Email          : clara.evania@student.matanauniversity.ac.id
RPubs         : https://rpubs.com/claradellaevania/
Jurusan      : Statistika Bisnis
Address     : ARA Center, Matana University Tower
             Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
list0 = list() # membuat list kosong
list1 = list("Ocha", "Aya", "Stephanie", "Tiara", "Karen")# membuat list 5 orang teman dekat
print(list1)## [[1]]
## [1] "Ocha"
##
## [[2]]
## [1] "Aya"
##
## [[3]]
## [1] "Stephanie"
##
## [[4]]
## [1] "Tiara"
##
## [[5]]
## [1] "Karen"
## [[1]]
## [1] "Ocha"
## [[1]]
## [1] "Ocha"
##
## [[2]]
## [1] "Aya"
##
## [[3]]
## [1] "Monica"
##
## [[4]]
## [1] "Tiara"
##
## [[5]]
## [1] "Karen"
library(sets) #Memanggil library
tuple0 = tuple() #Membuat tuple 0 item
tuple1 = tuple("Success", "isn't", "given", "it's", "earned")
tuple2 = tuple("hai", "semua", "jangan", "lupa", "bahagia")
print(tuple1)## ("Success", "isn't", "given", "it's", "earned")
## ("Success")
## ("isn't")
## ("given")
## ("it's")
## ("earned")
## ("Success", "isn't")
## ("isn't", "given")
## ("given", "it's")
## ("it's", "earned")
## ("Success", "isn't", "given")
## ("Success", "isn't", "given", "it's")
## ("Success", "isn't", "given", "it's", "earned")
## ("Success", "isn't", "given", "it's", "earned", "hai", "semua",
## "jangan", "lupa", "bahagia")
## ("Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned", "Success", "isn't",
## "given", "it's", "earned", "Success", "isn't", "given", "it's",
## "earned", "Success", "isn't", "given", "it's", "earned", "Success",
## "isn't", "given", "it's", "earned", "Success", "isn't", "given",
## "it's", "earned", "Success", "isn't", "given", "it's", "earned",
## "Success", "isn't", "given", "it's", "earned")
##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
claraevania = dict(
nama = "Clara Della",
asal = "Jakarta",
hobi = list("menyanyi","berenang","nonton film"),
asalsekolah = tuple(smp = "Abdi Siswa Jakarta", sma = "Stella Duce 2 Yogyakarta")
)
cat("saya tinggal di :", claraevania$get('asal'))## saya tinggal di : Jakarta
## (sma = "Stella Duce 2 Yogyakarta")
## # A tibble: 4 x 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 asalsekolah <tuple>
## 3 hobi <list [3]>
## 4 nama <chr [1]>
## # A tibble: 5 x 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 asalsekolah <tuple>
## 3 hobi <list [3]>
## 4 nama <chr [1]>
## 5 umur <int [1]>
df1_R = data.frame(kode = c(1:5),
nama = c("Rosalia", "Marcello", "Monica", "Maria", "Valeria"),
Umur=c("19","20","20","18","19"),
asal = c("Yogyakarta","Maluku","Jakarta","Tangerang","Jakarta"),
jurusan = c("Akuntansi","Hospar","FisMed","StatBis","Manejemen"),
UKM = c("Paduansuara","karate","Basket", "Paduansuara", "Basket"),
IPK = c(3.86,4,3.68,4,3.93))
df2_R = data.frame(kode = c(6:10),
nama = c("Clara", "Jonathan", "Cathrine", "Samuel", "Jessica"),
Umur=c("20","18","19","18","20"),
asal = c("Jakarta","Lampung","Bali","Semarang","Tangerang"),
jurusan = c("TI","StatBis","Hospar","Akuntansi","Arsitektur"),
UKM = c("Basket","Futsal","Paduansuara", "Futsal", "Basket"),
IPK = c(4,4,3.76,3.83,3.97))df3_R = rbind(df1_R,df2_R) # untuk menggabungkan kedua data frame
print(df3_R) # Mencetak hasil 'df3_R'## kode nama Umur asal jurusan UKM IPK
## 1 1 Rosalia 19 Yogyakarta Akuntansi Paduansuara 3.86
## 2 2 Marcello 20 Maluku Hospar karate 4.00
## 3 3 Monica 20 Jakarta FisMed Basket 3.68
## 4 4 Maria 18 Tangerang StatBis Paduansuara 4.00
## 5 5 Valeria 19 Jakarta Manejemen Basket 3.93
## 6 6 Clara 20 Jakarta TI Basket 4.00
## 7 7 Jonathan 18 Lampung StatBis Futsal 4.00
## 8 8 Cathrine 19 Bali Hospar Paduansuara 3.76
## 9 9 Samuel 18 Semarang Akuntansi Futsal 3.83
## 10 10 Jessica 20 Tangerang Arsitektur Basket 3.97
## kode nama Umur asal jurusan UKM IPK
## 1 1 Rosalia 19 Yogyakarta Akuntansi Paduansuara 3.86
## 2 2 Marcello 20 Maluku Hospar karate 4.00
## 3 3 Monica 20 Jakarta FisMed Basket 3.68
## 4 4 Maria 18 Tangerang StatBis Paduansuara 4.00
## 5 5 Valeria 19 Jakarta Manejemen Basket 3.93
## 6 6 Clara 20 Jakarta TI Basket 4.00
## kode nama Umur asal jurusan UKM IPK
## 5 5 Valeria 19 Jakarta Manejemen Basket 3.93
## 6 6 Clara 20 Jakarta TI Basket 4.00
## 7 7 Jonathan 18 Lampung StatBis Futsal 4.00
## 8 8 Cathrine 19 Bali Hospar Paduansuara 3.76
## 9 9 Samuel 18 Semarang Akuntansi Futsal 3.83
## 10 10 Jessica 20 Tangerang Arsitektur Basket 3.97
## kode nama Umur asal jurusan UKM IPK
## 1 1 Rosalia 19 Yogyakarta Akuntansi Paduansuara 3.86
## 2 2 Marcello 20 Maluku Hospar karate 4.00
## 3 3 Monica 20 Jakarta FisMed Basket 3.68
## 4 4 Maria 18 Tangerang StatBis Paduansuara 4.00
## 5 5 Valeria 19 Jakarta Manejemen Basket 3.93
## [1] "data.frame"
## 'data.frame': 10 obs. of 7 variables:
## $ kode : int 1 2 3 4 5 6 7 8 9 10
## $ nama : chr "Rosalia" "Marcello" "Monica" "Maria" ...
## $ Umur : chr "19" "20" "20" "18" ...
## $ asal : chr "Yogyakarta" "Maluku" "Jakarta" "Tangerang" ...
## $ jurusan: chr "Akuntansi" "Hospar" "FisMed" "StatBis" ...
## $ UKM : chr "Paduansuara" "karate" "Basket" "Paduansuara" ...
## $ IPK : num 3.86 4 3.68 4 3.93 4 4 3.76 3.83 3.97
## [1] 10 7
## kode nama Umur asal
## Min. : 1.00 Length:10 Length:10 Length:10
## 1st Qu.: 3.25 Class :character Class :character Class :character
## Median : 5.50 Mode :character Mode :character Mode :character
## Mean : 5.50
## 3rd Qu.: 7.75
## Max. :10.00
## jurusan UKM IPK
## Length:10 Length:10 Min. :3.680
## Class :character Class :character 1st Qu.:3.837
## Mode :character Mode :character Median :3.950
## Mean :3.903
## 3rd Qu.:4.000
## Max. :4.000
No=(1:52)
Nama= c(LETTERS,letters)
Jenis_Kelamin= sample(rep(c("Wanita","Pria"), times=26))
# Menghasilkan tanggal lahir dengan time series
tiga_tahun = seq(as.Date("1996/03/01"), by="year",length.out=4)
Tanggal_Lahir = rep(tiga_tahun,times=13)
# Kategori Universitas
univ1= rep("Negeri", times=26)
univ2= rep("Swasta", times=16)
univ3= rep("LN", times=10)
Universitas= sample(c(univ1,univ2,univ3))
gpa= runif(52,min=3.00,max=4.00)
GPA= round(gpa,digits=2)
Gaji= sample(600:1200,52, replace=T)
Karyawan_R = data.frame(No,
Nama,
Jenis_Kelamin,
Tanggal_Lahir,
Universitas,
GPA,
Gaji)
print(Karyawan_R)## No Nama Jenis_Kelamin Tanggal_Lahir Universitas GPA Gaji
## 1 1 A Wanita 1996-03-01 Swasta 3.75 673
## 2 2 B Pria 1997-03-01 Negeri 3.50 908
## 3 3 C Wanita 1998-03-01 Swasta 3.08 661
## 4 4 D Wanita 1999-03-01 Swasta 3.36 1016
## 5 5 E Pria 1996-03-01 LN 3.84 907
## 6 6 F Pria 1997-03-01 Negeri 3.57 676
## 7 7 G Wanita 1998-03-01 Negeri 3.25 719
## 8 8 H Pria 1999-03-01 Negeri 3.71 878
## 9 9 I Pria 1996-03-01 Negeri 3.68 829
## 10 10 J Wanita 1997-03-01 Negeri 3.70 1147
## 11 11 K Pria 1998-03-01 Swasta 3.32 776
## 12 12 L Pria 1999-03-01 Swasta 3.02 643
## 13 13 M Wanita 1996-03-01 Swasta 3.64 822
## 14 14 N Pria 1997-03-01 Negeri 3.20 699
## 15 15 O Wanita 1998-03-01 Swasta 3.25 1149
## 16 16 P Pria 1999-03-01 Swasta 3.74 764
## 17 17 Q Wanita 1996-03-01 Negeri 3.49 972
## 18 18 R Pria 1997-03-01 Negeri 3.48 804
## 19 19 S Pria 1998-03-01 Swasta 3.98 852
## 20 20 T Wanita 1999-03-01 LN 3.18 893
## 21 21 U Pria 1996-03-01 LN 3.28 1047
## 22 22 V Wanita 1997-03-01 Negeri 3.60 1038
## 23 23 W Wanita 1998-03-01 Negeri 3.40 703
## 24 24 X Wanita 1999-03-01 Negeri 3.14 648
## 25 25 Y Pria 1996-03-01 Swasta 3.37 740
## 26 26 Z Pria 1997-03-01 Swasta 3.04 979
## 27 27 a Pria 1998-03-01 LN 3.81 953
## 28 28 b Pria 1999-03-01 Negeri 3.23 1088
## 29 29 c Wanita 1996-03-01 Negeri 3.20 1151
## 30 30 d Wanita 1997-03-01 LN 3.52 775
## 31 31 e Wanita 1998-03-01 LN 3.91 830
## 32 32 f Pria 1999-03-01 Negeri 3.66 606
## 33 33 g Wanita 1996-03-01 Negeri 3.10 788
## 34 34 h Wanita 1997-03-01 Swasta 3.48 654
## 35 35 i Wanita 1998-03-01 Negeri 3.04 1189
## 36 36 j Wanita 1999-03-01 Negeri 3.84 1115
## 37 37 k Pria 1996-03-01 Negeri 3.77 742
## 38 38 l Wanita 1997-03-01 LN 3.81 968
## 39 39 m Pria 1998-03-01 LN 3.60 1011
## 40 40 n Pria 1999-03-01 Swasta 3.01 885
## 41 41 o Pria 1996-03-01 Negeri 3.83 727
## 42 42 p Pria 1997-03-01 Negeri 3.14 1173
## 43 43 q Wanita 1998-03-01 Negeri 3.43 607
## 44 44 r Wanita 1999-03-01 Swasta 3.77 640
## 45 45 s Pria 1996-03-01 Swasta 3.14 1073
## 46 46 t Pria 1997-03-01 LN 4.00 1099
## 47 47 u Pria 1998-03-01 Negeri 3.55 959
## 48 48 v Pria 1999-03-01 LN 3.97 1007
## 49 49 w Wanita 1996-03-01 Swasta 3.90 1102
## 50 50 x Wanita 1997-03-01 Negeri 3.34 730
## 51 51 y Wanita 1998-03-01 Negeri 3.67 703
## 52 52 z Wanita 1999-03-01 Negeri 3.47 1038
## [1] "Swasta"
## Nama GPA
## 1 A 3.75
## 2 B 3.50
## 3 C 3.08
## 4 D 3.36
## 5 E 3.84
## 6 F 3.57
## 7 G 3.25
## 8 H 3.71
## 9 I 3.68
## 10 J 3.70
## 11 K 3.32
## 12 L 3.02
## 13 M 3.64
## 14 N 3.20
## 15 O 3.25
## 16 P 3.74
## 17 Q 3.49
## 18 R 3.48
## 19 S 3.98
## 20 T 3.18
## 21 U 3.28
## 22 V 3.60
## 23 W 3.40
## 24 X 3.14
## 25 Y 3.37
## 26 Z 3.04
## 27 a 3.81
## 28 b 3.23
## 29 c 3.20
## 30 d 3.52
## 31 e 3.91
## 32 f 3.66
## 33 g 3.10
## 34 h 3.48
## 35 i 3.04
## 36 j 3.84
## 37 k 3.77
## 38 l 3.81
## 39 m 3.60
## 40 n 3.01
## 41 o 3.83
## 42 p 3.14
## 43 q 3.43
## 44 r 3.77
## 45 s 3.14
## 46 t 4.00
## 47 u 3.55
## 48 v 3.97
## 49 w 3.90
## 50 x 3.34
## 51 y 3.67
## 52 z 3.47
## No Nama Jenis_Kelamin Tanggal_Lahir Universitas GPA Gaji
## 1 1 A Wanita 1996-03-01 Swasta 3.75 673
## 2 2 B Pria 1997-03-01 Negeri 3.50 908
## 3 3 C Wanita 1998-03-01 Swasta 3.08 661
## 4 4 D Wanita 1999-03-01 Swasta 3.36 1016
## 5 5 E Pria 1996-03-01 LN 3.84 907
## No Nama Jenis_Kelamin Tanggal_Lahir Universitas
## 1 1 A Wanita 1996-03-01 Swasta
## 2 2 B Pria 1997-03-01 Negeri
## 3 3 C Wanita 1998-03-01 Swasta
## 4 4 D Wanita 1999-03-01 Swasta
## 5 5 E Pria 1996-03-01 LN
## 6 6 F Pria 1997-03-01 Negeri
## 7 7 G Wanita 1998-03-01 Negeri
## 8 8 H Pria 1999-03-01 Negeri
## 9 9 I Pria 1996-03-01 Negeri
## 10 10 J Wanita 1997-03-01 Negeri
## 11 11 K Pria 1998-03-01 Swasta
## 12 12 L Pria 1999-03-01 Swasta
## 13 13 M Wanita 1996-03-01 Swasta
## 14 14 N Pria 1997-03-01 Negeri
## 15 15 O Wanita 1998-03-01 Swasta
## 16 16 P Pria 1999-03-01 Swasta
## 17 17 Q Wanita 1996-03-01 Negeri
## 18 18 R Pria 1997-03-01 Negeri
## 19 19 S Pria 1998-03-01 Swasta
## 20 20 T Wanita 1999-03-01 LN
## 21 21 U Pria 1996-03-01 LN
## 22 22 V Wanita 1997-03-01 Negeri
## 23 23 W Wanita 1998-03-01 Negeri
## 24 24 X Wanita 1999-03-01 Negeri
## 25 25 Y Pria 1996-03-01 Swasta
## 26 26 Z Pria 1997-03-01 Swasta
## 27 27 a Pria 1998-03-01 LN
## 28 28 b Pria 1999-03-01 Negeri
## 29 29 c Wanita 1996-03-01 Negeri
## 30 30 d Wanita 1997-03-01 LN
## 31 31 e Wanita 1998-03-01 LN
## 32 32 f Pria 1999-03-01 Negeri
## 33 33 g Wanita 1996-03-01 Negeri
## 34 34 h Wanita 1997-03-01 Swasta
## 35 35 i Wanita 1998-03-01 Negeri
## 36 36 j Wanita 1999-03-01 Negeri
## 37 37 k Pria 1996-03-01 Negeri
## 38 38 l Wanita 1997-03-01 LN
## 39 39 m Pria 1998-03-01 LN
## 40 40 n Pria 1999-03-01 Swasta
## 41 41 o Pria 1996-03-01 Negeri
## 42 42 p Pria 1997-03-01 Negeri
## 43 43 q Wanita 1998-03-01 Negeri
## 44 44 r Wanita 1999-03-01 Swasta
## 45 45 s Pria 1996-03-01 Swasta
## 46 46 t Pria 1997-03-01 LN
## 47 47 u Pria 1998-03-01 Negeri
## 48 48 v Pria 1999-03-01 LN
## 49 49 w Wanita 1996-03-01 Swasta
## 50 50 x Wanita 1997-03-01 Negeri
## 51 51 y Wanita 1998-03-01 Negeri
## 52 52 z Wanita 1999-03-01 Negeri
## Universitas
## 1 Swasta
## 2 Negeri
## 3 Swasta
## 4 Swasta
## 5 LN
## 6 Negeri
## 7 Negeri
## 8 Negeri
## 9 Negeri
## 10 Negeri
## 11 Swasta
## 12 Swasta
## 13 Swasta
## 14 Negeri
## 15 Swasta
## 16 Swasta
## 17 Negeri
## 18 Negeri
## 19 Swasta
## 20 LN
## 21 LN
## 22 Negeri
## 23 Negeri
## 24 Negeri
## 25 Swasta
## 26 Swasta
## 27 LN
## 28 Negeri
## 29 Negeri
## 30 LN
## 31 LN
## 32 Negeri
## 33 Negeri
## 34 Swasta
## 35 Negeri
## 36 Negeri
## 37 Negeri
## 38 LN
## 39 LN
## 40 Swasta
## 41 Negeri
## 42 Negeri
## 43 Negeri
## 44 Swasta
## 45 Swasta
## 46 LN
## 47 Negeri
## 48 LN
## 49 Swasta
## 50 Negeri
## 51 Negeri
## 52 Negeri
## Jenis_Kelamin Tanggal_Lahir
## 1 Wanita 1996-03-01
## 2 Pria 1997-03-01
## 3 Wanita 1998-03-01
## 4 Wanita 1999-03-01
## 5 Pria 1996-03-01
## 6 Pria 1997-03-01
## 7 Wanita 1998-03-01
## 8 Pria 1999-03-01
## 9 Pria 1996-03-01
## 10 Wanita 1997-03-01
## 11 Pria 1998-03-01
## 12 Pria 1999-03-01
## 13 Wanita 1996-03-01
## 14 Pria 1997-03-01
## 15 Wanita 1998-03-01
## 16 Pria 1999-03-01
## 17 Wanita 1996-03-01
## 18 Pria 1997-03-01
## 19 Pria 1998-03-01
## 20 Wanita 1999-03-01
## 21 Pria 1996-03-01
## 22 Wanita 1997-03-01
## 23 Wanita 1998-03-01
## 24 Wanita 1999-03-01
## 25 Pria 1996-03-01
## 26 Pria 1997-03-01
## 27 Pria 1998-03-01
## 28 Pria 1999-03-01
## 29 Wanita 1996-03-01
## 30 Wanita 1997-03-01
## 31 Wanita 1998-03-01
## 32 Pria 1999-03-01
## 33 Wanita 1996-03-01
## 34 Wanita 1997-03-01
## 35 Wanita 1998-03-01
## 36 Wanita 1999-03-01
## 37 Pria 1996-03-01
## 38 Wanita 1997-03-01
## 39 Pria 1998-03-01
## 40 Pria 1999-03-01
## 41 Pria 1996-03-01
## 42 Pria 1997-03-01
## 43 Wanita 1998-03-01
## 44 Wanita 1999-03-01
## 45 Pria 1996-03-01
## 46 Pria 1997-03-01
## 47 Pria 1998-03-01
## 48 Pria 1999-03-01
## 49 Wanita 1996-03-01
## 50 Wanita 1997-03-01
## 51 Wanita 1998-03-01
## 52 Wanita 1999-03-01
Karyawan_R$Pajak = Karyawan_R$Gaji*0.05
Karyawan_R$Gaji_Bersih = Karyawan_R$Gaji-Karyawan_R$Pajak
Karyawan_R$Gaji_Group1 = Karyawan_R$Gaji>1000
Karyawan_R$Gaji_Group2 = ifelse(Karyawan_R$Gaji >1000,
"Gaji Besar",
"Gaji Kecil")
Karyawan_R$Gaji_Group3 = factor(Karyawan_R$GPA >3.70 &
Karyawan_R$Gaji>1000,
label = c("level 1","level 2"))
print(Karyawan_R)## No Nama Jenis_Kelamin Tanggal_Lahir Universitas GPA Gaji Pajak Gaji_Bersih
## 1 1 A Wanita 1996-03-01 Swasta 3.75 673 33.65 639.35
## 2 2 B Pria 1997-03-01 Negeri 3.50 908 45.40 862.60
## 3 3 C Wanita 1998-03-01 Swasta 3.08 661 33.05 627.95
## 4 4 D Wanita 1999-03-01 Swasta 3.36 1016 50.80 965.20
## 5 5 E Pria 1996-03-01 LN 3.84 907 45.35 861.65
## 6 6 F Pria 1997-03-01 Negeri 3.57 676 33.80 642.20
## 7 7 G Wanita 1998-03-01 Negeri 3.25 719 35.95 683.05
## 8 8 H Pria 1999-03-01 Negeri 3.71 878 43.90 834.10
## 9 9 I Pria 1996-03-01 Negeri 3.68 829 41.45 787.55
## 10 10 J Wanita 1997-03-01 Negeri 3.70 1147 57.35 1089.65
## 11 11 K Pria 1998-03-01 Swasta 3.32 776 38.80 737.20
## 12 12 L Pria 1999-03-01 Swasta 3.02 643 32.15 610.85
## 13 13 M Wanita 1996-03-01 Swasta 3.64 822 41.10 780.90
## 14 14 N Pria 1997-03-01 Negeri 3.20 699 34.95 664.05
## 15 15 O Wanita 1998-03-01 Swasta 3.25 1149 57.45 1091.55
## 16 16 P Pria 1999-03-01 Swasta 3.74 764 38.20 725.80
## 17 17 Q Wanita 1996-03-01 Negeri 3.49 972 48.60 923.40
## 18 18 R Pria 1997-03-01 Negeri 3.48 804 40.20 763.80
## 19 19 S Pria 1998-03-01 Swasta 3.98 852 42.60 809.40
## 20 20 T Wanita 1999-03-01 LN 3.18 893 44.65 848.35
## 21 21 U Pria 1996-03-01 LN 3.28 1047 52.35 994.65
## 22 22 V Wanita 1997-03-01 Negeri 3.60 1038 51.90 986.10
## 23 23 W Wanita 1998-03-01 Negeri 3.40 703 35.15 667.85
## 24 24 X Wanita 1999-03-01 Negeri 3.14 648 32.40 615.60
## 25 25 Y Pria 1996-03-01 Swasta 3.37 740 37.00 703.00
## 26 26 Z Pria 1997-03-01 Swasta 3.04 979 48.95 930.05
## 27 27 a Pria 1998-03-01 LN 3.81 953 47.65 905.35
## 28 28 b Pria 1999-03-01 Negeri 3.23 1088 54.40 1033.60
## 29 29 c Wanita 1996-03-01 Negeri 3.20 1151 57.55 1093.45
## 30 30 d Wanita 1997-03-01 LN 3.52 775 38.75 736.25
## 31 31 e Wanita 1998-03-01 LN 3.91 830 41.50 788.50
## 32 32 f Pria 1999-03-01 Negeri 3.66 606 30.30 575.70
## 33 33 g Wanita 1996-03-01 Negeri 3.10 788 39.40 748.60
## 34 34 h Wanita 1997-03-01 Swasta 3.48 654 32.70 621.30
## 35 35 i Wanita 1998-03-01 Negeri 3.04 1189 59.45 1129.55
## 36 36 j Wanita 1999-03-01 Negeri 3.84 1115 55.75 1059.25
## 37 37 k Pria 1996-03-01 Negeri 3.77 742 37.10 704.90
## 38 38 l Wanita 1997-03-01 LN 3.81 968 48.40 919.60
## 39 39 m Pria 1998-03-01 LN 3.60 1011 50.55 960.45
## 40 40 n Pria 1999-03-01 Swasta 3.01 885 44.25 840.75
## 41 41 o Pria 1996-03-01 Negeri 3.83 727 36.35 690.65
## 42 42 p Pria 1997-03-01 Negeri 3.14 1173 58.65 1114.35
## 43 43 q Wanita 1998-03-01 Negeri 3.43 607 30.35 576.65
## 44 44 r Wanita 1999-03-01 Swasta 3.77 640 32.00 608.00
## 45 45 s Pria 1996-03-01 Swasta 3.14 1073 53.65 1019.35
## 46 46 t Pria 1997-03-01 LN 4.00 1099 54.95 1044.05
## 47 47 u Pria 1998-03-01 Negeri 3.55 959 47.95 911.05
## 48 48 v Pria 1999-03-01 LN 3.97 1007 50.35 956.65
## 49 49 w Wanita 1996-03-01 Swasta 3.90 1102 55.10 1046.90
## 50 50 x Wanita 1997-03-01 Negeri 3.34 730 36.50 693.50
## 51 51 y Wanita 1998-03-01 Negeri 3.67 703 35.15 667.85
## 52 52 z Wanita 1999-03-01 Negeri 3.47 1038 51.90 986.10
## Gaji_Group1 Gaji_Group2 Gaji_Group3
## 1 FALSE Gaji Kecil level 1
## 2 FALSE Gaji Kecil level 1
## 3 FALSE Gaji Kecil level 1
## 4 TRUE Gaji Besar level 1
## 5 FALSE Gaji Kecil level 1
## 6 FALSE Gaji Kecil level 1
## 7 FALSE Gaji Kecil level 1
## 8 FALSE Gaji Kecil level 1
## 9 FALSE Gaji Kecil level 1
## 10 TRUE Gaji Besar level 1
## 11 FALSE Gaji Kecil level 1
## 12 FALSE Gaji Kecil level 1
## 13 FALSE Gaji Kecil level 1
## 14 FALSE Gaji Kecil level 1
## 15 TRUE Gaji Besar level 1
## 16 FALSE Gaji Kecil level 1
## 17 FALSE Gaji Kecil level 1
## 18 FALSE Gaji Kecil level 1
## 19 FALSE Gaji Kecil level 1
## 20 FALSE Gaji Kecil level 1
## 21 TRUE Gaji Besar level 1
## 22 TRUE Gaji Besar level 1
## 23 FALSE Gaji Kecil level 1
## 24 FALSE Gaji Kecil level 1
## 25 FALSE Gaji Kecil level 1
## 26 FALSE Gaji Kecil level 1
## 27 FALSE Gaji Kecil level 1
## 28 TRUE Gaji Besar level 1
## 29 TRUE Gaji Besar level 1
## 30 FALSE Gaji Kecil level 1
## 31 FALSE Gaji Kecil level 1
## 32 FALSE Gaji Kecil level 1
## 33 FALSE Gaji Kecil level 1
## 34 FALSE Gaji Kecil level 1
## 35 TRUE Gaji Besar level 1
## 36 TRUE Gaji Besar level 2
## 37 FALSE Gaji Kecil level 1
## 38 FALSE Gaji Kecil level 1
## 39 TRUE Gaji Besar level 1
## 40 FALSE Gaji Kecil level 1
## 41 FALSE Gaji Kecil level 1
## 42 TRUE Gaji Besar level 1
## 43 FALSE Gaji Kecil level 1
## 44 FALSE Gaji Kecil level 1
## 45 TRUE Gaji Besar level 1
## 46 TRUE Gaji Besar level 2
## 47 FALSE Gaji Kecil level 1
## 48 TRUE Gaji Besar level 2
## 49 TRUE Gaji Besar level 2
## 50 FALSE Gaji Kecil level 1
## 51 FALSE Gaji Kecil level 1
## 52 TRUE Gaji Besar level 1
## [1] 606
## [1] 1189
## [1] 876.0769
## [1] 30683.84
## [1] 175.168
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 606.0 725.0 865.0 876.1 1021.5 1189.0
rename_1= Karyawan_R
names(rename_1)= c("kode",
"nama panggilan",
"jenis kelamin",
"tanggal lahir",
"univ",
"ipk",
"gaji",
"pajak",
"gaji bersih",
"gaji group 1",
"gaji group 2",
"gaji group 3")
rename_1## kode nama panggilan jenis kelamin tanggal lahir univ ipk gaji pajak
## 1 1 A Wanita 1996-03-01 Swasta 3.75 673 33.65
## 2 2 B Pria 1997-03-01 Negeri 3.50 908 45.40
## 3 3 C Wanita 1998-03-01 Swasta 3.08 661 33.05
## 4 4 D Wanita 1999-03-01 Swasta 3.36 1016 50.80
## 5 5 E Pria 1996-03-01 LN 3.84 907 45.35
## 6 6 F Pria 1997-03-01 Negeri 3.57 676 33.80
## 7 7 G Wanita 1998-03-01 Negeri 3.25 719 35.95
## 8 8 H Pria 1999-03-01 Negeri 3.71 878 43.90
## 9 9 I Pria 1996-03-01 Negeri 3.68 829 41.45
## 10 10 J Wanita 1997-03-01 Negeri 3.70 1147 57.35
## 11 11 K Pria 1998-03-01 Swasta 3.32 776 38.80
## 12 12 L Pria 1999-03-01 Swasta 3.02 643 32.15
## 13 13 M Wanita 1996-03-01 Swasta 3.64 822 41.10
## 14 14 N Pria 1997-03-01 Negeri 3.20 699 34.95
## 15 15 O Wanita 1998-03-01 Swasta 3.25 1149 57.45
## 16 16 P Pria 1999-03-01 Swasta 3.74 764 38.20
## 17 17 Q Wanita 1996-03-01 Negeri 3.49 972 48.60
## 18 18 R Pria 1997-03-01 Negeri 3.48 804 40.20
## 19 19 S Pria 1998-03-01 Swasta 3.98 852 42.60
## 20 20 T Wanita 1999-03-01 LN 3.18 893 44.65
## 21 21 U Pria 1996-03-01 LN 3.28 1047 52.35
## 22 22 V Wanita 1997-03-01 Negeri 3.60 1038 51.90
## 23 23 W Wanita 1998-03-01 Negeri 3.40 703 35.15
## 24 24 X Wanita 1999-03-01 Negeri 3.14 648 32.40
## 25 25 Y Pria 1996-03-01 Swasta 3.37 740 37.00
## 26 26 Z Pria 1997-03-01 Swasta 3.04 979 48.95
## 27 27 a Pria 1998-03-01 LN 3.81 953 47.65
## 28 28 b Pria 1999-03-01 Negeri 3.23 1088 54.40
## 29 29 c Wanita 1996-03-01 Negeri 3.20 1151 57.55
## 30 30 d Wanita 1997-03-01 LN 3.52 775 38.75
## 31 31 e Wanita 1998-03-01 LN 3.91 830 41.50
## 32 32 f Pria 1999-03-01 Negeri 3.66 606 30.30
## 33 33 g Wanita 1996-03-01 Negeri 3.10 788 39.40
## 34 34 h Wanita 1997-03-01 Swasta 3.48 654 32.70
## 35 35 i Wanita 1998-03-01 Negeri 3.04 1189 59.45
## 36 36 j Wanita 1999-03-01 Negeri 3.84 1115 55.75
## 37 37 k Pria 1996-03-01 Negeri 3.77 742 37.10
## 38 38 l Wanita 1997-03-01 LN 3.81 968 48.40
## 39 39 m Pria 1998-03-01 LN 3.60 1011 50.55
## 40 40 n Pria 1999-03-01 Swasta 3.01 885 44.25
## 41 41 o Pria 1996-03-01 Negeri 3.83 727 36.35
## 42 42 p Pria 1997-03-01 Negeri 3.14 1173 58.65
## 43 43 q Wanita 1998-03-01 Negeri 3.43 607 30.35
## 44 44 r Wanita 1999-03-01 Swasta 3.77 640 32.00
## 45 45 s Pria 1996-03-01 Swasta 3.14 1073 53.65
## 46 46 t Pria 1997-03-01 LN 4.00 1099 54.95
## 47 47 u Pria 1998-03-01 Negeri 3.55 959 47.95
## 48 48 v Pria 1999-03-01 LN 3.97 1007 50.35
## 49 49 w Wanita 1996-03-01 Swasta 3.90 1102 55.10
## 50 50 x Wanita 1997-03-01 Negeri 3.34 730 36.50
## 51 51 y Wanita 1998-03-01 Negeri 3.67 703 35.15
## 52 52 z Wanita 1999-03-01 Negeri 3.47 1038 51.90
## gaji bersih gaji group 1 gaji group 2 gaji group 3
## 1 639.35 FALSE Gaji Kecil level 1
## 2 862.60 FALSE Gaji Kecil level 1
## 3 627.95 FALSE Gaji Kecil level 1
## 4 965.20 TRUE Gaji Besar level 1
## 5 861.65 FALSE Gaji Kecil level 1
## 6 642.20 FALSE Gaji Kecil level 1
## 7 683.05 FALSE Gaji Kecil level 1
## 8 834.10 FALSE Gaji Kecil level 1
## 9 787.55 FALSE Gaji Kecil level 1
## 10 1089.65 TRUE Gaji Besar level 1
## 11 737.20 FALSE Gaji Kecil level 1
## 12 610.85 FALSE Gaji Kecil level 1
## 13 780.90 FALSE Gaji Kecil level 1
## 14 664.05 FALSE Gaji Kecil level 1
## 15 1091.55 TRUE Gaji Besar level 1
## 16 725.80 FALSE Gaji Kecil level 1
## 17 923.40 FALSE Gaji Kecil level 1
## 18 763.80 FALSE Gaji Kecil level 1
## 19 809.40 FALSE Gaji Kecil level 1
## 20 848.35 FALSE Gaji Kecil level 1
## 21 994.65 TRUE Gaji Besar level 1
## 22 986.10 TRUE Gaji Besar level 1
## 23 667.85 FALSE Gaji Kecil level 1
## 24 615.60 FALSE Gaji Kecil level 1
## 25 703.00 FALSE Gaji Kecil level 1
## 26 930.05 FALSE Gaji Kecil level 1
## 27 905.35 FALSE Gaji Kecil level 1
## 28 1033.60 TRUE Gaji Besar level 1
## 29 1093.45 TRUE Gaji Besar level 1
## 30 736.25 FALSE Gaji Kecil level 1
## 31 788.50 FALSE Gaji Kecil level 1
## 32 575.70 FALSE Gaji Kecil level 1
## 33 748.60 FALSE Gaji Kecil level 1
## 34 621.30 FALSE Gaji Kecil level 1
## 35 1129.55 TRUE Gaji Besar level 1
## 36 1059.25 TRUE Gaji Besar level 2
## 37 704.90 FALSE Gaji Kecil level 1
## 38 919.60 FALSE Gaji Kecil level 1
## 39 960.45 TRUE Gaji Besar level 1
## 40 840.75 FALSE Gaji Kecil level 1
## 41 690.65 FALSE Gaji Kecil level 1
## 42 1114.35 TRUE Gaji Besar level 1
## 43 576.65 FALSE Gaji Kecil level 1
## 44 608.00 FALSE Gaji Kecil level 1
## 45 1019.35 TRUE Gaji Besar level 1
## 46 1044.05 TRUE Gaji Besar level 2
## 47 911.05 FALSE Gaji Kecil level 1
## 48 956.65 TRUE Gaji Besar level 2
## 49 1046.90 TRUE Gaji Besar level 2
## 50 693.50 FALSE Gaji Kecil level 1
## 51 667.85 FALSE Gaji Kecil level 1
## 52 986.10 TRUE Gaji Besar level 1