author: Xiangzhu Long
date: 17th May, 2015
According to the size of the flower, we can classcify it to diffrent category(setosa versicolor virginica).
1.Build the classcifier by iris dataser;
2.Make classicfication on the input flower size;
Here, we implement Edgar Anderson's Iris Data to build the classifier.
data(iris)
summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
library(e1071)
classifier <- naiveBayes(iris[,1:4], iris[,5])
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = iris[, 1:4], y = iris[, 5])
A-priori probabilities:
iris[, 5]
setosa versicolor virginica
0.3333333 0.3333333 0.3333333
Conditional probabilities:
Sepal.Length
iris[, 5] [,1] [,2]
setosa 5.006 0.3524897
versicolor 5.936 0.5161711
virginica 6.588 0.6358796
Sepal.Width
iris[, 5] [,1] [,2]
setosa 3.428 0.3790644
versicolor 2.770 0.3137983
virginica 2.974 0.3224966
Petal.Length
iris[, 5] [,1] [,2]
setosa 1.462 0.1736640
versicolor 4.260 0.4699110
virginica 5.552 0.5518947
Petal.Width
iris[, 5] [,1] [,2]
setosa 0.246 0.1053856
versicolor 1.326 0.1977527
virginica 2.026 0.2746501