R Markdown

Each of the archetypes below is a system of equations with a square coefficient matrix, or is a square matrix itself. Compute the determinant of each matrix, noting how Theorem SMZD indicates when the matrix is singular or nonsingular.

Archetype A, Archetype B, Archetype F, Archetype K, Archetype L

A <- matrix(c(1,2,1,-1,1,1,2,1,0), nrow=3)
A
##      [,1] [,2] [,3]
## [1,]    1   -1    2
## [2,]    2    1    1
## [3,]    1    1    0
det(A)
## [1] 0

det A=0, per Theorem SMZD A is singular.

Archtype B

B <- matrix(c(-7,5,1,-6,5,0,-12,7,4), nrow=3)
det(B)
## [1] -2

det B≠0, per Theorem SMZD B is nonsingular.

Archtype F

F<-matrix(c(33,99,78,-9,-16,-47,-36,2,10,27,17,3,-2,-7,-6,4), nrow=4)
det(F)
## [1] -18

det F≠0, per Theorem SMZD F is nonsingular.

Archtype K

K <- matrix(c(10,12,-30,27,18,18,-2,-21,30,24,24,-6,-23,36,30,24,0,-30,37,30,-12,-18,39,-30,-20), nrow=5)
det(K)
## [1] 16

det K≠0, per Theorem SMZD K is nonsingular.

Archtype L

L <- matrix(c(-2,-6,10,-7,-4,-1,-5,7,-5,-3,-2,-4,7,-6,-4,-4,-4,10,-9,-6,4,6,-13,10,6), nrow=5)
det(L)
## [1] -4.437343e-30

As L is closer to 0, inversibility is going to be checked.