 11 11 2019-12-01
## 12 12 2020-12-01
## 13 13 2017-12-01
## 14 14 2018-12-01
## 15 15 2019-12-01
## 16 16 2020-12-01
## 17 17 2017-12-01
## 18 18 2018-12-01
## 19 19 2019-12-01
## 20 20 2020-12-01
## 21 21 2017-12-01
## 22 22 2018-12-01
## 23 23 2019-12-01
## 24 24 2020-12-01
## 25 25 2017-12-01
## 26 26 2018-12-01
## 27 27 2019-12-01
## 28 28 2020-12-01
## 29 29 2017-12-01
## 30 30 2018-12-01
## 31 31 2019-12-01
## 32 32 2020-12-01
## 33 33 2017-12-01
## 34 34 2018-12-01
## 35 35 2019-12-01
## 36 36 2020-12-01
## 37 37 2017-12-01
## 38 38 2018-12-01
## 39 39 2019-12-01
## 40 40 2020-12-01
## 41 41 2017-12-01
## 42 42 2018-12-01
## 43 43 2019-12-01
## 44 44 2020-12-01
## 45 45 2017-12-01
## 46 46 2018-12-01
## 47 47 2019-12-01
## 48 48 2020-12-01
## 49 49 2017-12-01
## 50 50 2018-12-01
## 51 51 2019-12-01
## 52 52 2020-12-01
rename_1= Karyawan_R
names(rename_1)= c("kode",
"nama panggilan",
"jenis kelamin",
"tanggal lahir",
"univ",
"ipk",
"gaji")
rename_1## kode nama panggilan jenis kelamin tanggal lahir univ ipk gaji
## 1 1 A Wanita 2017-12-01 Swasta 3.41 1157
## 2 2 B Wanita 2018-12-01 Negeri 3.94 1087
## 3 3 C Pria 2019-12-01 Negeri 3.22 1140
## 4 4 D Pria 2020-12-01 LN 3.51 606
## 5 5 E Pria 2017-12-01 Swasta 3.53 953
## 6 6 F Pria 2018-12-01 Negeri 3.83 1180
## 7 7 G Wanita 2019-12-01 Swasta 3.11 661
## 8 8 H Wanita 2020-12-01 Negeri 3.61 769
## 9 9 I Pria 2017-12-01 Swasta 3.50 1068
## 10 10 J Wanita 2018-12-01 Negeri 3.17 1058
## 11 11 K Wanita 2019-12-01 LN 3.83 998
## 12 12 L Wanita 2020-12-01 Negeri 3.75 976
## 13 13 M Pria 2017-12-01 Swasta 3.40 1153
## 14 14 N Pria 2018-12-01 Negeri 3.44 626
## 15 15 O Wanita 2019-12-01 Negeri 3.27 1140
## 16 16 P Pria 2020-12-01 LN 3.19 1117
## 17 17 Q Wanita 2017-12-01 Negeri 3.14 827
## 18 18 R Wanita 2018-12-01 Negeri 3.28 969
## 19 19 S Wanita 2019-12-01 Swasta 3.54 643
## 20 20 T Pria 2020-12-01 Swasta 3.78 785
## 21 21 U Wanita 2017-12-01 Swasta 3.61 987
## 22 22 V Wanita 2018-12-01 Negeri 3.01 828
## 23 23 W Pria 2019-12-01 LN 3.47 744
## 24 24 X Wanita 2020-12-01 Negeri 3.16 1031
## 25 25 Y Pria 2017-12-01 Negeri 3.22 696
## 26 26 Z Wanita 2018-12-01 Negeri 3.32 730
## 27 27 a Wanita 2019-12-01 Negeri 3.93 811
## 28 28 b Pria 2020-12-01 Negeri 3.48 671
## 29 29 c Pria 2017-12-01 Swasta 3.61 989
## 30 30 d Pria 2018-12-01 LN 3.29 630
## 31 31 e Wanita 2019-12-01 Swasta 3.27 1039
## 32 32 f Pria 2020-12-01 Negeri 3.33 1189
## 33 33 g Wanita 2017-12-01 Negeri 3.09 940
## 34 34 h Pria 2018-12-01 Negeri 3.83 864
## 35 35 i Pria 2019-12-01 Negeri 3.62 685
## 36 36 j Wanita 2020-12-01 Negeri 3.88 713
## 37 37 k Pria 2017-12-01 Swasta 3.63 1134
## 38 38 l Pria 2018-12-01 LN 3.56 885
## 39 39 m Wanita 2019-12-01 LN 3.08 684
## 40 40 n Wanita 2020-12-01 Negeri 3.06 1131
## 41 41 o Wanita 2017-12-01 Negeri 3.96 702
## 42 42 p Pria 2018-12-01 Negeri 3.46 920
## 43 43 q Pria 2019-12-01 Swasta 3.55 832
## 44 44 r Wanita 2020-12-01 Swasta 3.10 653
## 45 45 s Wanita 2017-12-01 Swasta 3.82 757
## 46 46 t Pria 2018-12-01 LN 3.80 1031
## 47 47 u Wanita 2019-12-01 Negeri 3.81 657
## 48 48 v Pria 2020-12-01 Swasta 3.30 1134
## 49 49 w Pria 2017-12-01 Negeri 3.48 1104
## 50 50 x Pria 2018-12-01 LN 3.72 791
## 51 51 y Pria 2019-12-01 Swasta 3.92 1148
## 52 52 z Wanita 2020-12-01 LN 3.47 1059