INTRODUCCIÓN

Según un artículo publicado por el Observatorio Terrestre de la NASA en 2018, los desprendimientos de tierra son considerados uno de las catástrofes naturales más comunes y devastadores del planeta. Por lo anterior mencionado, es pertinente resaltar la relevancia de trabajos de investigación y de recopilación de información científica sobre los eventos naturales que afectan directamente a países y naciones, a su población, y a su economía. Con lo anterior mencionado, se tendrán en cuenta datos de deslizamientos extraídos del Catálogo Global de Deslizamientos de Tierra (GLC), los cuales serán visualizados a lo largo de este informe por medio de diferentes herramientas estadísticas () construidas con la ayuda del software RStudio. La primera parte del informe constará del análisis general de los datos asociados a diferentes países de Latinoamérica (Colombia, Ecuador, Perú, Trinidad y Tobago y Venezuela), tales como la población, el tipo de deslizamiento, y los diferentes factores causantes de deslizamientos. Por otro lado, la segunda parte del informe se enfocará más específicamente en el estudio de los datos pertenecientes a Colombia, tanto como para los datos generales anteriormente mencionados, como para la longitud del deslizamiento y el número de víctimas de estos eventos (decesos).

Gráficos estadísticos para Suramérica.

2.1 ECUADOR

Gráfico de barras para población en Ecuador

library(readr)
library(knitr)
library(ggplot2)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[8] <- "Population"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_ECU <- subset (df, Country == "Ecuador")
knitr::kable(head(df_ECU))
id date time continent_code Country country_code State Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
df_ECU %>% 
  select(Country, State, City, Distance, Population)
##      Country                          State                           City
## 9    Ecuador               Zamora-Chinchipe                         Zamora
## 10   Ecuador                           Loja                           Loja
## 11   Ecuador                      Pichincha                      Sangolquí
## 78   Ecuador                           Napo                      Archidona
## 87   Ecuador                      Pichincha                          Quito
## 218  Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
## 238  Ecuador                      Pichincha                       Machachi
## 253  Ecuador                     Tungurahua                          Baños
## 339  Ecuador                     Esmeraldas                     Esmeraldas
## 586  Ecuador                      Pichincha                       Machachi
## 587  Ecuador                       Cotopaxi                      Saquisilí
## 660  Ecuador                Morona-Santiago                          Macas
## 697  Ecuador                      Pichincha                          Quito
## 751  Ecuador                         Carchi                       El Ángel
## 868  Ecuador                        Manabi                           Chone
## 872  Ecuador                        Manabi                         Tosagua
## 942  Ecuador                         Guayas                          Balao
## 956  Ecuador                     Esmeraldas                     Esmeraldas
## 984  Ecuador                      Pichincha                        Cayambe
## 1304 Ecuador                         Carchi                    San Gabriel
## 1332 Ecuador                      Pichincha                          Quito
## 1333 Ecuador                      Pichincha                          Quito
## 1335 Ecuador                      Sucumbios                Gonzalo Pizarro
## 1365 Ecuador                          Azuay                         Cuenca
## 1368 Ecuador               Zamora-Chinchipe                         Zamora
## 1451 Ecuador                           Loja                         Macará
## 1452 Ecuador                           Loja                           Loja
## 1453 Ecuador                           Loja                       Catamayo
## 1454 Ecuador                          Azuay                         Cuenca
## 1566 Ecuador                      Pichincha                          Quito
##      Distance Population
## 9     0.47714      15276
## 10    0.35649     117796
## 11   33.94603       5114
## 78   50.21741       7309
## 87    1.56942    1399814
## 218   1.16036     200421
## 238  26.18676      25742
## 253  11.91442       9501
## 339   2.81891     165216
## 586  25.82923      25742
## 587  30.81169       3778
## 660  46.77007      23687
## 697   4.39517    1399814
## 751  28.29459       3983
## 868  19.85816      44751
## 872   7.67919      14680
## 942  16.34404      12205
## 956  21.26652     165216
## 984  45.69792      26582
## 1304 10.47204      15112
## 1332 26.72137    1399814
## 1333 23.97854    1399814
## 1335 11.55916          0
## 1365 13.21139     276964
## 1368  1.23724      15276
## 1451 18.88784      13035
## 1452  1.82885     117796
## 1453 17.57187      18565
## 1454 10.16196     276964
## 1566  4.25486    1399814
ggplot(data=df_ECU, aes(fill=State, x="Ecuador", y=Population)) +
  geom_bar(position="dodge", stat="identity")

ggplot(data=df_ECU, aes(fill=State, x="Ecuador", y=Population)) +
  geom_bar(position="stack", stat="identity")

Medidas de Tendencia central para muertes en Ecuador

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Ecuador")
knitr::kable(head(df_COL))
id date time continent_code Country country_code state_province Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries Fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
df_COL[is.na(df_COL)] <- 0
df_COL %>% 
  select(Country,state_province,Fatalities) 
##      Country                 state_province Fatalities
## 9    Ecuador               Zamora-Chinchipe          0
## 10   Ecuador                           Loja          0
## 11   Ecuador                      Pichincha          0
## 78   Ecuador                           Napo          7
## 87   Ecuador                      Pichincha          0
## 218  Ecuador Santo Domingo de los Tsáchilas          3
## 238  Ecuador                      Pichincha          3
## 253  Ecuador                     Tungurahua          4
## 339  Ecuador                     Esmeraldas          3
## 586  Ecuador                      Pichincha          0
## 587  Ecuador                       Cotopaxi          2
## 660  Ecuador                Morona-Santiago          7
## 697  Ecuador                      Pichincha          5
## 751  Ecuador                         Carchi          0
## 868  Ecuador                        Manabi          20
## 872  Ecuador                        Manabi           0
## 942  Ecuador                         Guayas         10
## 956  Ecuador                     Esmeraldas         14
## 984  Ecuador                      Pichincha          0
## 1304 Ecuador                         Carchi          0
## 1332 Ecuador                      Pichincha          2
## 1333 Ecuador                      Pichincha          0
## 1335 Ecuador                      Sucumbios         13
## 1365 Ecuador                          Azuay          0
## 1368 Ecuador               Zamora-Chinchipe          3
## 1451 Ecuador                           Loja          0
## 1452 Ecuador                           Loja          0
## 1453 Ecuador                           Loja          0
## 1454 Ecuador                          Azuay          0
## 1566 Ecuador                      Pichincha          0
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble  3.1.4     ✓ stringr 1.4.0
## ✓ tidyr   1.1.3     ✓ forcats 0.5.1
## ✓ purrr   0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
tablafinal<-(df_COL %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))   
    summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   2.250   5.500   6.857  10.000  20.000
    knitr::kable(tablafinal)
state_province fatalities
Azuay 0
Carchi 0
Cotopaxi 2
Esmeraldas 17
Guayas 10
Loja 0
Manabi 20
Morona-Santiago 7
Napo 7
Pichincha 10
Santo Domingo de los Tsáchilas 3
Sucumbios 13
Tungurahua 4
Zamora-Chinchipe 3

Tabla de frecuencia simple de las fatalidades en Ecuador

dataEcu <- c("Zamora-Chinchipié" , "Zamora-Chinchipié" , "Zamora-Chinchipié", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Pichincha", "Napo", "Napo", "Napo", "Napo", "Napo", "Napo", "Napo", "Santo Domingo de los Tsáchilas", "Santo Domingo de los Tsáchilas", "Santo Domingo de los Tsáchilas", "Tungurahua" , "Tungurahua" , "Tungurahua" , "Tungurahua" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Esmeraldas" , "Cotopaxi" , "Cotopaxi" , "Morona-Santiago" , "Morona-Santiago" , "Morona-Santiago" , "Morona-Santiago" , "Morona-Santiago" , "Morona-Santiago" , "Morona-Santiago" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Manabi" , "Guayas" ,"Guayas" ,"Guayas" ,"Guayas" ,"Guayas" ,"Guayas" ,"Guayas", "Guayas" ,"Guayas" ,"Guayas" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios" , "Sucumbios")
knitr::kable(head(dataEcu))
x
Zamora-Chinchipié
Zamora-Chinchipié
Zamora-Chinchipié
Pichincha
Pichincha
Pichincha
library(questionr)

table <- questionr::freq(dataEcu, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Manabi 20 20.8 20.8 20.8 20.8
Esmeraldas 17 17.7 17.7 38.5 38.5
Sucumbios 13 13.5 13.5 52.1 52.1
Guayas 10 10.4 10.4 62.5 62.5
Pichincha 10 10.4 10.4 72.9 72.9
Morona-Santiago 7 7.3 7.3 80.2 80.2
Napo 7 7.3 7.3 87.5 87.5
Tungurahua 4 4.2 4.2 91.7 91.7
Santo Domingo de los Tsáchilas 3 3.1 3.1 94.8 94.8
Zamora-Chinchipié 3 3.1 3.1 97.9 97.9
Cotopaxi 2 2.1 2.1 100.0 100.0
Total 96 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Manabi 20
Esmeraldas 17
Sucumbios 13
Guayas 10
Pichincha 10
Morona-Santiago 7
Napo 7
Tungurahua 4
Santo Domingo de los Tsáchilas 3
Zamora-Chinchipié 3
Cotopaxi 2
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Diagrama de Pareto para tipo de deslizamientos en Ecuador

df <- data.frame(tipo=
                   c("mudslide","landslide","complex","rockfall","Lahar"),
                      
                 Frecuencia = c( 9,17,0,4,0))
                          
knitr::kable(df)
tipo Frecuencia
mudslide 9
landslide 17
complex 0
rockfall 4
Lahar 0
head(df)
##        tipo Frecuencia
## 1  mudslide          9
## 2 landslide         17
## 3   complex          0
## 4  rockfall          4
## 5     Lahar          0
library(qcc)
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$tipo

pareto.chart(Frecuencia, 
             ylab="Frecuencia",
             col = heat.colors(length(Frecuencia)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "Gráfico de Pareto para tipos de deslizamientos en Ecuador")

##            
## Pareto chart analysis for Frecuencia
##             Frequency Cum.Freq. Percentage Cum.Percent.
##   landslide  17.00000  17.00000   56.66667     56.66667
##   mudslide    9.00000  26.00000   30.00000     86.66667
##   rockfall    4.00000  30.00000   13.33333    100.00000
##   complex     0.00000  30.00000    0.00000    100.00000
##   Lahar       0.00000  30.00000    0.00000    100.00000

Gráficos y tablas de frecuencia acerca de los causales de deslizamientos en Ecuador

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
library(dplyr)
library(readr)
library(knitr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
df_cr <- subset (df, Country == "Ecuador")
knitr::kable(head(df_cr))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country                          State                           City
## 9    Ecuador               Zamora-Chinchipe                         Zamora
## 10   Ecuador                           Loja                           Loja
## 11   Ecuador                      Pichincha                      Sangolquí
## 78   Ecuador                           Napo                      Archidona
## 87   Ecuador                      Pichincha                          Quito
## 218  Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
## 238  Ecuador                      Pichincha                       Machachi
## 253  Ecuador                     Tungurahua                          Baños
## 339  Ecuador                     Esmeraldas                     Esmeraldas
## 586  Ecuador                      Pichincha                       Machachi
## 587  Ecuador                       Cotopaxi                      Saquisilí
## 660  Ecuador                Morona-Santiago                          Macas
## 697  Ecuador                      Pichincha                          Quito
## 751  Ecuador                         Carchi                       El Ángel
## 868  Ecuador                        Manabi                           Chone
## 872  Ecuador                        Manabi                         Tosagua
## 942  Ecuador                         Guayas                          Balao
## 956  Ecuador                     Esmeraldas                     Esmeraldas
## 984  Ecuador                      Pichincha                        Cayambe
## 1304 Ecuador                         Carchi                    San Gabriel
## 1332 Ecuador                      Pichincha                          Quito
## 1333 Ecuador                      Pichincha                          Quito
## 1335 Ecuador                      Sucumbios                Gonzalo Pizarro
## 1365 Ecuador                          Azuay                         Cuenca
## 1368 Ecuador               Zamora-Chinchipe                         Zamora
## 1451 Ecuador                           Loja                         Macará
## 1452 Ecuador                           Loja                           Loja
## 1453 Ecuador                           Loja                       Catamayo
## 1454 Ecuador                          Azuay                         Cuenca
## 1566 Ecuador                      Pichincha                          Quito
##      Distance
## 9     0.47714
## 10    0.35649
## 11   33.94603
## 78   50.21741
## 87    1.56942
## 218   1.16036
## 238  26.18676
## 253  11.91442
## 339   2.81891
## 586  25.82923
## 587  30.81169
## 660  46.77007
## 697   4.39517
## 751  28.29459
## 868  19.85816
## 872   7.67919
## 942  16.34404
## 956  21.26652
## 984  45.69792
## 1304 10.47204
## 1332 26.72137
## 1333 23.97854
## 1335 11.55916
## 1365 13.21139
## 1368  1.23724
## 1451 18.88784
## 1452  1.82885
## 1453 17.57187
## 1454 10.16196
## 1566  4.25486
library(ggplot2)
library(dplyr)

data <- data.frame(Desatadores= 
                     c("Rain", 
                       "Downpour", 
                       "Continuous rain",
                       "Earthquake", "Unknown"), 
                   Porcentaje = c(6, 14, 4, 3, 3))
ggplot(data, aes(x = "", y = Porcentaje, fill=Desatadores)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(ggplot2)
library(dplyr)

data <- data %>% 
  arrange(desc(Desatadores)) %>%
  mutate(prop = Porcentaje / sum(data$Porcentaje) *100) %>%
  mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
## Loading required package: scales
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
ggplot(data, aes(x="", y = prop, fill=Desatadores)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + 
  theme(legend.position="none") +
  
  geom_text(aes(y = ypos, label = percent(Porcentaje/30)), color = "white", size=3) +
  scale_fill_brewer(palette="Set1")

knitr::kable(data)
Desatadores Porcentaje prop ypos
Unknown 3 10.00000 5.00000
Rain 6 20.00000 20.00000
Earthquake 3 10.00000 35.00000
Downpour 14 46.66667 63.33333
Continuous rain 4 13.33333 93.33333
data <- c("Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Continuous rain", "Continuous rain", "Continuous rain", "Continuous rain", "Earthquake", "Earthquake", "Earthquake", "Unknown", "Unknown", "Unknown")
knitr::kable(head(data))
x
Rain
Rain
Rain
Rain
Rain
Rain
library(questionr)

table <- questionr::freq(data, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Downpour 14 46.7 46.7 46.7 46.7
Rain 6 20.0 20.0 66.7 66.7
Continuous rain 4 13.3 13.3 80.0 80.0
Earthquake 3 10.0 10.0 90.0 90.0
Unknown 3 10.0 10.0 100.0 100.0
Total 30 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Downpour 14
Rain 6
Continuous rain 4
Earthquake 3
Unknown 3
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="red") +
  xlab("Eventos causantes de deslizamientos en Ecuador") +
  ylab("Frecuencia")

2.2 PERÚ

Gráfico de barras para población en Perú

library(readr)
library(knitr)
library(ggplot2)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[8] <- "Population"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_PER <- subset (df, Country == "Peru")
knitr::kable(head(df_PER))
id date time continent_code Country country_code State Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
80 472 3/5/08 SA Peru PE Huanuco 53177 Tingo María 17.34318 -9.2114 -76.1311 (-9.2113999999999994, -76.131100000000004) Landslide Landslide Medium Rain NA 7 http://news.xinhuanet.com/english/2008-03/06/content_7727748.htm
90 497 4/11/08 SA Peru PE Ancash 5044 Carhuaz 2.43089 -9.2965 -77.6613 (-9.2965, -77.661299999999997) Landslide Landslide Medium Rain NA NA http://news.xinhuanet.com/english/2008-04/14/content_7972049.htm
184 1004 4/14/09 SA Peru PE La Libertad 0 Parcoy 9.64894 -7.9589 -77.5239 (-7.9588999999999999, -77.523899999999998) Landslide Mudslide Medium Downpour NA 12 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
185 1005 4/14/09 SA Peru PE La Libertad 0 Aricapampa 0.00442 -7.8058 -77.7172 (-7.8057999999999996, -77.717200000000005) Landslide Mudslide Medium Downpour NA 0 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
252 1459 1/28/10 15:00:00 SA Peru PE Ancash 0 Anta 0.13147 -9.3584 -77.5984 (-9.3583999999999996, -77.598399999999998) Landslide Complex Medium Downpour NA 0 http://daveslandslideblog.blogspot.com/2010/01/new-images-of-level-of-destruction-in.html
294 1612 4/1/10 Early morning SA Peru PE Huanuco 0 Acomayo 3.49890 -9.7996 -76.1038 (-9.7995999999999999, -76.103800000000007) Landslide Lahar Large Downpour NA 12 http://www.thejakartapost.com/news/2010/03/18/mudslide-isolates-1500-residents-solok.html
df_PER %>% 
  select(Country, State, City, Distance, Population)
##      Country       State        City Distance Population
## 80      Peru     Huanuco Tingo María 17.34318      53177
## 90      Peru      Ancash     Carhuaz  2.43089       5044
## 184     Peru La Libertad      Parcoy  9.64894          0
## 185     Peru La Libertad  Aricapampa  0.00442          0
## 252     Peru      Ancash        Anta  0.13147          0
## 294     Peru     Huanuco     Acomayo  3.49890          0
## 295     Peru     Huanuco        Ambo  0.55865       6865
## 516     Peru     Huanuco     Huánuco  1.01932     147959
## 578     Peru      Ancash       Yanac  3.70678          0
## 864     Peru      Ancash       Tauca  6.77672          0
## 912     Peru  San Martín   Yuracyacu  8.89799          0
## 1378    Peru      Ancash     Huachis  3.26788          0
## 1424    Peru  San Martín    Naranjos 12.70296          0
## 1425    Peru  San Martín    Tarapoto  2.89809          0
ggplot(data=df_PER, aes(fill=City, x="Peru", y=Population)) +
  geom_bar(position="dodge", stat="identity")

ggplot(data=df_PER, aes(fill=City, x="Peru", y=Population)) +
  geom_bar(position="stack", stat="identity")

Medidas de Tendencia central para muertes en Perú

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Peru")
knitr::kable(head(df_COL))
id date time continent_code Country country_code state_province Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries Fatalities source_name source_link
80 472 3/5/08 SA Peru PE Huanuco 53177 Tingo María 17.34318 -9.2114 -76.1311 (-9.2113999999999994, -76.131100000000004) Landslide Landslide Medium Rain NA 7 http://news.xinhuanet.com/english/2008-03/06/content_7727748.htm
90 497 4/11/08 SA Peru PE Ancash 5044 Carhuaz 2.43089 -9.2965 -77.6613 (-9.2965, -77.661299999999997) Landslide Landslide Medium Rain NA NA http://news.xinhuanet.com/english/2008-04/14/content_7972049.htm
184 1004 4/14/09 SA Peru PE La Libertad 0 Parcoy 9.64894 -7.9589 -77.5239 (-7.9588999999999999, -77.523899999999998) Landslide Mudslide Medium Downpour NA 12 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
185 1005 4/14/09 SA Peru PE La Libertad 0 Aricapampa 0.00442 -7.8058 -77.7172 (-7.8057999999999996, -77.717200000000005) Landslide Mudslide Medium Downpour NA 0 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
252 1459 1/28/10 15:00:00 SA Peru PE Ancash 0 Anta 0.13147 -9.3584 -77.5984 (-9.3583999999999996, -77.598399999999998) Landslide Complex Medium Downpour NA 0 http://daveslandslideblog.blogspot.com/2010/01/new-images-of-level-of-destruction-in.html
294 1612 4/1/10 Early morning SA Peru PE Huanuco 0 Acomayo 3.49890 -9.7996 -76.1038 (-9.7995999999999999, -76.103800000000007) Landslide Lahar Large Downpour NA 12 http://www.thejakartapost.com/news/2010/03/18/mudslide-isolates-1500-residents-solok.html
df_COL[is.na(df_COL)] <- 0
df_COL %>% 
  select(Country,state_province,Fatalities) 
##      Country state_province Fatalities
## 80      Peru        Huanuco          7
## 90      Peru         Ancash          0
## 184     Peru    La Libertad         12
## 185     Peru    La Libertad          0
## 252     Peru         Ancash          0
## 294     Peru        Huanuco         12
## 295     Peru        Huanuco         28
## 516     Peru        Huanuco          2
## 578     Peru         Ancash          0
## 864     Peru         Ancash          3
## 912     Peru     San Martín         13
## 1378    Peru         Ancash          0
## 1424    Peru     San Martín          0
## 1425    Peru     San Martín          0
library(tidyverse)

tablafinal<-(df_COL %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))   
    summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3.00    9.75   12.50   19.25   22.00   49.00
    knitr::kable(tablafinal)
state_province fatalities
Ancash 3
Huanuco 49
La Libertad 12
San Martín 13

Tabla de frecuencia simple de las fatalidades en Peru

dataPer <- c( "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Huanuco", "Ancash", "Ancash", "Ancash", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "La Libertad", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin", "San Martin")
knitr::kable(head(dataPer))
x
Huanuco
Huanuco
Huanuco
Huanuco
Huanuco
Huanuco
library(questionr)

table <- questionr::freq(dataPer, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Huanuco 49 63.6 63.6 63.6 63.6
San Martin 13 16.9 16.9 80.5 80.5
La Libertad 12 15.6 15.6 96.1 96.1
Ancash 3 3.9 3.9 100.0 100.0
Total 77 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Huanuco 49
San Martin 13
La Libertad 12
Ancash 3
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Diagrama de Pareto para tipo de deslizamientos en Perú

df <- data.frame(tipo=
                   c("mudslide","landslide","complex","rockfall","Lahar"),
                      
                 Frecuencia = c(5,8,0,0,1))
                          
knitr::kable(df)
tipo Frecuencia
mudslide 5
landslide 8
complex 0
rockfall 0
Lahar 1
head(df)
##        tipo Frecuencia
## 1  mudslide          5
## 2 landslide          8
## 3   complex          0
## 4  rockfall          0
## 5     Lahar          1
library(qcc)

Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$tipo

pareto.chart(Frecuencia, 
             ylab="Frecuencia",
             col = heat.colors(length(Frecuencia)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "Gráfico de Pareto para tipos de deslizamientos en Perú")

##            
## Pareto chart analysis for Frecuencia
##              Frequency  Cum.Freq. Percentage Cum.Percent.
##   landslide   8.000000   8.000000  57.142857    57.142857
##   mudslide    5.000000  13.000000  35.714286    92.857143
##   Lahar       1.000000  14.000000   7.142857   100.000000
##   complex     0.000000  14.000000   0.000000   100.000000
##   rockfall    0.000000  14.000000   0.000000   100.000000

Gráficos y tablas de frecuencia acerca de los causales de deslizamientos en Perú

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
library(dplyr)
library(readr)
library(knitr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
df_PER <- subset (df, Country == "Perú")
knitr::kable(head(df_PER))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
df_PER %>% 
  select(Country, State, City, Distance) 
## [1] Country  State    City     Distance
## <0 rows> (or 0-length row.names)
library(ggplot2)
library(dplyr)

data <- data.frame(Desatadores= 
                     c("Rain", 
                       "Downpour"), 
                   Porcentaje = c(3, 12))
ggplot(data, aes(x = "", y = Porcentaje, fill=Desatadores)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(ggplot2)
library(dplyr)

data <- data %>% 
  arrange(desc(Desatadores)) %>%
  mutate(prop = Porcentaje / sum(data$Porcentaje) *100) %>%
  mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=Desatadores)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + 
  theme(legend.position="none") +
  
  geom_text(aes(y = ypos, label = percent(Porcentaje/15)), color = "white", size=3) +
  scale_fill_brewer(palette="Set1")

knitr::kable(data)
Desatadores Porcentaje prop ypos
Rain 3 20 10
Downpour 12 80 60
data <- c("Rain", "Rain", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour")
knitr::kable(head(data))
x
Rain
Rain
Downpour
Downpour
Downpour
Downpour
library(questionr)

table <- questionr::freq(data, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Downpour 14 87.5 87.5 87.5 87.5
Rain 2 12.5 12.5 100.0 100.0
Total 16 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Downpour 14
Rain 2
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="red") +
  xlab("Eventos causantes de deslizamientos en Perú") +
  ylab("Frecuencia")

2.3 VENEZUELA

Gráfico de barras para población en Venezuela

library(readr)
library(knitr)
library(ggplot2)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[8] <- "Population"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_VEN <- subset (df, Country == "Venezuela")
knitr::kable(head(df_VEN))
id date time continent_code Country country_code State Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
df_VEN %>% 
  select(Country, State, City, Distance, Population)
##       Country            State          City Distance Population
## 165 Venezuela Distrito Federal       Caracas  2.92493    3000000
## 448 Venezuela           Vargas     Maiquetía  6.65506      52564
## 530 Venezuela          Miranda  Santa Teresa  8.45736     278890
## 531 Venezuela Distrito Federal       Caracas  2.95706    3000000
## 538 Venezuela Distrito Federal      Caricuao  7.90754          0
## 539 Venezuela Distrito Federal      Caricuao  5.64050          0
## 540 Venezuela Distrito Federal      Caricuao  5.74106          0
## 541 Venezuela Distrito Federal       Caracas  4.58994    3000000
## 542 Venezuela          Miranda        Baruta  2.69644     244216
## 543 Venezuela          Miranda    El Hatillo  1.04263      57591
## 544 Venezuela Distrito Federal       Caracas  3.14060    3000000
## 545 Venezuela Distrito Federal       Caracas  6.04235    3000000
## 546 Venezuela          Miranda       Guatire 15.84114     191903
## 547 Venezuela Distrito Federal       Caracas  3.87793    3000000
## 548 Venezuela Distrito Federal       Caracas  3.65044    3000000
## 549 Venezuela Distrito Federal       Caracas  8.11953    3000000
## 599 Venezuela           Vargas     Maiquetía  7.89319      52564
## 768 Venezuela           Aragua    El Consejo 14.28266          0
## 769 Venezuela           Falcón Santo Domingo 19.81345          0
## 847 Venezuela Distrito Federal       Caracas  2.55507    3000000
ggplot(data=df_VEN, aes(fill=State, x="Venezuela", y=Population)) +
  geom_bar(position="dodge", stat="identity")

ggplot(data=df_VEN, aes(fill=State, x="Venezuela", y=Population)) +
  geom_bar(position="stack", stat="identity")

Medidas de Tendencia central para muertes en Venezuela

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Venezuela")
knitr::kable(head(df_COL))
id date time continent_code Country country_code state_province Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries Fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
df_COL[is.na(df_COL)] <- 0
df_COL %>% 
  select(Country,state_province,Fatalities) 
##       Country   state_province Fatalities
## 165 Venezuela Distrito Federal          8
## 448 Venezuela           Vargas          7
## 530 Venezuela          Miranda          1
## 531 Venezuela Distrito Federal          3
## 538 Venezuela Distrito Federal          1
## 539 Venezuela Distrito Federal          0
## 540 Venezuela Distrito Federal          2
## 541 Venezuela Distrito Federal          0
## 542 Venezuela          Miranda          0
## 543 Venezuela          Miranda          0
## 544 Venezuela Distrito Federal          1
## 545 Venezuela Distrito Federal          2
## 546 Venezuela          Miranda          0
## 547 Venezuela Distrito Federal          0
## 548 Venezuela Distrito Federal          0
## 549 Venezuela Distrito Federal          1
## 599 Venezuela           Vargas          0
## 768 Venezuela           Aragua          0
## 769 Venezuela           Falcón          0
## 847 Venezuela Distrito Federal          2
library(tidyverse)

tablafinal<-(df_COL %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))   
    summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     1.0     5.6     7.0    20.0
    knitr::kable(tablafinal)
state_province fatalities
Aragua 0
Distrito Federal 20
Falcón 0
Miranda 1
Vargas 7

Tabla de frecuencia simple de las fatalidades en Venezuela

dataVen <- c("Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Distrito Federal" , "Vargas" , "Vargas" , "Vargas" , "Vargas" , "Vargas" , "Vargas" , "Vargas" , "Miranda")
knitr::kable(head(dataVen))
x
Distrito Federal
Distrito Federal
Distrito Federal
Distrito Federal
Distrito Federal
Distrito Federal
library(questionr)

table <- questionr::freq(dataVen, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Distrito Federal 20 71.4 71.4 71.4 71.4
Vargas 7 25.0 25.0 96.4 96.4
Miranda 1 3.6 3.6 100.0 100.0
Total 28 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Distrito Federal 20
Vargas 7
Miranda 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Diagrama de Pareto para tipo de deslizamientos en Venezuela

df <- data.frame(tipo=
                   c("mudslide","landslide","complex","rockfall","Lahar"),
                      
                 Frecuencia = c(6,14,0,0,0))
                          
knitr::kable(df)
tipo Frecuencia
mudslide 6
landslide 14
complex 0
rockfall 0
Lahar 0
head(df)
##        tipo Frecuencia
## 1  mudslide          6
## 2 landslide         14
## 3   complex          0
## 4  rockfall          0
## 5     Lahar          0
library(qcc)

Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$tipo
pareto.chart(Frecuencia, 
             ylab="Frecuencia",
             col = heat.colors(length(Frecuencia)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "Gráfico de Pareto para tipos de deslizamientos en Venezuela")

##            
## Pareto chart analysis for Frecuencia
##             Frequency Cum.Freq. Percentage Cum.Percent.
##   landslide        14        14         70           70
##   mudslide          6        20         30          100
##   complex           0        20          0          100
##   rockfall          0        20          0          100
##   Lahar             0        20          0          100

Gráficos y tablas de frecuencia acerca de los causales de deslizamientos en Venezuela

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(ggplot2)
library(dplyr)
library(readr)
library(knitr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
df_VEN <- subset (df, Country == "Venezuela")
knitr::kable(head(df_VEN))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country            State          City Distance
## 165 Venezuela Distrito Federal       Caracas  2.92493
## 448 Venezuela           Vargas     Maiquetía  6.65506
## 530 Venezuela          Miranda  Santa Teresa  8.45736
## 531 Venezuela Distrito Federal       Caracas  2.95706
## 538 Venezuela Distrito Federal      Caricuao  7.90754
## 539 Venezuela Distrito Federal      Caricuao  5.64050
## 540 Venezuela Distrito Federal      Caricuao  5.74106
## 541 Venezuela Distrito Federal       Caracas  4.58994
## 542 Venezuela          Miranda        Baruta  2.69644
## 543 Venezuela          Miranda    El Hatillo  1.04263
## 544 Venezuela Distrito Federal       Caracas  3.14060
## 545 Venezuela Distrito Federal       Caracas  6.04235
## 546 Venezuela          Miranda       Guatire 15.84114
## 547 Venezuela Distrito Federal       Caracas  3.87793
## 548 Venezuela Distrito Federal       Caracas  3.65044
## 549 Venezuela Distrito Federal       Caracas  8.11953
## 599 Venezuela           Vargas     Maiquetía  7.89319
## 768 Venezuela           Aragua    El Consejo 14.28266
## 769 Venezuela           Falcón Santo Domingo 19.81345
## 847 Venezuela Distrito Federal       Caracas  2.55507
library(ggplot2)
library(dplyr)

data <- data.frame(Desatadores= 
                     c("Rain", 
                       "Downpour"), 
                   Porcentaje = c(2, 18))
ggplot(data, aes(x = "", y = Porcentaje, fill=Desatadores)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(ggplot2)
library(dplyr)

data <- data %>% 
  arrange(desc(Desatadores)) %>%
  mutate(prop = Porcentaje / sum(data$Porcentaje) *100) %>%
  mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=Desatadores)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + 
  theme(legend.position="none") +
  
  geom_text(aes(y = ypos, label = percent(Porcentaje/20)), color = "white", size=3) +
  scale_fill_brewer(palette="Set1")

knitr::kable(data)
Desatadores Porcentaje prop ypos
Rain 2 10 5
Downpour 18 90 55
data <- c("Rain", "Rain", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour")
knitr::kable(head(data))
x
Rain
Rain
Downpour
Downpour
Downpour
Downpour
library(questionr)

table <- questionr::freq(data, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Downpour 18 90 90 90 90
Rain 2 10 10 100 100
Total 20 100 100 100 100
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Downpour 18
Rain 2
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="red") +
  xlab("Eventos causantes de deslizamientos en Venezuela") +
  ylab("Frecuencia")

2.4 TRINIDAD Y TOBAGO

Gráfico de barras para población en Trinidad y Tobago

library(readr)
library(knitr)
library(ggplot2)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[8] <- "Population"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_TB <- subset (df, Country == "Trinidad and Tobago")
knitr::kable(head(df_TB))
id date time continent_code Country country_code State Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
30 224 9/1/07 NA Trinidad and Tobago TT Tobago 17000 Scarborough 9.11607 11.2415 -60.6742 (11.2415, -60.674199999999999) Landslide Landslide Medium Tropical cyclone Hurricane Felix NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161197580
61 357 11/17/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 7.33295 11.2965 -60.6312 (11.2965, -60.6312) Landslide Landslide Medium Rain NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161237574
65 390 12/11/07 NA Trinidad and Tobago TT Sangre Grande 15968 Sangre Grande 29.28864 10.8410 -61.0550 (10.840999999999999, -61.055) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA 3 Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
66 391 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 8.62938 11.3000 -60.6440 (11.3, -60.643999999999998) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
67 392 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 2.66802 11.2670 -60.5660 (11.266999999999999, -60.566000000000003) Landslide Landslide Small Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
149 780 9/7/08 NA Trinidad and Tobago TT Diego Martin 8140 Petit Valley 10.61854 10.7603 -61.4578 (10.760300000000001, -61.457799999999999) Landslide Landslide Medium Downpour NA NA http://www.newsday.co.tt/news/0,85847.html
df_TB %>% 
  select(Country, State, City, Distance, Population)
##                  Country                   State          City Distance
## 30   Trinidad and Tobago                  Tobago   Scarborough  9.11607
## 61   Trinidad and Tobago          Eastern Tobago    Roxborough  7.33295
## 65   Trinidad and Tobago           Sangre Grande Sangre Grande 29.28864
## 66   Trinidad and Tobago          Eastern Tobago    Roxborough  8.62938
## 67   Trinidad and Tobago          Eastern Tobago    Roxborough  2.66802
## 149  Trinidad and Tobago            Diego Martin  Petit Valley 10.61854
## 164  Trinidad and Tobago   City of Port of Spain Port-of-Spain  1.07831
## 171  Trinidad and Tobago            Diego Martin  Petit Valley  5.91101
## 172  Trinidad and Tobago            Diego Martin  Petit Valley  2.24772
## 173  Trinidad and Tobago              Penal/Debe        Peñal,  2.57071
## 206  Trinidad and Tobago    City of San Fernando     Marabella  9.42494
## 392  Trinidad and Tobago            Diego Martin  Petit Valley  4.00979
## 393  Trinidad and Tobago   City of Port of Spain      Mucurapo  7.43310
## 394  Trinidad and Tobago   City of Port of Spain Port-of-Spain  2.15046
## 400  Trinidad and Tobago            Diego Martin  Petit Valley  4.33904
## 402  Trinidad and Tobago            Diego Martin  Petit Valley  6.95807
## 404  Trinidad and Tobago   City of Port of Spain      Mucurapo  7.24469
## 405  Trinidad and Tobago     San Juan/Laventille    Laventille  7.37181
## 421  Trinidad and Tobago    City of San Fernando  San Fernando  0.92162
## 446  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  6.91642
## 494  Trinidad and Tobago           Sangre Grande Sangre Grande 33.51924
## 495  Trinidad and Tobago          Eastern Tobago    Roxborough  8.44112
## 496  Trinidad and Tobago          Eastern Tobago    Roxborough  3.36240
## 497  Trinidad and Tobago         Tunapuna/Piarco      Paradise  2.64003
## 498  Trinidad and Tobago          Eastern Tobago    Roxborough  0.91163
## 499  Trinidad and Tobago                  Tobago   Scarborough  4.68038
## 500  Trinidad and Tobago                  Tobago   Scarborough  6.81393
## 532  Trinidad and Tobago            Diego Martin  Petit Valley  3.33629
## 533  Trinidad and Tobago            Diego Martin  Petit Valley  3.08955
## 534  Trinidad and Tobago            Diego Martin  Petit Valley  4.66234
## 535  Trinidad and Tobago            Diego Martin  Petit Valley  4.50278
## 536  Trinidad and Tobago            Diego Martin  Petit Valley  6.58396
## 537  Trinidad and Tobago            Diego Martin  Petit Valley  1.83626
## 554  Trinidad and Tobago            Princes Town  Princes Town  8.41931
## 555  Trinidad and Tobago           Sangre Grande Sangre Grande 33.10893
## 556  Trinidad and Tobago           Sangre Grande Sangre Grande 33.10893
## 827  Trinidad and Tobago     San Juan/Laventille    Laventille  0.38521
## 829  Trinidad and Tobago            Diego Martin  Petit Valley 11.75674
## 839  Trinidad and Tobago              Penal/Debe        Peñal,  4.21321
## 840  Trinidad and Tobago            Point Fortin  Point Fortin 22.47289
## 841  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  8.55164
## 842  Trinidad and Tobago            Diego Martin  Petit Valley  5.73985
## 843  Trinidad and Tobago           Sangre Grande Sangre Grande  2.00931
## 844  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  0.61975
## 845  Trinidad and Tobago        Borough of Arima         Arima 13.34116
## 846  Trinidad and Tobago           Sangre Grande Sangre Grande 30.29383
## 858  Trinidad and Tobago         Tunapuna/Piarco      Paradise 16.73194
## 877  Trinidad and Tobago          Eastern Tobago    Roxborough  5.62092
## 878  Trinidad and Tobago                  Tobago   Scarborough  3.48176
## 887  Trinidad and Tobago         Tunapuna/Piarco      Paradise 13.75900
## 897  Trinidad and Tobago            Diego Martin  Petit Valley  6.39375
## 898  Trinidad and Tobago            Diego Martin  Petit Valley  4.64073
## 906  Trinidad and Tobago                          Petit Valley  1.84331
## 907  Trinidad and Tobago   City of Port of Spain Port-of-Spain  2.54016
## 925  Trinidad and Tobago          Eastern Tobago    Roxborough  7.87263
## 926  Trinidad and Tobago          Eastern Tobago    Roxborough  7.47816
## 927  Trinidad and Tobago          Eastern Tobago    Roxborough  8.24676
## 958  Trinidad and Tobago                  Tobago   Scarborough  6.35974
## 990  Trinidad and Tobago         Tunapuna/Piarco      Tunapuna  2.63186
## 1174 Trinidad and Tobago                  Tobago   Scarborough  3.22335
## 1175 Trinidad and Tobago                  Tobago   Scarborough  3.88123
## 1183 Trinidad and Tobago           Sangre Grande Sangre Grande 26.68822
## 1302 Trinidad and Tobago                 Siparia       Siparia  3.75200
##      Population
## 30        17000
## 61            0
## 65        15968
## 66            0
## 67            0
## 149        8140
## 164       49031
## 171        8140
## 172        8140
## 173       12281
## 206       26700
## 392        8140
## 393        4342
## 394       49031
## 400        8140
## 402        8140
## 404        4342
## 405      157258
## 421       55419
## 446        3314
## 494       15968
## 495           0
## 496           0
## 497       15067
## 498           0
## 499       17000
## 500       17000
## 532        8140
## 533        8140
## 534        8140
## 535        8140
## 536        8140
## 537        8140
## 554       10000
## 555       15968
## 556       15968
## 827      157258
## 829        8140
## 839       12281
## 840       19056
## 841        3314
## 842        8140
## 843       15968
## 844        3314
## 845       35000
## 846       15968
## 858       15067
## 877           0
## 878       17000
## 887       15067
## 897        8140
## 898        8140
## 906        8140
## 907       49031
## 925           0
## 926           0
## 927           0
## 958       17000
## 990       17758
## 1174      17000
## 1175      17000
## 1183      15968
## 1302       8568
ggplot(data=df_TB, aes(fill=State, x="Trinidad and Tobago", y=Population)) +
  geom_bar(position="dodge", stat="identity")

ggplot(data=df_TB, aes(fill=State, x="Trinidad and Tobago", y=Population)) +
  geom_bar(position="stack", stat="identity")

Medidas de Tendencia central para muertes en Trinidad y Tobago

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Trinidad and Tobago")
knitr::kable(head(df_COL))
id date time continent_code Country country_code state_province Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries Fatalities source_name source_link
30 224 9/1/07 NA Trinidad and Tobago TT Tobago 17000 Scarborough 9.11607 11.2415 -60.6742 (11.2415, -60.674199999999999) Landslide Landslide Medium Tropical cyclone Hurricane Felix NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161197580
61 357 11/17/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 7.33295 11.2965 -60.6312 (11.2965, -60.6312) Landslide Landslide Medium Rain NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161237574
65 390 12/11/07 NA Trinidad and Tobago TT Sangre Grande 15968 Sangre Grande 29.28864 10.8410 -61.0550 (10.840999999999999, -61.055) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA 3 Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
66 391 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 8.62938 11.3000 -60.6440 (11.3, -60.643999999999998) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
67 392 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 2.66802 11.2670 -60.5660 (11.266999999999999, -60.566000000000003) Landslide Landslide Small Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
149 780 9/7/08 NA Trinidad and Tobago TT Diego Martin 8140 Petit Valley 10.61854 10.7603 -61.4578 (10.760300000000001, -61.457799999999999) Landslide Landslide Medium Downpour NA NA http://www.newsday.co.tt/news/0,85847.html
df_COL[is.na(df_COL)] <- 0
df_COL %>% 
  select(Country,state_province,Fatalities) 
##                  Country          state_province Fatalities
## 30   Trinidad and Tobago                  Tobago          0
## 61   Trinidad and Tobago          Eastern Tobago          0
## 65   Trinidad and Tobago           Sangre Grande          3
## 66   Trinidad and Tobago          Eastern Tobago          0
## 67   Trinidad and Tobago          Eastern Tobago          0
## 149  Trinidad and Tobago            Diego Martin          0
## 164  Trinidad and Tobago   City of Port of Spain          1
## 171  Trinidad and Tobago            Diego Martin          0
## 172  Trinidad and Tobago            Diego Martin          0
## 173  Trinidad and Tobago              Penal/Debe          0
## 206  Trinidad and Tobago    City of San Fernando          0
## 392  Trinidad and Tobago            Diego Martin          0
## 393  Trinidad and Tobago   City of Port of Spain          0
## 394  Trinidad and Tobago   City of Port of Spain          0
## 400  Trinidad and Tobago            Diego Martin          0
## 402  Trinidad and Tobago            Diego Martin          0
## 404  Trinidad and Tobago   City of Port of Spain          0
## 405  Trinidad and Tobago     San Juan/Laventille          1
## 421  Trinidad and Tobago    City of San Fernando          0
## 446  Trinidad and Tobago Couva-Tabaquite-Talparo          0
## 494  Trinidad and Tobago           Sangre Grande          0
## 495  Trinidad and Tobago          Eastern Tobago          0
## 496  Trinidad and Tobago          Eastern Tobago          0
## 497  Trinidad and Tobago         Tunapuna/Piarco          0
## 498  Trinidad and Tobago          Eastern Tobago          0
## 499  Trinidad and Tobago                  Tobago          0
## 500  Trinidad and Tobago                  Tobago          0
## 532  Trinidad and Tobago            Diego Martin          0
## 533  Trinidad and Tobago            Diego Martin          0
## 534  Trinidad and Tobago            Diego Martin          0
## 535  Trinidad and Tobago            Diego Martin          0
## 536  Trinidad and Tobago            Diego Martin          0
## 537  Trinidad and Tobago            Diego Martin          0
## 554  Trinidad and Tobago            Princes Town          0
## 555  Trinidad and Tobago           Sangre Grande          0
## 556  Trinidad and Tobago           Sangre Grande          0
## 827  Trinidad and Tobago     San Juan/Laventille          0
## 829  Trinidad and Tobago            Diego Martin          0
## 839  Trinidad and Tobago              Penal/Debe          0
## 840  Trinidad and Tobago            Point Fortin          0
## 841  Trinidad and Tobago Couva-Tabaquite-Talparo          0
## 842  Trinidad and Tobago            Diego Martin          0
## 843  Trinidad and Tobago           Sangre Grande          0
## 844  Trinidad and Tobago Couva-Tabaquite-Talparo          0
## 845  Trinidad and Tobago        Borough of Arima          0
## 846  Trinidad and Tobago           Sangre Grande          1
## 858  Trinidad and Tobago         Tunapuna/Piarco          0
## 877  Trinidad and Tobago          Eastern Tobago          0
## 878  Trinidad and Tobago                  Tobago          0
## 887  Trinidad and Tobago         Tunapuna/Piarco          0
## 897  Trinidad and Tobago            Diego Martin          0
## 898  Trinidad and Tobago            Diego Martin          0
## 906  Trinidad and Tobago                                  0
## 907  Trinidad and Tobago   City of Port of Spain          0
## 925  Trinidad and Tobago          Eastern Tobago          0
## 926  Trinidad and Tobago          Eastern Tobago          0
## 927  Trinidad and Tobago          Eastern Tobago          0
## 958  Trinidad and Tobago                  Tobago          0
## 990  Trinidad and Tobago         Tunapuna/Piarco          0
## 1174 Trinidad and Tobago                  Tobago          0
## 1175 Trinidad and Tobago                  Tobago          0
## 1183 Trinidad and Tobago           Sangre Grande          0
## 1302 Trinidad and Tobago                 Siparia          0
library(tidyverse)

tablafinal<-(df_COL %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))   
    summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0     0.4     0.0     4.0
    knitr::kable(tablafinal)
state_province fatalities
0
Borough of Arima 0
City of Port of Spain 1
City of San Fernando 0
Couva-Tabaquite-Talparo 0
Diego Martin 0
Eastern Tobago 0
Penal/Debe 0
Point Fortin 0
Princes Town 0
San Juan/Laventille 1
Sangre Grande 4
Siparia 0
Tobago 0
Tunapuna/Piarco 0

Tabla de frecuencia simple de las fatalidades en Trinidad y Togabo

dataTri <- c("Sangre Grande" , "Sangre Grande" , "Sangre Grande" , "Sangre Grande" , "City of Port of Spain" , "San Juan/Laventille")
knitr::kable(head(dataTri))
x
Sangre Grande
Sangre Grande
Sangre Grande
Sangre Grande
City of Port of Spain
San Juan/Laventille
library(questionr)

table <- questionr::freq(dataTri, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Sangre Grande 4 66.7 66.7 66.7 66.7
City of Port of Spain 1 16.7 16.7 83.3 83.3
San Juan/Laventille 1 16.7 16.7 100.0 100.0
Total 6 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Sangre Grande 4
City of Port of Spain 1
San Juan/Laventille 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Diagrama de Pareto para tipo de deslizamientos en Trinidad y Tobago

df <- data.frame(tipo=
                   c("mudslide","landslide","complex","rockfall","Lahar"),
                      
                 Frecuencia = c(14,47,1,0,0))
                          
knitr::kable(df)
tipo Frecuencia
mudslide 14
landslide 47
complex 1
rockfall 0
Lahar 0
head(df)
##        tipo Frecuencia
## 1  mudslide         14
## 2 landslide         47
## 3   complex          1
## 4  rockfall          0
## 5     Lahar          0
library(qcc)

Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$tipo

pareto.chart(Frecuencia, 
             ylab="Frecuencia",
             col = heat.colors(length(Frecuencia)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "Gráfico de Pareto para tipos de deslizamientos en Trinidad y Tobago")

##            
## Pareto chart analysis for Frecuencia
##              Frequency  Cum.Freq. Percentage Cum.Percent.
##   landslide  47.000000  47.000000  75.806452    75.806452
##   mudslide   14.000000  61.000000  22.580645    98.387097
##   complex     1.000000  62.000000   1.612903   100.000000
##   rockfall    0.000000  62.000000   0.000000   100.000000
##   Lahar       0.000000  62.000000   0.000000   100.000000

COLOMBIA

Gráfico de barras para población en Colombia

library(readr)
library(knitr)
library(ggplot2)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[8] <- "Population"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_COL <- subset (df, Country == "Colombia")
knitr::kable(head(df_COL))
id date time continent_code Country country_code State Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
df_COL %>% 
  select(Country, State, City, Distance, Population)
##       Country              State                       City Distance Population
## 8    Colombia          Risaralda                    Pereira  0.62022     440118
## 49   Colombia              Cauca                     Suárez  8.46579       9985
## 70   Colombia             Tolima                   Ambalema  6.96130       4892
## 103  Colombia          Antioquia                   Medellín  5.12170    1999979
## 110  Colombia Norte de Santander                    Hacarí   0.38844       1502
## 117  Colombia       Cundinamarca                    Quetame  8.58891       1374
## 119  Colombia          Antioquia                    Briceño  6.44532       2214
## 133  Colombia          Antioquia                     Caldas  1.27637      65565
## 134  Colombia            Córdoba                     Cereté  0.68544      55513
## 152  Colombia            Córdoba                    Moñitos 23.49217       5385
## 163  Colombia          Antioquia                   Medellín  4.09028    1999979
## 166  Colombia              Cauca                    Miranda  0.70558      13223
## 180  Colombia              Huila                       Hobo 10.18040       4444
## 191  Colombia            Córdoba                    Sahagún  0.14776      59188
## 303  Colombia       Cundinamarca                   Girardot  0.30587     130289
## 340  Colombia    Valle del Cauca                       Cali  1.84941    2392877
## 349  Colombia               Meta               Puerto López 22.53724      16678
## 352  Colombia       Cundinamarca                     Soacha 10.36239     313945
## 396  Colombia          Magdalena                    Ciénaga 51.84125      88311
## 403  Colombia Norte de Santander                San Calixto  7.85369       2080
## 425  Colombia          Santander                    Málaga   2.99929      18739
## 434  Colombia          Santander                    Málaga   2.99929      18739
## 454  Colombia          Risaralda                       Apía  8.18229       6940
## 455  Colombia          Antioquia                    Giraldo  2.55282       1464
## 479  Colombia             Boyacá        San Pablo de Borbur  1.53032       1519
## 517  Colombia          Risaralda                   Quinchía  0.11421      10895
## 518  Colombia          Antioquia                   Medellín  2.18776    1999979
## 519  Colombia              Sucre                 San Marcos 25.51411      36549
## 520  Colombia       Cundinamarca                  La Calera  7.28959      10175
## 523  Colombia             Caldas                Marquetalia 17.48659       6224
## 524  Colombia             Caldas                Marquetalia  3.72195       6224
## 525  Colombia             Caldas                  Marulanda  0.72830       1256
## 526  Colombia Norte de Santander                  Arboledas 14.62503       2702
## 527  Colombia          Santander                 San Andrés  3.06383       3032
## 528  Colombia          Antioquia                    Cáceres  4.29197       4987
## 553  Colombia          Antioquia                      Bello  2.04898     392939
## 574  Colombia             Nariño                  San Pablo  4.95353       6522
## 594  Colombia          Santander                    Matanza  6.16385       1669
## 619  Colombia             Caldas                 Villamaría  2.36822      35302
## 621  Colombia Norte de Santander                     Cúcuta  3.60520     721398
## 623  Colombia             Caldas                  Manizales  1.70850     357814
## 629  Colombia          Antioquia                   Medellín  4.19867    1999979
## 631  Colombia             Nariño                   El Tambo  0.60599       7279
## 632  Colombia             Nariño                   El Tambo  3.81445       7279
## 637  Colombia             Caldas                  Manizales  1.07765     357814
## 638  Colombia             Caldas                 Villamaría 15.82404      35302
## 640  Colombia          Antioquia         Santa Rosa de Osos 18.91189      10191
## 643  Colombia          Santander                    Florián  0.44753       1227
## 644  Colombia       Cundinamarca San Antonio del Tequendama  6.08628       1577
## 658  Colombia          Antioquia    Municipio de Copacabana  7.98838      49169
## 659  Colombia          Antioquia                   Frontino  5.06960       8603
## 690  Colombia             Boyacá                     Samacá  0.85976       3689
## 701  Colombia             Boyacá                      Belén  2.28425       5411
## 714  Colombia    Valle del Cauca                       Cali  8.30406    2392877
## 715  Colombia          Santander                    Lebrija  9.21217       8949
## 716  Colombia          Santander                Piedecuesta 10.55986      86387
## 718  Colombia          Santander     San Vicente de Chucurí  0.80432      11265
## 753  Colombia            Bolívar         Santa Rosa del Sur 26.89879       8904
## 821  Colombia          Antioquia                   Medellín  1.73101    1999979
## 822  Colombia    Valle del Cauca               Buenaventura 20.25692     240387
## 826  Colombia          Antioquia             Ciudad Bolívar 24.48479      16225
## 830  Colombia            Quindío                    Calarcá  1.35196      62170
## 831  Colombia             Caldas                  Manizales  0.64094     357814
## 832  Colombia             Tolima                  Cajamarca  8.56086       9309
## 835  Colombia             Tolima                  Cajamarca  7.87303       9309
## 836  Colombia       Cundinamarca                      Funza  9.23778      54421
## 838  Colombia             Tolima          Carmen de Apicalá  9.65157       5640
## 848  Colombia          Santander                 Los Santos 12.61362       1310
## 849  Colombia       Cundinamarca                     Soacha  5.17650     313945
## 850  Colombia              Cauca                    La Cruz  0.64469       8751
## 851  Colombia             Caldas                   Norcasia 16.94642       5976
## 852  Colombia             Nariño                San Lorenzo  0.37809       2394
## 853  Colombia          Magdalena                Santa Marta  0.79694     431781
## 854  Colombia             Caldas                   Aranzazu  2.53047       9327
## 855  Colombia          Risaralda              Dos Quebradas  0.74201     179583
## 859  Colombia          Antioquia                   Envigado  2.07081     163007
## 876  Colombia          Antioquia                     Amalfi 11.11685       9733
## 879  Colombia            Caquetá                  Florencia 15.42607     130337
## 911  Colombia              Huila                San Agustín  6.84683       9481
## 921  Colombia Norte de Santander                San Calixto 11.19714       2080
## 928  Colombia              Huila                    Gigante  0.93184       9829
## 1054 Colombia            Caquetá                  Florencia 15.16116     130337
## 1071 Colombia              Huila                     Áquira  3.14201       3942
## 1207 Colombia             Nariño                  Cumbitara 16.97776       1091
## 1220 Colombia    Valle del Cauca                    Palmira  7.70237     247986
## 1221 Colombia              Huila                    Palermo  0.00003       9896
## 1222 Colombia          Santander                Bucaramanga  1.33829     571820
## 1290 Colombia          Magdalena                   Ariguaní 28.50569      26246
## 1305 Colombia          Santander     San Vicente de Chucurí  1.08964      11265
## 1344 Colombia              Cauca                   Almaguer 17.31514       3120
## 1362 Colombia          Antioquia                    Barbosa  7.78677      16707
## 1456 Colombia           Putumayo              San Francisco  1.47940       4350
## 1457 Colombia          Antioquia                     Salgar  3.09014       6428
## 1471 Colombia              Cauca                    Jambaló  8.81287       1972
## 1565 Colombia              Huila                     Rivera 20.31227       8044
## 1669 Colombia          Antioquia                     Mutatá 15.04256       4811
ggplot(data=df_COL, aes(fill=State, x="Colombia", y=Population)) +
  geom_bar(position="dodge", stat="identity")

ggplot(data=df_COL, aes(fill=State, x="Colombia", y=Population)) +
  geom_bar(position="stack", stat="identity")

Medidas de Tendencia central para muertes en Colombia

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Colombia")
knitr::kable(head(df_COL))
id date time continent_code Country country_code state_province Population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries Fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
df_COL[is.na(df_COL)] <- 0
df_COL %>% 
  select(Country,state_province,Fatalities) 
##       Country     state_province Fatalities
## 8    Colombia          Risaralda         13
## 49   Colombia              Cauca         24
## 70   Colombia             Tolima          0
## 103  Colombia          Antioquia         27
## 110  Colombia Norte de Santander         10
## 117  Colombia       Cundinamarca          4
## 119  Colombia          Antioquia          8
## 133  Colombia          Antioquia          0
## 134  Colombia            Córdoba          0
## 152  Colombia            Córdoba          0
## 163  Colombia          Antioquia          8
## 166  Colombia              Cauca         10
## 180  Colombia              Huila          5
## 191  Colombia            Córdoba          1
## 303  Colombia       Cundinamarca          2
## 340  Colombia    Valle del Cauca          0
## 349  Colombia               Meta          0
## 352  Colombia       Cundinamarca          0
## 396  Colombia          Magdalena          0
## 403  Colombia Norte de Santander          4
## 425  Colombia          Santander          0
## 434  Colombia          Santander          0
## 454  Colombia          Risaralda          4
## 455  Colombia          Antioquia          9
## 479  Colombia             Boyacá          2
## 517  Colombia          Risaralda          4
## 518  Colombia          Antioquia          2
## 519  Colombia              Sucre          0
## 520  Colombia       Cundinamarca          4
## 523  Colombia             Caldas          5
## 524  Colombia             Caldas          1
## 525  Colombia             Caldas          2
## 526  Colombia Norte de Santander          0
## 527  Colombia          Santander          0
## 528  Colombia          Antioquia          0
## 553  Colombia          Antioquia         91
## 574  Colombia             Nariño         13
## 594  Colombia          Santander          3
## 619  Colombia             Caldas          0
## 621  Colombia Norte de Santander          0
## 623  Colombia             Caldas          0
## 629  Colombia          Antioquia          4
## 631  Colombia             Nariño          0
## 632  Colombia             Nariño          5
## 637  Colombia             Caldas          0
## 638  Colombia             Caldas         20
## 640  Colombia          Antioquia          4
## 643  Colombia          Santander         11
## 644  Colombia       Cundinamarca          0
## 658  Colombia          Antioquia          2
## 659  Colombia          Antioquia          0
## 690  Colombia             Boyacá          2
## 701  Colombia             Boyacá          0
## 714  Colombia    Valle del Cauca          0
## 715  Colombia          Santander          2
## 716  Colombia          Santander          0
## 718  Colombia          Santander          1
## 753  Colombia            Bolívar          2
## 821  Colombia          Antioquia          6
## 822  Colombia    Valle del Cauca          3
## 826  Colombia          Antioquia          5
## 830  Colombia            Quindío          4
## 831  Colombia             Caldas         48
## 832  Colombia             Tolima          0
## 835  Colombia             Tolima          0
## 836  Colombia       Cundinamarca          3
## 838  Colombia             Tolima          7
## 848  Colombia          Santander          2
## 849  Colombia       Cundinamarca          6
## 850  Colombia              Cauca          1
## 851  Colombia             Caldas          5
## 852  Colombia             Nariño          9
## 853  Colombia          Magdalena          1
## 854  Colombia             Caldas          9
## 855  Colombia          Risaralda          0
## 859  Colombia          Antioquia          3
## 876  Colombia          Antioquia          3
## 879  Colombia            Caquetá          4
## 911  Colombia              Huila         10
## 921  Colombia Norte de Santander          0
## 928  Colombia              Huila          5
## 1054 Colombia            Caquetá          6
## 1071 Colombia              Huila          5
## 1207 Colombia             Nariño          5
## 1220 Colombia    Valle del Cauca          2
## 1221 Colombia              Huila          1
## 1222 Colombia          Santander          2
## 1290 Colombia          Magdalena          6
## 1305 Colombia          Santander          0
## 1344 Colombia              Cauca          6
## 1362 Colombia          Antioquia          2
## 1456 Colombia           Putumayo          0
## 1457 Colombia          Antioquia         92
## 1471 Colombia              Cauca          0
## 1565 Colombia              Huila          0
## 1669 Colombia          Antioquia          0
library(tidyverse)

tablafinal<-(df_COL %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))   
    summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    3.50    8.50   28.50   22.25  266.00
    knitr::kable(tablafinal)
state_province fatalities
Antioquia 266
Bolívar 2
Boyacá 4
Caldas 90
Caquetá 10
Cauca 41
Córdoba 1
Cundinamarca 19
Huila 26
Magdalena 7
Meta 0
Nariño 32
Norte de Santander 14
Putumayo 0
Quindío 4
Risaralda 21
Santander 21
Sucre 0
Tolima 7
Valle del Cauca 5

Tabla de frecuencia simple de las fatalidades en Colombia

data <- c("Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" ,   "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" ,   "Risaralda" , "Risaralda" , "Risaralda" , "Risaralda" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" ,   "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" ,   "Cauca" ,   "Cauca" , "Cauca" , "Cauca" ,   "Cauca" ,   "Cauca" ,   "Cauca" ,   "Cauca" ,   "Cauca" , "Cauca" , "Cauca" , "Cauca" , "Cauca" ,   "Cauca" ,   "Cauca" ,   "Cauca" , "Cauca" , "Cauca" , "Cauca","Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Antioquia", "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" , "Norte de Santander" ,  "Norte de Santander", "Córdoba", "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Huila" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Cundinamarca" , "Valle del Cauca" , "Valle del Cauca" , "Valle del Cauca" , "Valle del Cauca" , "Valle del Cauca" , "Magdalena" , "Magdalena" , "Magdalena" , "Magdalena" , "Magdalena" , "Magdalena" , "Magdalena" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" , "Santander" ,  "Santander" , "Boyacá" , "Boyacá" , "Boyacá" , "Boyacá" , "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Caldas", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Nariño", "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Caquetá" , "Bolívar", "Bolívar", "Quindío", "Quindío", "Quindío", "Quindío","Tolima" , "Tolima" ,  "Tolima" , "Tolima" ,  "Tolima" ,  "Tolima" ,  "Tolima" )
knitr::kable(head(data))
x
Risaralda
Risaralda
Risaralda
Risaralda
Risaralda
Risaralda
library(questionr)

table <- questionr::freq(data, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Antioquia 266 46.7 46.7 46.7 46.7
Caldas 90 15.8 15.8 62.5 62.5
Cauca 41 7.2 7.2 69.6 69.6
Nariño 32 5.6 5.6 75.3 75.3
Huila 26 4.6 4.6 79.8 79.8
Risaralda 21 3.7 3.7 83.5 83.5
Santander 21 3.7 3.7 87.2 87.2
Cundinamarca 19 3.3 3.3 90.5 90.5
Norte de Santander 14 2.5 2.5 93.0 93.0
Caquetá 10 1.8 1.8 94.7 94.7
Magdalena 7 1.2 1.2 96.0 96.0
Tolima 7 1.2 1.2 97.2 97.2
Valle del Cauca 5 0.9 0.9 98.1 98.1
Boyacá 4 0.7 0.7 98.8 98.8
Quindío 4 0.7 0.7 99.5 99.5
Bolívar 2 0.4 0.4 99.8 99.8
Córdoba 1 0.2 0.2 100.0 100.0
Total 570 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Antioquia 266
Caldas 90
Cauca 41
Nariño 32
Huila 26
Risaralda 21
Santander 21
Cundinamarca 19
Norte de Santander 14
Caquetá 10
Magdalena 7
Tolima 7
Valle del Cauca 5
Boyacá 4
Quindío 4
Bolívar 2
Córdoba 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Diagrama de pareto para tipo de deslizamientos en Colombia

df <- data.frame(tipo=
                   c("mudslide","landslide","complex","rockfall","Lahar"),
                      
                 Frecuencia = c(24,66,4,3,0))
                          
knitr::kable(df)
tipo Frecuencia
mudslide 24
landslide 66
complex 4
rockfall 3
Lahar 0
head(df)
##        tipo Frecuencia
## 1  mudslide         24
## 2 landslide         66
## 3   complex          4
## 4  rockfall          3
## 5     Lahar          0
library(qcc)

Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$tipo

pareto.chart(Frecuencia, 
             ylab="Frecuencia",
             col = heat.colors(length(Frecuencia)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "Gráfico de Pareto para tipos de deslizamientos en Colombia")

##            
## Pareto chart analysis for Frecuencia
##              Frequency  Cum.Freq. Percentage Cum.Percent.
##   landslide  66.000000  66.000000  68.041237    68.041237
##   mudslide   24.000000  90.000000  24.742268    92.783505
##   complex     4.000000  94.000000   4.123711    96.907216
##   rockfall    3.000000  97.000000   3.092784   100.000000
##   Lahar       0.000000  97.000000   0.000000   100.000000

Diagrama de caja y extensión para distancia de los deslizamientos en Colombia

library(readr)
library(ggplot2)
library(dplyr)
library(knitr)
data <- c(0.62022, 8.46579, 6.9613, 5.1217, 0.38844, 8.58891, 6.44532, 1.27637, 0.68544, 23.49217, 23.49217, 0.70558, 10.1804, 0.14776, 0.30587, 1.84941, 22.53724, 10.36239, 51.84125, 7.85369, 2.99929, 2.99929, 8.18229, 2.55282, 1.53032, 0.11421, 2.18776, 25.51411, 7.28959, 17.48659, 3.72195, 0.7283, 14.62503, 3.06383, 4.29197, 2.04898, 4.95353, 6.16385, 2.36822, 3.6052, 1.7085, 4.19867, 0.60599, 3.81445, 1.07765, 15.82404, 18.91189, 0.44753, 6.08628, 7.98838, 5.0696, 0.85976, 2.28425, 8.30406, 9.21217, 10.55986, 0.80432, 26.89879, 1.73101, 20.25692, 24.48479, 1.35196, 0.64094, 8.56086, 7.87303, 9.23778, 9.65157, 12.61362, 5.1765, 0.64469, 16.94642, 0.37809, 0.79694, 2.53047, 0.74201, 2.07081, 11.11685, 15.42607, 6.84683, 11.19714, 0.93184, 15.16116, 3.14201, 16.97776, 7.70237, 0.00003, 1.33829, 28.50569, 10.47204, 1.08964, 17.31514, 7.78677, 1.4794, 3.09014, 8.81287, 20.31227, 15.04256)
boxplot(data, horizontal=TRUE, col='steelblue')

Gráficos y tablas de frecuencia acerca de los causales de deslizamientos en Colombia

library(ggplot2)
library(dplyr)

data <- data.frame(Desatadores= 
                     c("Rain", 
                       "Downpour", 
                       "Mining digging", 
                       "Continuous rain",
                       "Earthquake", "Unknown"), 
                   Porcentaje = c(15, 79, 1, 5, 1, 2))
ggplot(data, aes(x = "", y = Porcentaje, fill=Desatadores)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(ggplot2)
library(dplyr)

data <- data %>% 
  arrange(desc(Desatadores)) %>%
  mutate(prop = Porcentaje / sum(data$Porcentaje) *100) %>%
  mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=Desatadores)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) +
  theme_void() + 
  theme(legend.position="none") +
  
  geom_text(aes(y = ypos, label = percent(Porcentaje/103)), color = "white", size=3) +
  scale_fill_brewer(palette="Set1")

knitr::kable(data)
Desatadores Porcentaje prop ypos
Unknown 2 1.9417476 0.9708738
Rain 15 14.5631068 9.2233010
Mining digging 1 0.9708738 16.9902913
Earthquake 1 0.9708738 17.9611650
Downpour 79 76.6990291 56.7961165
Continuous rain 5 4.8543689 97.5728155
data <- c("Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Rain", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Downpour", "Mining digging", "Continuous rain", "Continuous rain", "Continuous rain", "Continuous rain", "Continuous rain", "Continuous rain", "Earthquake", "Unknown", "Unknown" )
knitr::kable(head(data))
x
Rain
Rain
Rain
Rain
Rain
Rain
library(questionr)

table <- questionr::freq(data, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Downpour 79 76.0 76.0 76.0 76.0
Rain 15 14.4 14.4 90.4 90.4
Continuous rain 6 5.8 5.8 96.2 96.2
Unknown 2 1.9 1.9 98.1 98.1
Earthquake 1 1.0 1.0 99.0 99.0
Mining digging 1 1.0 1.0 100.0 100.0
Total 104 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Downpour 79
Rain 15
Continuous rain 6
Unknown 2
Earthquake 1
Mining digging 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="red") +
  xlab("Eventos causantes de deslizamientos en Colombia") +
  ylab("Frecuencia")

Brasil

Medidas de Tendencia central para muertes en Brasil

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_BRA <- subset (df, Country == "Brazil")
##      Country state_province Fatalities
## 193   Brazil           Pará         19
## 194   Brazil       Maranhão          3
## 947   Brazil          Amapá          6
## 1348  Brazil           Pará          0
library(tidyverse)

tablafinal <- (df_BRA %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   4.500   6.000   9.333  12.500  19.000
knitr::kable(tablafinal)
state_province fatalities
Amapá 6
Maranhão 3
Pará 19

Gráfico de barras para población en Brasil

dataBra <- c("Pará" , "Pará" , "Pará" , "Pará", "Pará", "Pará", "Pará", "Pará", "Pará", "Pará","Pará" , "Pará" , "Pará" , "Pará", "Pará", "Pará", "Pará", "Pará", "Pará", "Maranhão","Maranhão","Maranhão","Amapá", "Amapá","Amapá","Amapá","Amapá","Amapá" )
knitr::kable(head(dataBra))
x
Pará
Pará
Pará
Pará
Pará
Pará
library(questionr)

table <- questionr::freq(dataBra, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Pará 19 67.9 67.9 67.9 67.9
Amapá 6 21.4 21.4 89.3 89.3
Maranhão 3 10.7 10.7 100.0 100.0
Total 28 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Pará 19
Amapá 6
Maranhão 3
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Gráficos estadísticos para centroamérica.

Tabla de frecuencia simple de las fatalidades en El Salvador

dataSal <- c("San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "San Vicente" , "La Libertad", "La Libertad", "La Libertad", "La Libertad" , "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "San Salvador", "Cabañas", "Santa Ana", "Santa Ana", "Santa Ana")
knitr::kable(head(dataSal))
x
San Vicente
San Vicente
San Vicente
San Vicente
San Vicente
San Vicente
library(questionr)

table <- questionr::freq(dataSal, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
San Salvador 32 50.8 50.8 50.8 50.8
San Vicente 23 36.5 36.5 87.3 87.3
La Libertad 4 6.3 6.3 93.7 93.7
Santa Ana 3 4.8 4.8 98.4 98.4
Cabañas 1 1.6 1.6 100.0 100.0
Total 63 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
San Salvador 32
San Vicente 23
La Libertad 4
Santa Ana 3
Cabañas 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple de las fatalidades en Panamá

dataPan <- c("Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá" , "Panamá")
knitr::kable(head(dataPan))
x
Panamá
Panamá
Panamá
Panamá
Panamá
Panamá
library(questionr)

table <- questionr::freq(dataPan, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Panamá 45 100 100 100 100
Total 45 100 100 100 100
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Panamá 45
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple de las fatalidades en Nicaragua

dataNic <- c("Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Masaya" , "Managua" , "Managua" , "Managua" , "Managua" , "Managua" , "Managua" , "Managua" , "Managua" , "Managua" , "Ogun State" , "Ogun State" , "Ogun State" , "Ogun State" , "Ogun State" , "Ogun State" , "Ogun State" , "Rivas")
knitr::kable(head(dataNic))
x
Masaya
Masaya
Masaya
Masaya
Masaya
Masaya
library(questionr)

table <- questionr::freq(dataNic, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Masaya 10 37.0 37.0 37.0 37.0
Managua 9 33.3 33.3 70.4 70.4
Ogun State 7 25.9 25.9 96.3 96.3
Rivas 1 3.7 3.7 100.0 100.0
Total 27 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Masaya 10
Managua 9
Ogun State 7
Rivas 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple de las fatalidades en Honduras

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_Hon <- subset (df, Country == "Honduras")
##       Country     state_province Fatalities
## 159  Honduras              Copán         23
## 160  Honduras Francisco Morazán          29
## 376  Honduras Francisco Morazán           1
## 381  Honduras Francisco Morazán           0
## 406  Honduras Francisco Morazán           3
## 435  Honduras Francisco Morazán           5
## 474  Honduras          Comayagua          0
## 485  Honduras              Colón          0
## 820  Honduras Francisco Morazán           2
## 1100 Honduras             Cortés          6
## 1279 Honduras          Choluteca          8
## 1288 Honduras               Yoro          0
## 1363 Honduras         Ocotepeque          0
## 1377 Honduras             Cortés          0
## 1379 Honduras      Santa Bárbara          1
## 1599 Honduras         El Paraíso          0
## 1602 Honduras Francisco Morazán           0
## 1603 Honduras Francisco Morazán           0
## 1604 Honduras          Choluteca          0
## 1605 Honduras          Choluteca          1
## 1610 Honduras          Comayagua          0
## 1611 Honduras          Comayagua          1
## 1612 Honduras          Comayagua          5
## 1613 Honduras              Copán          0
## 1614 Honduras              Copán          0
## 1615 Honduras              Copán          1
## 1616 Honduras             La Paz          0
## 1617 Honduras              Copán          0
## 1618 Honduras         Ocotepeque          0
## 1619 Honduras Francisco Morazán           0
## 1620 Honduras      Santa Bárbara          0
## 1622 Honduras Francisco Morazán           0
## 1623 Honduras               Yoro          0
## 1624 Honduras Francisco Morazán           0
## 1638 Honduras Francisco Morazán           0
## 1639 Honduras Francisco Morazán           0
## 1640 Honduras Francisco Morazán           0
## 1641 Honduras Francisco Morazán           0
library(tidyverse)

tablafinal <- (df_Hon %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.000   7.818   7.500  40.000
knitr::kable(tablafinal)      
state_province fatalities
Choluteca 9
Colón 0
Comayagua 6
Copán 24
Cortés 6
El Paraíso 0
Francisco Morazán 40
La Paz 0
Ocotepeque 0
Santa Bárbara 1
Yoro 0
dataHon <- c("Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca" ,"Choluteca", "Comayagua", "Comayagua","Comayagua","Comayagua","Comayagua","Comayagua","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Copán","Francisco Morazán", "Francisco Morazán", "Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán", "Francisco Morazán", "Francisco Morazán", "Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán", "Francisco Morazán", "Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán", "Francisco Morazán", "Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Francisco Morazán","Santa Bárbara", "Cortés", "Cortés","Cortés","Cortés","Cortés","Cortés" )
knitr::kable(head(dataHon))
x
Choluteca
Choluteca
Choluteca
Choluteca
Choluteca
Choluteca
library(questionr)

table <- questionr::freq(dataHon, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Francisco Morazán 40 46.5 46.5 46.5 46.5
Copán 24 27.9 27.9 74.4 74.4
Choluteca 9 10.5 10.5 84.9 84.9
Comayagua 6 7.0 7.0 91.9 91.9
Cortés 6 7.0 7.0 98.8 98.8
Santa Bárbara 1 1.2 1.2 100.0 100.0
Total 86 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Francisco Morazán 40
Copán 24
Choluteca 9
Comayagua 6
Cortés 6
Santa Bárbara 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple de las fatalidades en Costa Rica

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_CRic <- subset (df, Country == "Costa Rica")
##         Country state_province Fatalities
## 38   Costa Rica        Heredia          0
## 44   Costa Rica       San José          4
## 45   Costa Rica       Alajuela         14
## 46   Costa Rica       San José         10
## 51   Costa Rica     Puntarenas          0
## 102  Costa Rica     Guanacaste          0
## 147  Costa Rica       San José          0
## 153  Costa Rica       San José          0
## 154  Costa Rica       San José          0
## 156  Costa Rica     Puntarenas          0
## 157  Costa Rica     Puntarenas          0
## 229  Costa Rica     Puntarenas          1
## 302  Costa Rica       Alajuela          0
## 311  Costa Rica        Heredia          0
## 347  Costa Rica       Alajuela          0
## 395  Costa Rica       Alajuela          0
## 459  Costa Rica       Alajuela          0
## 469  Costa Rica       San José          0
## 470  Costa Rica       San José          0
## 480  Costa Rica        Heredia          2
## 501  Costa Rica       San José         23
## 502  Costa Rica       San José          3
## 503  Costa Rica       Alajuela          0
## 504  Costa Rica     Guanacaste          0
## 505  Costa Rica        Cartago          0
## 506  Costa Rica     Puntarenas          0
## 507  Costa Rica       San José          0
## 508  Costa Rica       San José          0
## 509  Costa Rica     Puntarenas          0
## 510  Costa Rica     Puntarenas          0
## 511  Costa Rica     Puntarenas          0
## 512  Costa Rica       San José          0
## 513  Costa Rica       San José          0
## 514  Costa Rica       Alajuela          0
## 529  Costa Rica        Heredia          0
## 579  Costa Rica          Limón          0
## 702  Costa Rica        Heredia          0
## 780  Costa Rica       Alajuela          0
## 819  Costa Rica       San José          0
## 828  Costa Rica        Cartago          0
## 884  Costa Rica        Heredia          0
## 888  Costa Rica     Guanacaste          0
## 889  Costa Rica          Limón          0
## 913  Costa Rica       San José          0
## 1098 Costa Rica       Alajuela          0
## 1156 Costa Rica       Alajuela          0
## 1157 Costa Rica        Heredia          0
## 1169 Costa Rica     Guanacaste          0
## 1173 Costa Rica     Guanacaste          2
## 1289 Costa Rica       Alajuela          0
## 1301 Costa Rica       Alajuela          0
## 1308 Costa Rica       Alajuela          0
## 1342 Costa Rica       Alajuela          0
## 1364 Costa Rica       Alajuela          0
## 1383 Costa Rica        Cartago          0
## 1384 Costa Rica        Heredia          0
## 1385 Costa Rica       San José          0
## 1386 Costa Rica       San José          0
## 1404 Costa Rica       San José          0
## 1406 Costa Rica       San José          0
## 1461 Costa Rica       Alajuela          0
## 1475 Costa Rica       Alajuela          0
## 1528 Costa Rica       San José          0
## 1529 Costa Rica       San José          0
## 1600 Costa Rica       San José          0
## 1642 Costa Rica       Alajuela          0
## 1643 Costa Rica       Alajuela          1
## 1644 Costa Rica       Alajuela          1
## 1646 Costa Rica        Cartago          0
## 1647 Costa Rica        Cartago          0
## 1648 Costa Rica        Cartago          0
## 1649 Costa Rica     Puntarenas          0
## 1650 Costa Rica       San José          0
## 1651 Costa Rica       San José          0
## 1652 Costa Rica       San José          0
library(tidyverse)

tablafinal <- (df_CRic %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.500   2.000   8.714   9.000  40.000
knitr::kable(tablafinal)     
state_province fatalities
Alajuela 16
Cartago 0
Guanacaste 2
Heredia 2
Limón 0
Puntarenas 1
San José 40
dataCRic <- c("Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela","Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Alajuela", "Guanacaste" ,"Guanacaste" ,"Heredias" , "Heredias" , "Puntarenas", "San José", "San José","San José","San José","San José","San José","San José","San José","San José","San José", "San José", "San José","San José","San José","San José","San José","San José","San José","San José","San José","San José", "San José","San José","San José","San José","San José","San José","San José","San José","San José","San José", "San José","San José","San José","San José","San José","San José","San José","San José","San José")
knitr::kable(head(dataCRic))
x
Alajuela
Alajuela
Alajuela
Alajuela
Alajuela
Alajuela
library(questionr)

table <- questionr::freq(dataCRic, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
San José 40 65.6 65.6 65.6 65.6
Alajuela 16 26.2 26.2 91.8 91.8
Guanacaste 2 3.3 3.3 95.1 95.1
Heredias 2 3.3 3.3 98.4 98.4
Puntarenas 1 1.6 1.6 100.0 100.0
Total 61 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
San José 40
Alajuela 16
Guanacaste 2
Heredias 2
Puntarenas 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple de las fatalidades en Guatemala

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_Guat <- subset (df, Country == "Guatemala")
##        Country state_province Fatalities
## 17   Guatemala      Guatemala          5
## 27   Guatemala   Alta Verapaz          0
## 28   Guatemala         Izabal          0
## 41   Guatemala      Guatemala          3
## 104  Guatemala      Escuintla          1
## 108  Guatemala      Guatemala          8
## 120  Guatemala         Zacapa         21
## 158  Guatemala  Chimaltenango          0
## 162  Guatemala  Huehuetenango          0
## 169  Guatemala         Izabal          2
## 351  Guatemala Quetzaltenango          4
## 353  Guatemala      Escuintla          0
## 354  Guatemala      Guatemala          0
## 355  Guatemala      Guatemala         11
## 356  Guatemala   Sacatepéquez          0
## 357  Guatemala      Guatemala         17
## 358  Guatemala         Sololá         14
## 359  Guatemala  Chimaltenango         11
## 360  Guatemala         Sololá          1
## 361  Guatemala      Guatemala          4
## 362  Guatemala         Quiché          3
## 363  Guatemala    Totonicapán          3
## 372  Guatemala         Sololá          2
## 383  Guatemala      Guatemala          5
## 427  Guatemala      Guatemala          0
## 428  Guatemala      Guatemala          0
## 429  Guatemala      Guatemala          0
## 430  Guatemala     Chiquimula          0
## 431  Guatemala  Huehuetenango          0
## 432  Guatemala         Sololá          0
## 433  Guatemala   Alta Verapaz          2
## 437  Guatemala         Sololá         25
## 438  Guatemala Quetzaltenango          4
## 439  Guatemala         Quiché          1
## 440  Guatemala   Sacatepéquez          1
## 441  Guatemala  Chimaltenango         10
## 442  Guatemala         Quiché          5
## 818  Guatemala  Huehuetenango         15
## 885  Guatemala         Quiché          1
## 1112 Guatemala     San Marcos          0
## 1244 Guatemala  Huehuetenango          6
## 1347 Guatemala         Sololá          6
## 1352 Guatemala   Baja Verapaz          0
## 1353 Guatemala      Guatemala          3
## 1354 Guatemala      Guatemala          0
## 1356 Guatemala         Quiché          0
## 1357 Guatemala        Jutiapa          0
## 1358 Guatemala  Huehuetenango          0
## 1359 Guatemala      Guatemala          1
## 1360 Guatemala         Quiché          2
## 1361 Guatemala     San Marcos          2
## 1557 Guatemala      Guatemala        280
## 1559 Guatemala      Guatemala          0
## 1560 Guatemala     Santa Rosa          0
## 1561 Guatemala   Suchitepeque          0
## 1568 Guatemala      Guatemala          0
## 1569 Guatemala  Chimaltenango          0
## 1570 Guatemala      Guatemala          0
## 1571 Guatemala      Guatemala          0
## 1572 Guatemala         Sololá          0
## 1573 Guatemala         Sololá          0
## 1574 Guatemala      Guatemala          0
## 1575 Guatemala      Guatemala          0
## 1576 Guatemala      Guatemala          0
## 1577 Guatemala      Guatemala          0
## 1578 Guatemala      Guatemala          0
## 1579 Guatemala      Guatemala          0
## 1580 Guatemala      Guatemala          0
## 1581 Guatemala      Guatemala          0
## 1582 Guatemala      Guatemala          0
## 1583 Guatemala         Quiché          2
## 1584 Guatemala      Guatemala          0
## 1585 Guatemala      Guatemala          0
## 1588 Guatemala   Sacatepéquez          0
## 1589 Guatemala   Alta Verapaz          1
## 1590 Guatemala      Escuintla          0
## 1591 Guatemala      Guatemala          0
## 1592 Guatemala         Sololá          0
## 1595 Guatemala Quetzaltenango          0
library(tidyverse)

tablafinal <- (df_Guat %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.25    2.50   26.78   19.25  337.00
knitr::kable(tablafinal)     
state_province fatalities
Alta Verapaz 3
Baja Verapaz 0
Chimaltenango 21
Chiquimula 0
Escuintla 1
Guatemala 337
Huehuetenango 21
Izabal 2
Jutiapa 0
Quetzaltenango 8
Quiché 14
Sacatepéquez 1
San Marcos 2
Santa Rosa 0
Sololá 48
Suchitepeque 0
Totonicapán 3
Zacapa 21

Tabla de frecuencia simple y medidas de tendencia central de las fatalidades en Guatemala

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_Guat <- subset (df, Country == "Guatemala")
##        Country state_province Fatalities
## 17   Guatemala      Guatemala          5
## 27   Guatemala   Alta Verapaz          0
## 28   Guatemala         Izabal          0
## 41   Guatemala      Guatemala          3
## 104  Guatemala      Escuintla          1
## 108  Guatemala      Guatemala          8
## 120  Guatemala         Zacapa         21
## 158  Guatemala  Chimaltenango          0
## 162  Guatemala  Huehuetenango          0
## 169  Guatemala         Izabal          2
## 351  Guatemala Quetzaltenango          4
## 353  Guatemala      Escuintla          0
## 354  Guatemala      Guatemala          0
## 355  Guatemala      Guatemala         11
## 356  Guatemala   Sacatepéquez          0
## 357  Guatemala      Guatemala         17
## 358  Guatemala         Sololá         14
## 359  Guatemala  Chimaltenango         11
## 360  Guatemala         Sololá          1
## 361  Guatemala      Guatemala          4
## 362  Guatemala         Quiché          3
## 363  Guatemala    Totonicapán          3
## 372  Guatemala         Sololá          2
## 383  Guatemala      Guatemala          5
## 427  Guatemala      Guatemala          0
## 428  Guatemala      Guatemala          0
## 429  Guatemala      Guatemala          0
## 430  Guatemala     Chiquimula          0
## 431  Guatemala  Huehuetenango          0
## 432  Guatemala         Sololá          0
## 433  Guatemala   Alta Verapaz          2
## 437  Guatemala         Sololá         25
## 438  Guatemala Quetzaltenango          4
## 439  Guatemala         Quiché          1
## 440  Guatemala   Sacatepéquez          1
## 441  Guatemala  Chimaltenango         10
## 442  Guatemala         Quiché          5
## 818  Guatemala  Huehuetenango         15
## 885  Guatemala         Quiché          1
## 1112 Guatemala     San Marcos          0
## 1244 Guatemala  Huehuetenango          6
## 1347 Guatemala         Sololá          6
## 1352 Guatemala   Baja Verapaz          0
## 1353 Guatemala      Guatemala          3
## 1354 Guatemala      Guatemala          0
## 1356 Guatemala         Quiché          0
## 1357 Guatemala        Jutiapa          0
## 1358 Guatemala  Huehuetenango          0
## 1359 Guatemala      Guatemala          1
## 1360 Guatemala         Quiché          2
## 1361 Guatemala     San Marcos          2
## 1557 Guatemala      Guatemala        280
## 1559 Guatemala      Guatemala          0
## 1560 Guatemala     Santa Rosa          0
## 1561 Guatemala   Suchitepeque          0
## 1568 Guatemala      Guatemala          0
## 1569 Guatemala  Chimaltenango          0
## 1570 Guatemala      Guatemala          0
## 1571 Guatemala      Guatemala          0
## 1572 Guatemala         Sololá          0
## 1573 Guatemala         Sololá          0
## 1574 Guatemala      Guatemala          0
## 1575 Guatemala      Guatemala          0
## 1576 Guatemala      Guatemala          0
## 1577 Guatemala      Guatemala          0
## 1578 Guatemala      Guatemala          0
## 1579 Guatemala      Guatemala          0
## 1580 Guatemala      Guatemala          0
## 1581 Guatemala      Guatemala          0
## 1582 Guatemala      Guatemala          0
## 1583 Guatemala         Quiché          2
## 1584 Guatemala      Guatemala          0
## 1585 Guatemala      Guatemala          0
## 1588 Guatemala   Sacatepéquez          0
## 1589 Guatemala   Alta Verapaz          1
## 1590 Guatemala      Escuintla          0
## 1591 Guatemala      Guatemala          0
## 1592 Guatemala         Sololá          0
## 1595 Guatemala Quetzaltenango          0

Tabla de medidas de tendencia central

library(tidyverse)

tablafinal <- (df_Guat %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.25    2.50   26.78   19.25  337.00
knitr::kable(tablafinal)     
state_province fatalities
Alta Verapaz 3
Baja Verapaz 0
Chimaltenango 21
Chiquimula 0
Escuintla 1
Guatemala 337
Huehuetenango 21
Izabal 2
Jutiapa 0
Quetzaltenango 8
Quiché 14
Sacatepéquez 1
San Marcos 2
Santa Rosa 0
Sololá 48
Suchitepeque 0
Totonicapán 3
Zacapa 21
dataGuat <- c("Alta VeraPaz", "Alta VeraPaz", "Alta VeraPaz","Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango","Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango","Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Chimaltenango", "Escuintla", "Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala","Guatemala", "Huehuetenango", "Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango", "Huehuetenango", "Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango", "Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango","Huehuetenango", "Izabal", "Izabal", "Quetzaltenango", "Quetzaltenango","Quetzaltenango","Quetzaltenango","Quetzaltenango","Quetzaltenango","Quetzaltenango","Quetzaltenango", "Quiché", "Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Quiché","Sacatepéquez", "San Marcos", "San Marcos", "Sololá", "Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá","Sololá", "Sololá","Sololá","Sololá","Sololá","Sololá", "Totonicapán","Totonicapán","Totonicapán","Zacapa", "Zacapa","Zacapa","Zacapa","Zacapa","Zacapa","Zacapa","Zacapa", "Zacapa","Zacapa","Zacapa","Zacapa","Zacapa","Zacapa","Zacapa", "Zacapa","Zacapa","Zacapa","Zacapa","Zacapa","Zacapa")
knitr::kable(head(dataGuat))
x
Alta VeraPaz
Alta VeraPaz
Alta VeraPaz
Chimaltenango
Chimaltenango
Chimaltenango

Tabla de frecuencia

library(questionr)

table <- questionr::freq(dataGuat, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Guatemala 337 69.9 69.9 69.9 69.9
Sololá 48 10.0 10.0 79.9 79.9
Chimaltenango 21 4.4 4.4 84.2 84.2
Huehuetenango 21 4.4 4.4 88.6 88.6
Zacapa 21 4.4 4.4 92.9 92.9
Quiché 14 2.9 2.9 95.9 95.9
Quetzaltenango 8 1.7 1.7 97.5 97.5
Alta VeraPaz 3 0.6 0.6 98.1 98.1
Totonicapán 3 0.6 0.6 98.8 98.8
Izabal 2 0.4 0.4 99.2 99.2
San Marcos 2 0.4 0.4 99.6 99.6
Escuintla 1 0.2 0.2 99.8 99.8
Sacatepéquez 1 0.2 0.2 100.0 100.0
Total 482 100.0 100.0 100.0 100.0
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Guatemala 337
Sololá 48
Chimaltenango 21
Huehuetenango 21
Zacapa 21
Quiché 14
Quetzaltenango 8
Alta VeraPaz 3
Totonicapán 3
Izabal 2
San Marcos 2
Escuintla 1
Sacatepéquez 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple y medidas de tendencia central de las fatalidades en Jamaica

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_Jam <- subset (df, Country == "Jamaica")
##      Country  state_province Fatalities
## 18   Jamaica        Portland          0
## 48   Jamaica   St. Elizabeth          0
## 50   Jamaica    Saint Thomas          0
## 54   Jamaica    Saint Thomas          1
## 55   Jamaica Saint Catherine          0
## 56   Jamaica    Saint Andrew          0
## 60   Jamaica       Saint Ann          0
## 93   Jamaica       Saint Ann          0
## 143  Jamaica    Saint Andrew          7
## 146  Jamaica    Saint Thomas          0
## 237  Jamaica        Portland          0
## 305  Jamaica    Saint Thomas          0
## 306  Jamaica       Clarendon          0
## 307  Jamaica       Clarendon          0
## 308  Jamaica        Portland          0
## 309  Jamaica        Portland          0
## 408  Jamaica    Saint Andrew          0
## 444  Jamaica        Portland          0
## 456  Jamaica        Portland          0
## 460  Jamaica      Saint Mary          0
## 461  Jamaica    Saint Andrew          0
## 462  Jamaica Saint Catherine          0
## 466  Jamaica    Saint Andrew          2
## 486  Jamaica      Saint Mary          0
## 522  Jamaica        Portland          0
## 588  Jamaica      Saint Mary          0
## 589  Jamaica        Portland          0
## 900  Jamaica        Portland          0
## 920  Jamaica        Portland          0
## 1310 Jamaica        Portland          0
## 1628 Jamaica Saint Catherine          0
## 1629 Jamaica       Saint Ann          0
## 1630 Jamaica        Portland          0

Tabla de medidas de tendencia central

library(tidyverse)

tablafinal <- (df_Jam %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00    1.25    0.25    9.00
knitr::kable(tablafinal)     
state_province fatalities
Clarendon 0
Portland 0
Saint Andrew 9
Saint Ann 0
Saint Catherine 0
Saint Mary 0
Saint Thomas 1
St. Elizabeth 0
dataJam <- c("Saint Andrew", "Saint Andrew","Saint Andrew","Saint Andrew","Saint Andrew","Saint Andrew","Saint Andrew","Saint Andrew","Saint Andrew","Saint Thomas")
knitr::kable(head(dataJam))
x
Saint Andrew
Saint Andrew
Saint Andrew
Saint Andrew
Saint Andrew
Saint Andrew

Tabla de frecuencia

library(questionr)

table <- questionr::freq(dataJam, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
Saint Andrew 9 90 90 90 90
Saint Thomas 1 10 10 100 100
Total 10 100 100 100 100
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
Saint Andrew 9
Saint Thomas 1
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Tabla de frecuencia simple y medidas de tendencia central de las fatalidades en República Dominicana

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "state_province"
colnames(df)[21] <- "Fatalities"
library(readr)
library(knitr)
df_Rep <- subset (df, Country == "Dominican Republic")
##                 Country    state_province Fatalities
## 15   Dominican Republic Distrito Nacional          0
## 52   Dominican Republic     San Cristóbal          3
## 58   Dominican Republic           La Vega         68
## 64   Dominican Republic          Santiago         17
## 132  Dominican Republic        Hato Mayor          0
## 138  Dominican Republic Distrito Nacional          8
## 178  Dominican Republic          Santiago          0
## 211  Dominican Republic      Puerto Plata          2
## 212  Dominican Republic          Santiago          0
## 750  Dominican Republic          Santiago          1
## 774  Dominican Republic Distrito Nacional          1
## 833  Dominican Republic           La Vega          0
## 923  Dominican Republic      Puerto Plata          0
## 1394 Dominican Republic     Santo Domingo          0
## 1395 Dominican Republic      Puerto Plata          0

Tabla de medidas de tendencia central

library(tidyverse)

tablafinal <- (df_Rep %>% 
    group_by(state_province) %>%                 
    summarise(fatalities = sum(Fatalities)))
summary(tablafinal$fatalities)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    1.00    3.00   14.29   13.50   68.00
knitr::kable(tablafinal)     
state_province fatalities
Distrito Nacional 9
Hato Mayor 0
La Vega 68
Puerto Plata 2
San Cristóbal 3
Santiago 18
Santo Domingo 0
dataRep <- c("Distrito Nacional", "Distrito Nacional","Distrito Nacional","Distrito Nacional","Distrito Nacional","Distrito Nacional","Distrito Nacional","Distrito Nacional","Distrito Nacional","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega", "La Vega","La Vega","La Vega","La Vega","La Vega","La Vega","La Vega","Puerto Plata", "Puerto Plata", "San Cristóbal", "San Cristóbal", "San Cristóbal","Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago", "Santiago")
knitr::kable(head(dataRep))
x
Distrito Nacional
Distrito Nacional
Distrito Nacional
Distrito Nacional
Distrito Nacional
Distrito Nacional

Tabla de frecuencia

library(questionr)

table <- questionr::freq(dataRep, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
La Vega 68 68 68 68 68
Santiago 18 18 18 86 86
Distrito Nacional 9 9 9 95 95
San Cristóbal 3 3 3 98 98
Puerto Plata 2 2 2 100 100
Total 100 100 100 100 100
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = names, y = freqs)
knitr::kable(df)
x y
La Vega 68
Santiago 18
Distrito Nacional 9
San Cristóbal 3
Puerto Plata 2
library(ggplot2)

ggplot(data=df, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="black") + coord_flip() +
  xlab("Departamentos") +
  ylab("Frecuencia")

Gráfico circular y de barras de las distancias de desplazamientos para el país de Brasil

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_BRA <- subset (df, Country == "Brazil")
knitr::kable(head(df_BRA))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
193 1019 5/6/09 SA Brazil BR Pará 70888 Altamira 1.01848 -3.1946 -52.2093 (-3.1945999999999999, -52.209299999999999) Landslide Mudslide Medium Rain NA 19 http://en.wikipedia.org/wiki/2009_Brazilian_floods_and_mudslides#cite_note-186k_homeless_from_flood-0
194 1020 5/6/09 SA Brazil BR Maranhão 48901 Barra do Corda 61.75306 -5.0804 -45.6010 (-5.0804, -45.600999999999999) Landslide Mudslide Medium Rain NA 3 http://www.3news.co.nz/Heavy-rains-leave-186K-homeless-in-northern-Brazil/tabid/417/articleID/102883/cat/782/Default.aspx
947 4789 3/28/13 0:30:00 SA Brazil BR Amapá 83927 Santana 0.17020 -0.0568 -51.1818 (-0.056800000000000003, -51.181800000000003) Landslide Landslide Medium Other NA 6 bestonlinebroker.co http://bestonlinebroker.co/p/3999693490/2013/04/10/beadell-resources-why-the-silence-after-a-major-mining-disaster
1348 6591 1/4/14 SA Brazil BR Pará 78050 Abaetetuba 1.04062 Urban area -1.7225 -48.8907 (-1.7224999999999999, -48.890700000000002) Landslide Riverbank collapse Medium Unknown 0 0 G1 http://g1.globo.com/pa/para/noticia/2014/01/area-que-desabou-em-abaetetuba-tinha-aterro-irregular-diz-engenheira.html
df_BRA %>% 
  select(Country, State, City, Distance)
##      Country    State           City Distance
## 193   Brazil     Pará       Altamira  1.01848
## 194   Brazil Maranhão Barra do Corda 61.75306
## 947   Brazil    Amapá        Santana  0.17020
## 1348  Brazil     Pará     Abaetetuba  1.04062
library(ggplot2)
ggplot(data=df_BRA, aes(x = "Brasil", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_BRA, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para la entidad federal de Amapá

library(readr)
library(knitr)
df_BRA <- subset (df, State == "Amapá")
df_BRA %>% 
  select(Country, State, City, Distance) 
##     Country State    City Distance
## 947  Brazil Amapá Santana   0.1702
ggplot(data=df_BRA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_BRA,aes(x="Amapá",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Amapá")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para la entidad federal de Maranhão

library(readr)
library(knitr)
df_BRA <- subset (df, State == "Maranhão")
df_BRA %>% 
  select(Country, State, City, Distance) 
##     Country    State           City Distance
## 194  Brazil Maranhão Barra do Corda 61.75306
ggplot(data=df_BRA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_BRA,aes(x="Maranhão",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Maranhão")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para la entidad federal de Pará

library(readr)
library(knitr)
df_BRA <- subset (df, State == "Pará")
df_BRA %>% 
  select(Country, State, City, Distance) 
##      Country State       City Distance
## 193   Brazil  Pará   Altamira  1.01848
## 1348  Brazil  Pará Abaetetuba  1.04062
ggplot(data=df_BRA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_BRA,aes(x="Pará",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Pará")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_BRA <- subset (df, Country == "Brazil")
knitr::kable(head(df_BRA))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
193 1019 5/6/09 SA Brazil BR Pará 70888 Altamira 1.01848 -3.1946 -52.2093 (-3.1945999999999999, -52.209299999999999) Landslide Mudslide Medium Rain NA 19 http://en.wikipedia.org/wiki/2009_Brazilian_floods_and_mudslides#cite_note-186k_homeless_from_flood-0
194 1020 5/6/09 SA Brazil BR Maranhão 48901 Barra do Corda 61.75306 -5.0804 -45.6010 (-5.0804, -45.600999999999999) Landslide Mudslide Medium Rain NA 3 http://www.3news.co.nz/Heavy-rains-leave-186K-homeless-in-northern-Brazil/tabid/417/articleID/102883/cat/782/Default.aspx
947 4789 3/28/13 0:30:00 SA Brazil BR Amapá 83927 Santana 0.17020 -0.0568 -51.1818 (-0.056800000000000003, -51.181800000000003) Landslide Landslide Medium Other NA 6 bestonlinebroker.co http://bestonlinebroker.co/p/3999693490/2013/04/10/beadell-resources-why-the-silence-after-a-major-mining-disaster
1348 6591 1/4/14 SA Brazil BR Pará 78050 Abaetetuba 1.04062 Urban area -1.7225 -48.8907 (-1.7224999999999999, -48.890700000000002) Landslide Riverbank collapse Medium Unknown 0 0 G1 http://g1.globo.com/pa/para/noticia/2014/01/area-que-desabou-em-abaetetuba-tinha-aterro-irregular-diz-engenheira.html
Distance <- df_BRA$Distance

summary(df_BRA$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.1702  0.8064  1.0295 15.9956 16.2187 61.7531
library(pastecs)
## 
## Attaching package: 'pastecs'
## The following object is masked from 'package:tidyr':
## 
##     extract
## The following objects are masked from 'package:dplyr':
## 
##     first, last
stat.desc(df_BRA)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
##                        id date time continent_code Country country_code State
## nbr.val      4.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          1.019000e+03   NA   NA             NA      NA           NA    NA
## max          6.591000e+03   NA   NA             NA      NA           NA    NA
## range        5.572000e+03   NA   NA             NA      NA           NA    NA
## sum          1.341900e+04   NA   NA             NA      NA           NA    NA
## median       2.904500e+03   NA   NA             NA      NA           NA    NA
## mean         3.354750e+03   NA   NA             NA      NA           NA    NA
## SE.mean      1.397533e+03   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 4.447573e+03   NA   NA             NA      NA           NA    NA
## var          7.812391e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.795065e+03   NA   NA             NA      NA           NA    NA
## coef.var     8.331665e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description    latitude
## nbr.val      4.000000e+00   NA   4.000000                   NA   4.0000000
## nbr.null     0.000000e+00   NA   0.000000                   NA   0.0000000
## nbr.na       0.000000e+00   NA   0.000000                   NA   0.0000000
## min          4.890100e+04   NA   0.170200                   NA  -5.0804000
## max          8.392700e+04   NA  61.753060                   NA  -0.0568000
## range        3.502600e+04   NA  61.582860                   NA   5.0236000
## sum          2.817660e+05   NA  63.982360                   NA -10.0543000
## median       7.446900e+04   NA   1.029550                   NA  -2.4585500
## mean         7.044150e+04   NA  15.995590                   NA  -2.5135750
## SE.mean      7.659093e+03   NA  15.253836                   NA   1.0690311
## CI.mean.0.95 2.437465e+04   NA  48.544513                   NA   3.4021339
## var          2.346468e+08   NA 930.717994                   NA   4.5713096
## std.dev      1.531819e+04   NA  30.507671                   NA   2.1380621
## coef.var     2.174597e-01   NA   1.907255                   NA  -0.8506061
##                  longitude geolocation hazard_type landslide_type
## nbr.val         4.00000000          NA          NA             NA
## nbr.null        0.00000000          NA          NA             NA
## nbr.na          0.00000000          NA          NA             NA
## min           -52.20930000          NA          NA             NA
## max           -45.60100000          NA          NA             NA
## range           6.60830000          NA          NA             NA
## sum          -197.88280000          NA          NA             NA
## median        -50.03625000          NA          NA             NA
## mean          -49.47070000          NA          NA             NA
## SE.mean         1.46454689          NA          NA             NA
## CI.mean.0.95    4.66084185          NA          NA             NA
## var             8.57959042          NA          NA             NA
## std.dev         2.92909379          NA          NA             NA
## coef.var       -0.05920866          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        1   4.000000          NA
## nbr.null                 NA      NA         NA        1   1.000000          NA
## nbr.na                   NA      NA         NA        3   0.000000          NA
## min                      NA      NA         NA        0   0.000000          NA
## max                      NA      NA         NA        0  19.000000          NA
## range                    NA      NA         NA        0  19.000000          NA
## sum                      NA      NA         NA        0  28.000000          NA
## median                   NA      NA         NA        0   4.500000          NA
## mean                     NA      NA         NA        0   7.000000          NA
## SE.mean                  NA      NA         NA       NA   4.183300          NA
## CI.mean.0.95             NA      NA         NA      NaN  13.313128          NA
## var                      NA      NA         NA       NA  70.000000          NA
## std.dev                  NA      NA         NA       NA   8.366600          NA
## coef.var                 NA      NA         NA       NA   1.195229          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión

library(tidyverse)
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
##       Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
##       if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(viridis)
## Loading required package: viridisLite
## 
## Attaching package: 'viridis'
## The following object is masked from 'package:scales':
## 
##     viridis_pal
df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="red", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
  ggtitle("Deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Brasil presentan un claro sesgo hacia la derecha.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Colombia

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[4] <- "Continent"
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_COL <- subset (df, Country == "Colombia")
knitr::kable(head(df_COL))
id date time Continent Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
df_COL %>% 
  select(Country, State, City, Distance)
##       Country              State                       City Distance
## 8    Colombia          Risaralda                    Pereira  0.62022
## 49   Colombia              Cauca                     Suárez  8.46579
## 70   Colombia             Tolima                   Ambalema  6.96130
## 103  Colombia          Antioquia                   Medellín  5.12170
## 110  Colombia Norte de Santander                    Hacarí   0.38844
## 117  Colombia       Cundinamarca                    Quetame  8.58891
## 119  Colombia          Antioquia                    Briceño  6.44532
## 133  Colombia          Antioquia                     Caldas  1.27637
## 134  Colombia            Córdoba                     Cereté  0.68544
## 152  Colombia            Córdoba                    Moñitos 23.49217
## 163  Colombia          Antioquia                   Medellín  4.09028
## 166  Colombia              Cauca                    Miranda  0.70558
## 180  Colombia              Huila                       Hobo 10.18040
## 191  Colombia            Córdoba                    Sahagún  0.14776
## 303  Colombia       Cundinamarca                   Girardot  0.30587
## 340  Colombia    Valle del Cauca                       Cali  1.84941
## 349  Colombia               Meta               Puerto López 22.53724
## 352  Colombia       Cundinamarca                     Soacha 10.36239
## 396  Colombia          Magdalena                    Ciénaga 51.84125
## 403  Colombia Norte de Santander                San Calixto  7.85369
## 425  Colombia          Santander                    Málaga   2.99929
## 434  Colombia          Santander                    Málaga   2.99929
## 454  Colombia          Risaralda                       Apía  8.18229
## 455  Colombia          Antioquia                    Giraldo  2.55282
## 479  Colombia             Boyacá        San Pablo de Borbur  1.53032
## 517  Colombia          Risaralda                   Quinchía  0.11421
## 518  Colombia          Antioquia                   Medellín  2.18776
## 519  Colombia              Sucre                 San Marcos 25.51411
## 520  Colombia       Cundinamarca                  La Calera  7.28959
## 523  Colombia             Caldas                Marquetalia 17.48659
## 524  Colombia             Caldas                Marquetalia  3.72195
## 525  Colombia             Caldas                  Marulanda  0.72830
## 526  Colombia Norte de Santander                  Arboledas 14.62503
## 527  Colombia          Santander                 San Andrés  3.06383
## 528  Colombia          Antioquia                    Cáceres  4.29197
## 553  Colombia          Antioquia                      Bello  2.04898
## 574  Colombia             Nariño                  San Pablo  4.95353
## 594  Colombia          Santander                    Matanza  6.16385
## 619  Colombia             Caldas                 Villamaría  2.36822
## 621  Colombia Norte de Santander                     Cúcuta  3.60520
## 623  Colombia             Caldas                  Manizales  1.70850
## 629  Colombia          Antioquia                   Medellín  4.19867
## 631  Colombia             Nariño                   El Tambo  0.60599
## 632  Colombia             Nariño                   El Tambo  3.81445
## 637  Colombia             Caldas                  Manizales  1.07765
## 638  Colombia             Caldas                 Villamaría 15.82404
## 640  Colombia          Antioquia         Santa Rosa de Osos 18.91189
## 643  Colombia          Santander                    Florián  0.44753
## 644  Colombia       Cundinamarca San Antonio del Tequendama  6.08628
## 658  Colombia          Antioquia    Municipio de Copacabana  7.98838
## 659  Colombia          Antioquia                   Frontino  5.06960
## 690  Colombia             Boyacá                     Samacá  0.85976
## 701  Colombia             Boyacá                      Belén  2.28425
## 714  Colombia    Valle del Cauca                       Cali  8.30406
## 715  Colombia          Santander                    Lebrija  9.21217
## 716  Colombia          Santander                Piedecuesta 10.55986
## 718  Colombia          Santander     San Vicente de Chucurí  0.80432
## 753  Colombia            Bolívar         Santa Rosa del Sur 26.89879
## 821  Colombia          Antioquia                   Medellín  1.73101
## 822  Colombia    Valle del Cauca               Buenaventura 20.25692
## 826  Colombia          Antioquia             Ciudad Bolívar 24.48479
## 830  Colombia            Quindío                    Calarcá  1.35196
## 831  Colombia             Caldas                  Manizales  0.64094
## 832  Colombia             Tolima                  Cajamarca  8.56086
## 835  Colombia             Tolima                  Cajamarca  7.87303
## 836  Colombia       Cundinamarca                      Funza  9.23778
## 838  Colombia             Tolima          Carmen de Apicalá  9.65157
## 848  Colombia          Santander                 Los Santos 12.61362
## 849  Colombia       Cundinamarca                     Soacha  5.17650
## 850  Colombia              Cauca                    La Cruz  0.64469
## 851  Colombia             Caldas                   Norcasia 16.94642
## 852  Colombia             Nariño                San Lorenzo  0.37809
## 853  Colombia          Magdalena                Santa Marta  0.79694
## 854  Colombia             Caldas                   Aranzazu  2.53047
## 855  Colombia          Risaralda              Dos Quebradas  0.74201
## 859  Colombia          Antioquia                   Envigado  2.07081
## 876  Colombia          Antioquia                     Amalfi 11.11685
## 879  Colombia            Caquetá                  Florencia 15.42607
## 911  Colombia              Huila                San Agustín  6.84683
## 921  Colombia Norte de Santander                San Calixto 11.19714
## 928  Colombia              Huila                    Gigante  0.93184
## 1054 Colombia            Caquetá                  Florencia 15.16116
## 1071 Colombia              Huila                     Áquira  3.14201
## 1207 Colombia             Nariño                  Cumbitara 16.97776
## 1220 Colombia    Valle del Cauca                    Palmira  7.70237
## 1221 Colombia              Huila                    Palermo  0.00003
## 1222 Colombia          Santander                Bucaramanga  1.33829
## 1290 Colombia          Magdalena                   Ariguaní 28.50569
## 1305 Colombia          Santander     San Vicente de Chucurí  1.08964
## 1344 Colombia              Cauca                   Almaguer 17.31514
## 1362 Colombia          Antioquia                    Barbosa  7.78677
## 1456 Colombia           Putumayo              San Francisco  1.47940
## 1457 Colombia          Antioquia                     Salgar  3.09014
## 1471 Colombia              Cauca                    Jambaló  8.81287
## 1565 Colombia              Huila                     Rivera 20.31227
## 1669 Colombia          Antioquia                     Mutatá 15.04256
library(ggplot2)
ggplot(data=df_COL, aes(x = "Colombia", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_COL, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Antioquia

library(readr)
library(knitr)
df_COL <- subset (df, State == "Antioquia")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country     State                    City Distance
## 103  Colombia Antioquia                Medellín  5.12170
## 119  Colombia Antioquia                 Briceño  6.44532
## 133  Colombia Antioquia                  Caldas  1.27637
## 163  Colombia Antioquia                Medellín  4.09028
## 455  Colombia Antioquia                 Giraldo  2.55282
## 518  Colombia Antioquia                Medellín  2.18776
## 528  Colombia Antioquia                 Cáceres  4.29197
## 553  Colombia Antioquia                   Bello  2.04898
## 629  Colombia Antioquia                Medellín  4.19867
## 640  Colombia Antioquia      Santa Rosa de Osos 18.91189
## 658  Colombia Antioquia Municipio de Copacabana  7.98838
## 659  Colombia Antioquia                Frontino  5.06960
## 821  Colombia Antioquia                Medellín  1.73101
## 826  Colombia Antioquia          Ciudad Bolívar 24.48479
## 859  Colombia Antioquia                Envigado  2.07081
## 876  Colombia Antioquia                  Amalfi 11.11685
## 1362 Colombia Antioquia                 Barbosa  7.78677
## 1457 Colombia Antioquia                  Salgar  3.09014
## 1669 Colombia Antioquia                  Mutatá 15.04256
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Antioquia",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=1.2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Antioquia")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Bolívar

library(readr)
library(knitr)
df_COL <- subset (df, State == "Bolívar")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country   State               City Distance
## 753 Colombia Bolívar Santa Rosa del Sur 26.89879
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Bolívar",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=4)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Bolívar")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Boyacá

library(readr)
library(knitr)
df_COL <- subset (df, State == "Boyacá")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country  State                City Distance
## 479 Colombia Boyacá San Pablo de Borbur  1.53032
## 690 Colombia Boyacá              Samacá  0.85976
## 701 Colombia Boyacá               Belén  2.28425
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Boyacá",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=4)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Boyacá")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Caldas

library(readr)
library(knitr)
df_COL <- subset (df, State == "Caldas")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country  State        City Distance
## 523 Colombia Caldas Marquetalia 17.48659
## 524 Colombia Caldas Marquetalia  3.72195
## 525 Colombia Caldas   Marulanda  0.72830
## 619 Colombia Caldas  Villamaría  2.36822
## 623 Colombia Caldas   Manizales  1.70850
## 637 Colombia Caldas   Manizales  1.07765
## 638 Colombia Caldas  Villamaría 15.82404
## 831 Colombia Caldas   Manizales  0.64094
## 851 Colombia Caldas    Norcasia 16.94642
## 854 Colombia Caldas    Aranzazu  2.53047
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Caldas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Caldas")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Caquetá

library(readr)
library(knitr)
df_COL <- subset (df, State == "Caquetá")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country   State      City Distance
## 879  Colombia Caquetá Florencia 15.42607
## 1054 Colombia Caquetá Florencia 15.16116
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Caquetá",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Caquetá")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Cauca

library(readr)
library(knitr)
df_COL <- subset (df, State == "Cauca")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country State     City Distance
## 49   Colombia Cauca   Suárez  8.46579
## 166  Colombia Cauca  Miranda  0.70558
## 850  Colombia Cauca  La Cruz  0.64469
## 1344 Colombia Cauca Almaguer 17.31514
## 1471 Colombia Cauca  Jambaló  8.81287
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Cauca",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cauca")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Córdoba

library(readr)
library(knitr)
df_COL <- subset (df, State == "Córdoba")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country   State    City Distance
## 134 Colombia Córdoba  Cereté  0.68544
## 152 Colombia Córdoba Moñitos 23.49217
## 191 Colombia Córdoba Sahagún  0.14776
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Córdoba",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Córdoba")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Cundinamarca

library(readr)
library(knitr)
df_COL <- subset (df, State == "Cundinamarca")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country        State                       City Distance
## 117 Colombia Cundinamarca                    Quetame  8.58891
## 303 Colombia Cundinamarca                   Girardot  0.30587
## 352 Colombia Cundinamarca                     Soacha 10.36239
## 520 Colombia Cundinamarca                  La Calera  7.28959
## 644 Colombia Cundinamarca San Antonio del Tequendama  6.08628
## 836 Colombia Cundinamarca                      Funza  9.23778
## 849 Colombia Cundinamarca                     Soacha  5.17650
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Cundinamarca",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cundinamarca")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Huila

library(readr)
library(knitr)
df_COL <- subset (df, State == "Huila")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country State        City Distance
## 180  Colombia Huila        Hobo 10.18040
## 911  Colombia Huila San Agustín  6.84683
## 928  Colombia Huila     Gigante  0.93184
## 1071 Colombia Huila      Áquira  3.14201
## 1221 Colombia Huila     Palermo  0.00003
## 1565 Colombia Huila      Rivera 20.31227
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Huila",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Huila")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Magdalena

library(readr)
library(knitr)
df_COL <- subset (df, State == "Magdalena")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country     State        City Distance
## 396  Colombia Magdalena     Ciénaga 51.84125
## 853  Colombia Magdalena Santa Marta  0.79694
## 1290 Colombia Magdalena    Ariguaní 28.50569
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Magdalena",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Magdalena")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Meta

library(readr)
library(knitr)
df_COL <- subset (df, State == "Meta")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country State         City Distance
## 349 Colombia  Meta Puerto López 22.53724
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Meta",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Meta")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Nariño

library(readr)
library(knitr)
df_COL <- subset (df, State == "Nariño")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country  State        City Distance
## 574  Colombia Nariño   San Pablo  4.95353
## 631  Colombia Nariño    El Tambo  0.60599
## 632  Colombia Nariño    El Tambo  3.81445
## 852  Colombia Nariño San Lorenzo  0.37809
## 1207 Colombia Nariño   Cumbitara 16.97776
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Nariño",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Nariño")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Norte de Santander

library(readr)
library(knitr)
df_COL <- subset (df, State == "Norte de Santander")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country              State        City Distance
## 110 Colombia Norte de Santander     Hacarí   0.38844
## 403 Colombia Norte de Santander San Calixto  7.85369
## 526 Colombia Norte de Santander   Arboledas 14.62503
## 621 Colombia Norte de Santander      Cúcuta  3.60520
## 921 Colombia Norte de Santander San Calixto 11.19714
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Norte de Santander",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Norte de Santander")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Putumayo

library(readr)
library(knitr)
df_COL <- subset (df, State == "Putumayo")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country    State          City Distance
## 1456 Colombia Putumayo San Francisco   1.4794
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Putumayo",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Putumayo")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Quindío

library(readr)
library(knitr)
df_COL <- subset (df, State == "Quindío")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country   State    City Distance
## 830 Colombia Quindío Calarcá  1.35196
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Quindío",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Quindío")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Risaralda

library(readr)
library(knitr)
df_COL <- subset (df, State == "Risaralda")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country     State          City Distance
## 8   Colombia Risaralda       Pereira  0.62022
## 454 Colombia Risaralda          Apía  8.18229
## 517 Colombia Risaralda      Quinchía  0.11421
## 855 Colombia Risaralda Dos Quebradas  0.74201
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Risaralda",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Risaralda")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Santander

library(readr)
library(knitr)
df_COL <- subset (df, State == "Santander")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country     State                   City Distance
## 425  Colombia Santander                Málaga   2.99929
## 434  Colombia Santander                Málaga   2.99929
## 527  Colombia Santander             San Andrés  3.06383
## 594  Colombia Santander                Matanza  6.16385
## 643  Colombia Santander                Florián  0.44753
## 715  Colombia Santander                Lebrija  9.21217
## 716  Colombia Santander            Piedecuesta 10.55986
## 718  Colombia Santander San Vicente de Chucurí  0.80432
## 848  Colombia Santander             Los Santos 12.61362
## 1222 Colombia Santander            Bucaramanga  1.33829
## 1305 Colombia Santander San Vicente de Chucurí  1.08964
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Santander",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Santander")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Sucre

library(readr)
library(knitr)
df_COL <- subset (df, State == "Sucre")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country State       City Distance
## 519 Colombia Sucre San Marcos 25.51411
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Sucre",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Sucre")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Tolima

library(readr)
library(knitr)
df_COL <- subset (df, State == "Tolima")
df_COL %>% 
  select(Country, State, City, Distance) 
##      Country  State              City Distance
## 70  Colombia Tolima          Ambalema  6.96130
## 832 Colombia Tolima         Cajamarca  8.56086
## 835 Colombia Tolima         Cajamarca  7.87303
## 838 Colombia Tolima Carmen de Apicalá  9.65157
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Tolima",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Tolima")

Gráfico circular y de barras apiladas de las distancias de desplazamientos para el departamento de Valle del Cauca

library(readr)
library(knitr)
df_COL <- subset (df, State == "Valle del Cauca")
df_COL %>% 
  select(Country, State, City, Distance) 
##       Country           State         City Distance
## 340  Colombia Valle del Cauca         Cali  1.84941
## 714  Colombia Valle del Cauca         Cali  8.30406
## 822  Colombia Valle del Cauca Buenaventura 20.25692
## 1220 Colombia Valle del Cauca      Palmira  7.70237
ggplot(data=df_COL, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_COL,aes(x="Valle del Cauca",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Valle del Cauca")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_COL <- subset (df, Country == "Colombia")
knitr::kable(head(df_COL))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
Distance <- df_COL$Distance

summary(df_COL$Distance)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00003  1.44754  5.01156  7.62465 10.22590 51.84125
library(pastecs)
stat.desc(df_COL)
##                        id date time continent_code Country country_code State
## nbr.val      9.600000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          7.700000e+01   NA   NA             NA      NA           NA    NA
## max          7.513000e+03   NA   NA             NA      NA           NA    NA
## range        7.436000e+03   NA   NA             NA      NA           NA    NA
## sum          3.289040e+05   NA   NA             NA      NA           NA    NA
## median       3.366000e+03   NA   NA             NA      NA           NA    NA
## mean         3.426083e+03   NA   NA             NA      NA           NA    NA
## SE.mean      1.757988e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 3.490047e+02   NA   NA             NA      NA           NA    NA
## var          2.966901e+06   NA   NA             NA      NA           NA    NA
## std.dev      1.722469e+03   NA   NA             NA      NA           NA    NA
## coef.var     5.027518e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description    latitude
## nbr.val      9.600000e+01   NA  96.0000000                   NA  96.0000000
## nbr.null     0.000000e+00   NA   0.0000000                   NA   0.0000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.0000000
## min          1.091000e+03   NA   0.0000300                   NA   1.1656000
## max          2.392877e+06   NA  51.8412500                   NA  11.2475000
## range        2.391786e+06   NA  51.8412200                   NA  10.0819000
## sum          2.132931e+07   NA 731.9660900                   NA 516.6296000
## median       9.940500e+03   NA   5.0115650                   NA   5.3945500
## mean         2.221804e+05   NA   7.6246468                   NA   5.3815583
## SE.mean      5.633984e+04   NA   0.8623174                   NA   0.2267416
## CI.mean.0.95 1.118487e+05   NA   1.7119165                   NA   0.4501390
## var          3.047210e+11   NA  71.3847624                   NA   4.9355287
## std.dev      5.520154e+05   NA   8.4489504                   NA   2.2216050
## coef.var     2.484538e+00   NA   1.1081104                   NA   0.4128182
##                  longitude geolocation hazard_type landslide_type
## nbr.val       9.600000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -7.773190e+01          NA          NA             NA
## max          -7.249080e+01          NA          NA             NA
## range         5.241100e+00          NA          NA             NA
## sum          -7.207062e+03          NA          NA             NA
## median       -7.544180e+01          NA          NA             NA
## mean         -7.507356e+01          NA          NA             NA
## SE.mean       1.301323e-01          NA          NA             NA
## CI.mean.0.95  2.583453e-01          NA          NA             NA
## var           1.625705e+00          NA          NA             NA
## std.dev       1.275031e+00          NA          NA             NA
## coef.var     -1.698376e-02          NA          NA             NA
##              landslide_size trigger storm_name   injuries fatalities
## nbr.val                  NA      NA         NA  16.000000  91.000000
## nbr.null                 NA      NA         NA   9.000000  28.000000
## nbr.na                   NA      NA         NA  80.000000   5.000000
## min                      NA      NA         NA   0.000000   0.000000
## max                      NA      NA         NA  40.000000  92.000000
## range                    NA      NA         NA  40.000000  92.000000
## sum                      NA      NA         NA  73.000000 570.000000
## median                   NA      NA         NA   0.000000   2.000000
## mean                     NA      NA         NA   4.562500   6.263736
## SE.mean                  NA      NA         NA   2.554357   1.522548
## CI.mean.0.95             NA      NA         NA   5.444483   3.024808
## var                      NA      NA         NA 104.395833 210.951893
## std.dev                  NA      NA         NA  10.217428  14.524183
## coef.var                 NA      NA         NA   2.239436   2.318773
##              source_name source_link
## nbr.val               NA          NA
## nbr.null              NA          NA
## nbr.na                NA          NA
## min                   NA          NA
## max                   NA          NA
## range                 NA          NA
## sum                   NA          NA
## median                NA          NA
## mean                  NA          NA
## SE.mean               NA          NA
## CI.mean.0.95          NA          NA
## var                   NA          NA
## std.dev               NA          NA
## coef.var              NA          NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="yellow", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=11)) +
  ggtitle("Datos de deslizamientos para Colombia") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Colombia están medianamente bien distribuidos con un ligero sesgo hacia la derecha y se encuentran presentes algunos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país del Ecuador

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_ECU <- subset (df, Country == "Ecuador")
knitr::kable(head(df_ECU))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
df_ECU %>% 
  select(Country, State, City, Distance)
##      Country                          State                           City
## 9    Ecuador               Zamora-Chinchipe                         Zamora
## 10   Ecuador                           Loja                           Loja
## 11   Ecuador                      Pichincha                      Sangolquí
## 78   Ecuador                           Napo                      Archidona
## 87   Ecuador                      Pichincha                          Quito
## 218  Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
## 238  Ecuador                      Pichincha                       Machachi
## 253  Ecuador                     Tungurahua                          Baños
## 339  Ecuador                     Esmeraldas                     Esmeraldas
## 586  Ecuador                      Pichincha                       Machachi
## 587  Ecuador                       Cotopaxi                      Saquisilí
## 660  Ecuador                Morona-Santiago                          Macas
## 697  Ecuador                      Pichincha                          Quito
## 751  Ecuador                         Carchi                       El Ángel
## 868  Ecuador                        Manabi                           Chone
## 872  Ecuador                        Manabi                         Tosagua
## 942  Ecuador                         Guayas                          Balao
## 956  Ecuador                     Esmeraldas                     Esmeraldas
## 984  Ecuador                      Pichincha                        Cayambe
## 1304 Ecuador                         Carchi                    San Gabriel
## 1332 Ecuador                      Pichincha                          Quito
## 1333 Ecuador                      Pichincha                          Quito
## 1335 Ecuador                      Sucumbios                Gonzalo Pizarro
## 1365 Ecuador                          Azuay                         Cuenca
## 1368 Ecuador               Zamora-Chinchipe                         Zamora
## 1451 Ecuador                           Loja                         Macará
## 1452 Ecuador                           Loja                           Loja
## 1453 Ecuador                           Loja                       Catamayo
## 1454 Ecuador                          Azuay                         Cuenca
## 1566 Ecuador                      Pichincha                          Quito
##      Distance
## 9     0.47714
## 10    0.35649
## 11   33.94603
## 78   50.21741
## 87    1.56942
## 218   1.16036
## 238  26.18676
## 253  11.91442
## 339   2.81891
## 586  25.82923
## 587  30.81169
## 660  46.77007
## 697   4.39517
## 751  28.29459
## 868  19.85816
## 872   7.67919
## 942  16.34404
## 956  21.26652
## 984  45.69792
## 1304 10.47204
## 1332 26.72137
## 1333 23.97854
## 1335 11.55916
## 1365 13.21139
## 1368  1.23724
## 1451 18.88784
## 1452  1.82885
## 1453 17.57187
## 1454 10.16196
## 1566  4.25486
library(ggplot2)
ggplot(data=df_ECU, aes(x = "Ecuador", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_ECU, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Azuay

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Azuay")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country State   City Distance
## 1365 Ecuador Azuay Cuenca 13.21139
## 1454 Ecuador Azuay Cuenca 10.16196
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Azuay",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=1.2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Azuay")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Carchi

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Carchi")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country  State        City Distance
## 751  Ecuador Carchi    El Ángel 28.29459
## 1304 Ecuador Carchi San Gabriel 10.47204
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Carchi",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=1.2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Carchi")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Cotopaxi

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Cotopaxi")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country    State      City Distance
## 587 Ecuador Cotopaxi Saquisilí 30.81169
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Cotopaxi",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="black",size=1.2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cotopaxi")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Esmeraldas

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Esmeraldas")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country      State       City Distance
## 339 Ecuador Esmeraldas Esmeraldas  2.81891
## 956 Ecuador Esmeraldas Esmeraldas 21.26652
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Esmeraldas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Esmeraldas")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Guayas

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Guayas")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country  State  City Distance
## 942 Ecuador Guayas Balao 16.34404
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Guayas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Guayas")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Loja

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Loja")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country State     City Distance
## 10   Ecuador  Loja     Loja  0.35649
## 1451 Ecuador  Loja   Macará 18.88784
## 1452 Ecuador  Loja     Loja  1.82885
## 1453 Ecuador  Loja Catamayo 17.57187
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Loja",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Loja")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Morona-Santiago

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Morona-Santiago")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country           State  City Distance
## 660 Ecuador Morona-Santiago Macas 46.77007
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Morona-Santiago",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Morona-Santiago")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Napo

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Napo")
df_ECU %>% 
  select(Country, State, City, Distance) 
##    Country State      City Distance
## 78 Ecuador  Napo Archidona 50.21741
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Napo",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Napo")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Pichincha

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Pichincha")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country     State      City Distance
## 11   Ecuador Pichincha Sangolquí 33.94603
## 87   Ecuador Pichincha     Quito  1.56942
## 238  Ecuador Pichincha  Machachi 26.18676
## 586  Ecuador Pichincha  Machachi 25.82923
## 697  Ecuador Pichincha     Quito  4.39517
## 984  Ecuador Pichincha   Cayambe 45.69792
## 1332 Ecuador Pichincha     Quito 26.72137
## 1333 Ecuador Pichincha     Quito 23.97854
## 1566 Ecuador Pichincha     Quito  4.25486
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Pichincha",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Pichincha")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Santo Domingo de los Tsáchilas

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Santo Domingo de los Tsáchilas")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country                          State                           City
## 218 Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
##     Distance
## 218  1.16036
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Santo Domingo de los Tsáchilas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Santo Domingo de los Tsáchilas")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Sucumbios

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Sucumbios")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country     State            City Distance
## 1335 Ecuador Sucumbios Gonzalo Pizarro 11.55916
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Sucumbios",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Sucumbios")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Tungurahua

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Tungurahua")
df_ECU %>% 
  select(Country, State, City, Distance) 
##     Country      State  City Distance
## 253 Ecuador Tungurahua Baños 11.91442
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Tungurahua",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Tungurahua")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Zamora-Chinchipe

library(readr)
library(knitr)
df_ECU <- subset (df, State == "Zamora-Chinchipe")
df_ECU %>% 
  select(Country, State, City, Distance) 
##      Country            State   City Distance
## 9    Ecuador Zamora-Chinchipe Zamora  0.47714
## 1368 Ecuador Zamora-Chinchipe Zamora  1.23724
ggplot(data=df_ECU, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ECU,aes(x="Zamora-Chinchipe",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Zamora-Chinchipe")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_ECU <- subset (df, Country == "Ecuador")
knitr::kable(head(df_ECU))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
Distance <- df_ECU$Distance

summary(df_ECU$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3565  4.2899 14.7777 17.1826 26.0974 50.2174
library(pastecs)
stat.desc(df_ECU)
##                        id date time continent_code Country country_code State
## nbr.val      3.000000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          1.050000e+02   NA   NA             NA      NA           NA    NA
## max          7.403000e+03   NA   NA             NA      NA           NA    NA
## range        7.298000e+03   NA   NA             NA      NA           NA    NA
## sum          1.209440e+05   NA   NA             NA      NA           NA    NA
## median       4.269500e+03   NA   NA             NA      NA           NA    NA
## mean         4.031467e+03   NA   NA             NA      NA           NA    NA
## SE.mean      4.600208e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 9.408482e+02   NA   NA             NA      NA           NA    NA
## var          6.348574e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.519638e+03   NA   NA             NA      NA           NA    NA
## coef.var     6.249928e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description    latitude
## nbr.val      3.000000e+01   NA  30.0000000                   NA  30.0000000
## nbr.null     1.000000e+00   NA   0.0000000                   NA   0.0000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.0000000
## min          0.000000e+00   NA   0.3564900                   NA  -4.3313000
## max          1.399814e+06   NA  50.2174100                   NA   0.9374000
## range        1.399814e+06   NA  49.8609200                   NA   5.2687000
## sum          8.599781e+06   NA 515.4786400                   NA -38.9118000
## median       2.574200e+04   NA  14.7777150                   NA  -0.5454000
## mean         2.866594e+05   NA  17.1826213                   NA  -1.2970600
## SE.mean      9.355366e+04   NA   2.6348903                   NA   0.3161467
## CI.mean.0.95 1.913387e+05   NA   5.3889557                   NA   0.6465926
## var          2.625686e+11   NA 208.2794055                   NA   2.9984619
## std.dev      5.124145e+05   NA  14.4318885                   NA   1.7316067
## coef.var     1.787538e+00   NA   0.8399119                   NA  -1.3350244
##                  longitude geolocation hazard_type landslide_type
## nbr.val       3.000000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.030080e+01          NA          NA             NA
## max          -7.746130e+01          NA          NA             NA
## range         2.839500e+00          NA          NA             NA
## sum          -2.364088e+03          NA          NA             NA
## median       -7.882865e+01          NA          NA             NA
## mean         -7.880293e+01          NA          NA             NA
## SE.mean       1.287692e-01          NA          NA             NA
## CI.mean.0.95  2.633627e-01          NA          NA             NA
## var           4.974455e-01          NA          NA             NA
## std.dev       7.052982e-01          NA          NA             NA
## coef.var     -8.950152e-03          NA          NA             NA
##              landslide_size trigger storm_name  injuries fatalities source_name
## nbr.val                  NA      NA         NA 15.000000  26.000000          NA
## nbr.null                 NA      NA         NA  8.000000  12.000000          NA
## nbr.na                   NA      NA         NA 15.000000   4.000000          NA
## min                      NA      NA         NA  0.000000   0.000000          NA
## max                      NA      NA         NA 17.000000  20.000000          NA
## range                    NA      NA         NA 17.000000  20.000000          NA
## sum                      NA      NA         NA 52.000000  96.000000          NA
## median                   NA      NA         NA  0.000000   2.000000          NA
## mean                     NA      NA         NA  3.466667   3.692308          NA
## SE.mean                  NA      NA         NA  1.372751   1.032948          NA
## CI.mean.0.95             NA      NA         NA  2.944257   2.127397          NA
## var                      NA      NA         NA 28.266667  27.741538          NA
## std.dev                  NA      NA         NA  5.316641   5.267024          NA
## coef.var                 NA      NA         NA  1.533646   1.426486          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión para Ecuador


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=11)) +
  ggtitle("Deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Ecuador se encuentran bien distribuidos.

Gráfico circular y de barras de las distancias de desplazamientos para el país del Peru

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_PE <- subset (df, Country == "Peru")
knitr::kable(head(df_PE))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
80 472 3/5/08 SA Peru PE Huanuco 53177 Tingo María 17.34318 -9.2114 -76.1311 (-9.2113999999999994, -76.131100000000004) Landslide Landslide Medium Rain NA 7 http://news.xinhuanet.com/english/2008-03/06/content_7727748.htm
90 497 4/11/08 SA Peru PE Ancash 5044 Carhuaz 2.43089 -9.2965 -77.6613 (-9.2965, -77.661299999999997) Landslide Landslide Medium Rain NA NA http://news.xinhuanet.com/english/2008-04/14/content_7972049.htm
184 1004 4/14/09 SA Peru PE La Libertad 0 Parcoy 9.64894 -7.9589 -77.5239 (-7.9588999999999999, -77.523899999999998) Landslide Mudslide Medium Downpour NA 12 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
185 1005 4/14/09 SA Peru PE La Libertad 0 Aricapampa 0.00442 -7.8058 -77.7172 (-7.8057999999999996, -77.717200000000005) Landslide Mudslide Medium Downpour NA 0 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
252 1459 1/28/10 15:00:00 SA Peru PE Ancash 0 Anta 0.13147 -9.3584 -77.5984 (-9.3583999999999996, -77.598399999999998) Landslide Complex Medium Downpour NA 0 http://daveslandslideblog.blogspot.com/2010/01/new-images-of-level-of-destruction-in.html
294 1612 4/1/10 Early morning SA Peru PE Huanuco 0 Acomayo 3.49890 -9.7996 -76.1038 (-9.7995999999999999, -76.103800000000007) Landslide Lahar Large Downpour NA 12 http://www.thejakartapost.com/news/2010/03/18/mudslide-isolates-1500-residents-solok.html
df_PE %>% 
  select(Country, State, City, Distance)
##      Country       State        City Distance
## 80      Peru     Huanuco Tingo María 17.34318
## 90      Peru      Ancash     Carhuaz  2.43089
## 184     Peru La Libertad      Parcoy  9.64894
## 185     Peru La Libertad  Aricapampa  0.00442
## 252     Peru      Ancash        Anta  0.13147
## 294     Peru     Huanuco     Acomayo  3.49890
## 295     Peru     Huanuco        Ambo  0.55865
## 516     Peru     Huanuco     Huánuco  1.01932
## 578     Peru      Ancash       Yanac  3.70678
## 864     Peru      Ancash       Tauca  6.77672
## 912     Peru  San Martín   Yuracyacu  8.89799
## 1378    Peru      Ancash     Huachis  3.26788
## 1424    Peru  San Martín    Naranjos 12.70296
## 1425    Peru  San Martín    Tarapoto  2.89809
library(ggplot2)
ggplot(data=df_PE, aes(x = "Peru", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_PE, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Ancash

library(readr)
library(knitr)
df_PE <- subset (df, State == "Ancash")
df_PE %>% 
  select(Country, State, City, Distance) 
##      Country  State    City Distance
## 90      Peru Ancash Carhuaz  2.43089
## 252     Peru Ancash    Anta  0.13147
## 578     Peru Ancash   Yanac  3.70678
## 864     Peru Ancash   Tauca  6.77672
## 1378    Peru Ancash Huachis  3.26788
ggplot(data=df_PE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PE,aes(x="Ancash",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Ancash")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Huanuco

library(readr)
library(knitr)
df_PE <- subset (df, State == "Huanuco")
df_PE %>% 
  select(Country, State, City, Distance) 
##     Country   State        City Distance
## 80     Peru Huanuco Tingo María 17.34318
## 294    Peru Huanuco     Acomayo  3.49890
## 295    Peru Huanuco        Ambo  0.55865
## 516    Peru Huanuco     Huánuco  1.01932
ggplot(data=df_PE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PE,aes(x="Huanuco",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Huanuco")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de La Libertad

library(readr)
library(knitr)
df_PE <- subset (df, State == "La Libertad")
df_PE %>% 
  select(Country, State, City, Distance) 
##          Country       State              City Distance
## 105  El Salvador La Libertad       Santa Tecla  4.96416
## 184         Peru La Libertad            Parcoy  9.64894
## 185         Peru La Libertad        Aricapampa  0.00442
## 225  El Salvador La Libertad Antiguo Cuscatlán  4.86219
## 1374 El Salvador La Libertad       Santa Tecla  4.60655
## 1596 El Salvador La Libertad       Santa Tecla  4.67722
## 1597 El Salvador La Libertad       Santa Tecla  9.87553
ggplot(data=df_PE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PE,aes(x="La Libertad",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - La Libertad")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Martín

library(readr)
library(knitr)
df_PE <- subset (df, State == "San Martín")
df_PE %>% 
  select(Country, State, City, Distance) 
##      Country      State      City Distance
## 912     Peru San Martín Yuracyacu  8.89799
## 1424    Peru San Martín  Naranjos 12.70296
## 1425    Peru San Martín  Tarapoto  2.89809
ggplot(data=df_PE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PE,aes(x="San Martín",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Martín")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_PE <- subset (df, Country == "Peru")
knitr::kable(head(df_PE))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
80 472 3/5/08 SA Peru PE Huanuco 53177 Tingo María 17.34318 -9.2114 -76.1311 (-9.2113999999999994, -76.131100000000004) Landslide Landslide Medium Rain NA 7 http://news.xinhuanet.com/english/2008-03/06/content_7727748.htm
90 497 4/11/08 SA Peru PE Ancash 5044 Carhuaz 2.43089 -9.2965 -77.6613 (-9.2965, -77.661299999999997) Landslide Landslide Medium Rain NA NA http://news.xinhuanet.com/english/2008-04/14/content_7972049.htm
184 1004 4/14/09 SA Peru PE La Libertad 0 Parcoy 9.64894 -7.9589 -77.5239 (-7.9588999999999999, -77.523899999999998) Landslide Mudslide Medium Downpour NA 12 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
185 1005 4/14/09 SA Peru PE La Libertad 0 Aricapampa 0.00442 -7.8058 -77.7172 (-7.8057999999999996, -77.717200000000005) Landslide Mudslide Medium Downpour NA 0 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
252 1459 1/28/10 15:00:00 SA Peru PE Ancash 0 Anta 0.13147 -9.3584 -77.5984 (-9.3583999999999996, -77.598399999999998) Landslide Complex Medium Downpour NA 0 http://daveslandslideblog.blogspot.com/2010/01/new-images-of-level-of-destruction-in.html
294 1612 4/1/10 Early morning SA Peru PE Huanuco 0 Acomayo 3.49890 -9.7996 -76.1038 (-9.7995999999999999, -76.103800000000007) Landslide Lahar Large Downpour NA 12 http://www.thejakartapost.com/news/2010/03/18/mudslide-isolates-1500-residents-solok.html
Distance <- df_PE$Distance

summary(df_PE$Distance)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00442  1.37221  3.38339  5.20616  8.36767 17.34318
library(pastecs)
stat.desc(df_PE)
##                        id date time continent_code Country country_code State
## nbr.val      1.400000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          4.720000e+02   NA   NA             NA      NA           NA    NA
## max          6.829000e+03   NA   NA             NA      NA           NA    NA
## range        6.357000e+03   NA   NA             NA      NA           NA    NA
## sum          4.245300e+04   NA   NA             NA      NA           NA    NA
## median       2.160500e+03   NA   NA             NA      NA           NA    NA
## mean         3.032357e+03   NA   NA             NA      NA           NA    NA
## SE.mean      6.368217e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 1.375770e+03   NA   NA             NA      NA           NA    NA
## var          5.677586e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.382769e+03   NA   NA             NA      NA           NA    NA
## coef.var     7.857810e-01   NA   NA             NA      NA           NA    NA
##                population City  Distance location_description     latitude
## nbr.val      1.400000e+01   NA 14.000000                   NA   14.0000000
## nbr.null     1.000000e+01   NA  0.000000                   NA    0.0000000
## nbr.na       0.000000e+00   NA  0.000000                   NA    0.0000000
## min          0.000000e+00   NA  0.004420                   NA  -10.1258000
## max          1.479590e+05   NA 17.343180                   NA   -5.7135000
## range        1.479590e+05   NA 17.338760                   NA    4.4123000
## sum          2.130450e+05   NA 72.886190                   NA -118.2365000
## median       0.000000e+00   NA  3.383390                   NA   -8.9183000
## mean         1.521750e+04   NA  5.206156                   NA   -8.4454643
## SE.mean      1.088153e+04   NA  1.393140                   NA    0.3908785
## CI.mean.0.95 2.350813e+04   NA  3.009695                   NA    0.8444417
## var          1.657709e+09   NA 27.171731                   NA    2.1390041
## std.dev      4.071497e+04   NA  5.212651                   NA    1.4625334
## coef.var     2.675536e+00   NA  1.001247                   NA   -0.1731738
##                  longitude geolocation hazard_type landslide_type
## nbr.val       1.400000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -7.808340e+01          NA          NA             NA
## max          -7.610380e+01          NA          NA             NA
## range         1.979600e+00          NA          NA             NA
## sum          -1.079477e+03          NA          NA             NA
## median       -7.738725e+01          NA          NA             NA
## mean         -7.710551e+01          NA          NA             NA
## SE.mean       1.943987e-01          NA          NA             NA
## CI.mean.0.95  4.199728e-01          NA          NA             NA
## var           5.290719e-01          NA          NA             NA
## std.dev       7.273733e-01          NA          NA             NA
## coef.var     -9.433479e-03          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        3  13.000000          NA
## nbr.null                 NA      NA         NA        3   6.000000          NA
## nbr.na                   NA      NA         NA       11   1.000000          NA
## min                      NA      NA         NA        0   0.000000          NA
## max                      NA      NA         NA        0  28.000000          NA
## range                    NA      NA         NA        0  28.000000          NA
## sum                      NA      NA         NA        0  77.000000          NA
## median                   NA      NA         NA        0   2.000000          NA
## mean                     NA      NA         NA        0   5.923077          NA
## SE.mean                  NA      NA         NA        0   2.330020          NA
## CI.mean.0.95             NA      NA         NA        0   5.076678          NA
## var                      NA      NA         NA        0  70.576923          NA
## std.dev                  NA      NA         NA        0   8.401007          NA
## coef.var                 NA      NA         NA      NaN   1.418352          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="red", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=11)) +
  ggtitle("Deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Perú presentan una distribución con un sesgo hacia la derecha.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Trinidad y Tobago

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_TAT <- subset (df, Country == "Trinidad and Tobago")
knitr::kable(head(df_TAT))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
30 224 9/1/07 NA Trinidad and Tobago TT Tobago 17000 Scarborough 9.11607 11.2415 -60.6742 (11.2415, -60.674199999999999) Landslide Landslide Medium Tropical cyclone Hurricane Felix NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161197580
61 357 11/17/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 7.33295 11.2965 -60.6312 (11.2965, -60.6312) Landslide Landslide Medium Rain NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161237574
65 390 12/11/07 NA Trinidad and Tobago TT Sangre Grande 15968 Sangre Grande 29.28864 10.8410 -61.0550 (10.840999999999999, -61.055) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA 3 Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
66 391 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 8.62938 11.3000 -60.6440 (11.3, -60.643999999999998) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
67 392 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 2.66802 11.2670 -60.5660 (11.266999999999999, -60.566000000000003) Landslide Landslide Small Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
149 780 9/7/08 NA Trinidad and Tobago TT Diego Martin 8140 Petit Valley 10.61854 10.7603 -61.4578 (10.760300000000001, -61.457799999999999) Landslide Landslide Medium Downpour NA NA http://www.newsday.co.tt/news/0,85847.html
df_TAT %>% 
  select(Country, State, City, Distance)
##                  Country                   State          City Distance
## 30   Trinidad and Tobago                  Tobago   Scarborough  9.11607
## 61   Trinidad and Tobago          Eastern Tobago    Roxborough  7.33295
## 65   Trinidad and Tobago           Sangre Grande Sangre Grande 29.28864
## 66   Trinidad and Tobago          Eastern Tobago    Roxborough  8.62938
## 67   Trinidad and Tobago          Eastern Tobago    Roxborough  2.66802
## 149  Trinidad and Tobago            Diego Martin  Petit Valley 10.61854
## 164  Trinidad and Tobago   City of Port of Spain Port-of-Spain  1.07831
## 171  Trinidad and Tobago            Diego Martin  Petit Valley  5.91101
## 172  Trinidad and Tobago            Diego Martin  Petit Valley  2.24772
## 173  Trinidad and Tobago              Penal/Debe        Peñal,  2.57071
## 206  Trinidad and Tobago    City of San Fernando     Marabella  9.42494
## 392  Trinidad and Tobago            Diego Martin  Petit Valley  4.00979
## 393  Trinidad and Tobago   City of Port of Spain      Mucurapo  7.43310
## 394  Trinidad and Tobago   City of Port of Spain Port-of-Spain  2.15046
## 400  Trinidad and Tobago            Diego Martin  Petit Valley  4.33904
## 402  Trinidad and Tobago            Diego Martin  Petit Valley  6.95807
## 404  Trinidad and Tobago   City of Port of Spain      Mucurapo  7.24469
## 405  Trinidad and Tobago     San Juan/Laventille    Laventille  7.37181
## 421  Trinidad and Tobago    City of San Fernando  San Fernando  0.92162
## 446  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  6.91642
## 494  Trinidad and Tobago           Sangre Grande Sangre Grande 33.51924
## 495  Trinidad and Tobago          Eastern Tobago    Roxborough  8.44112
## 496  Trinidad and Tobago          Eastern Tobago    Roxborough  3.36240
## 497  Trinidad and Tobago         Tunapuna/Piarco      Paradise  2.64003
## 498  Trinidad and Tobago          Eastern Tobago    Roxborough  0.91163
## 499  Trinidad and Tobago                  Tobago   Scarborough  4.68038
## 500  Trinidad and Tobago                  Tobago   Scarborough  6.81393
## 532  Trinidad and Tobago            Diego Martin  Petit Valley  3.33629
## 533  Trinidad and Tobago            Diego Martin  Petit Valley  3.08955
## 534  Trinidad and Tobago            Diego Martin  Petit Valley  4.66234
## 535  Trinidad and Tobago            Diego Martin  Petit Valley  4.50278
## 536  Trinidad and Tobago            Diego Martin  Petit Valley  6.58396
## 537  Trinidad and Tobago            Diego Martin  Petit Valley  1.83626
## 554  Trinidad and Tobago            Princes Town  Princes Town  8.41931
## 555  Trinidad and Tobago           Sangre Grande Sangre Grande 33.10893
## 556  Trinidad and Tobago           Sangre Grande Sangre Grande 33.10893
## 827  Trinidad and Tobago     San Juan/Laventille    Laventille  0.38521
## 829  Trinidad and Tobago            Diego Martin  Petit Valley 11.75674
## 839  Trinidad and Tobago              Penal/Debe        Peñal,  4.21321
## 840  Trinidad and Tobago            Point Fortin  Point Fortin 22.47289
## 841  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  8.55164
## 842  Trinidad and Tobago            Diego Martin  Petit Valley  5.73985
## 843  Trinidad and Tobago           Sangre Grande Sangre Grande  2.00931
## 844  Trinidad and Tobago Couva-Tabaquite-Talparo     Tabaquite  0.61975
## 845  Trinidad and Tobago        Borough of Arima         Arima 13.34116
## 846  Trinidad and Tobago           Sangre Grande Sangre Grande 30.29383
## 858  Trinidad and Tobago         Tunapuna/Piarco      Paradise 16.73194
## 877  Trinidad and Tobago          Eastern Tobago    Roxborough  5.62092
## 878  Trinidad and Tobago                  Tobago   Scarborough  3.48176
## 887  Trinidad and Tobago         Tunapuna/Piarco      Paradise 13.75900
## 897  Trinidad and Tobago            Diego Martin  Petit Valley  6.39375
## 898  Trinidad and Tobago            Diego Martin  Petit Valley  4.64073
## 906  Trinidad and Tobago                          Petit Valley  1.84331
## 907  Trinidad and Tobago   City of Port of Spain Port-of-Spain  2.54016
## 925  Trinidad and Tobago          Eastern Tobago    Roxborough  7.87263
## 926  Trinidad and Tobago          Eastern Tobago    Roxborough  7.47816
## 927  Trinidad and Tobago          Eastern Tobago    Roxborough  8.24676
## 958  Trinidad and Tobago                  Tobago   Scarborough  6.35974
## 990  Trinidad and Tobago         Tunapuna/Piarco      Tunapuna  2.63186
## 1174 Trinidad and Tobago                  Tobago   Scarborough  3.22335
## 1175 Trinidad and Tobago                  Tobago   Scarborough  3.88123
## 1183 Trinidad and Tobago           Sangre Grande Sangre Grande 26.68822
## 1302 Trinidad and Tobago                 Siparia       Siparia  3.75200
library(ggplot2)
ggplot(data=df_TAT, aes(x = "Trinidad and Tobago", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_TAT, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Borough of Arima

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Borough of Arima")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country            State  City Distance
## 845 Trinidad and Tobago Borough of Arima Arima 13.34116
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Borough of Arima",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Borough of Arima")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de City of Port of Spain

library(readr)
library(knitr)
df_TAT <- subset (df, State == "City of Port of Spain")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country                 State          City Distance
## 164 Trinidad and Tobago City of Port of Spain Port-of-Spain  1.07831
## 393 Trinidad and Tobago City of Port of Spain      Mucurapo  7.43310
## 394 Trinidad and Tobago City of Port of Spain Port-of-Spain  2.15046
## 404 Trinidad and Tobago City of Port of Spain      Mucurapo  7.24469
## 907 Trinidad and Tobago City of Port of Spain Port-of-Spain  2.54016
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="City of Port of Spain",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - City of Port of Spain")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de City of San Fernando

library(readr)
library(knitr)
df_TAT <- subset (df, State == "City of San Fernando")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country                State         City Distance
## 206 Trinidad and Tobago City of San Fernando    Marabella  9.42494
## 421 Trinidad and Tobago City of San Fernando San Fernando  0.92162
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="City of San Fernando",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - City of San Fernando")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Couva-Tabaquite-Talparo

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Couva-Tabaquite-Talparo")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country                   State      City Distance
## 446 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite  6.91642
## 841 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite  8.55164
## 844 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite  0.61975
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Couva-Tabaquite-Talparo",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Couva-Tabaquite-Talparo")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Diego Martin

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Diego Martin")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country        State         City Distance
## 149 Trinidad and Tobago Diego Martin Petit Valley 10.61854
## 171 Trinidad and Tobago Diego Martin Petit Valley  5.91101
## 172 Trinidad and Tobago Diego Martin Petit Valley  2.24772
## 392 Trinidad and Tobago Diego Martin Petit Valley  4.00979
## 400 Trinidad and Tobago Diego Martin Petit Valley  4.33904
## 402 Trinidad and Tobago Diego Martin Petit Valley  6.95807
## 532 Trinidad and Tobago Diego Martin Petit Valley  3.33629
## 533 Trinidad and Tobago Diego Martin Petit Valley  3.08955
## 534 Trinidad and Tobago Diego Martin Petit Valley  4.66234
## 535 Trinidad and Tobago Diego Martin Petit Valley  4.50278
## 536 Trinidad and Tobago Diego Martin Petit Valley  6.58396
## 537 Trinidad and Tobago Diego Martin Petit Valley  1.83626
## 829 Trinidad and Tobago Diego Martin Petit Valley 11.75674
## 842 Trinidad and Tobago Diego Martin Petit Valley  5.73985
## 897 Trinidad and Tobago Diego Martin Petit Valley  6.39375
## 898 Trinidad and Tobago Diego Martin Petit Valley  4.64073
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Diego Martin",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Diego Martin")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Eastern Tobago

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Eastern Tobago")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country          State       City Distance
## 61  Trinidad and Tobago Eastern Tobago Roxborough  7.33295
## 66  Trinidad and Tobago Eastern Tobago Roxborough  8.62938
## 67  Trinidad and Tobago Eastern Tobago Roxborough  2.66802
## 495 Trinidad and Tobago Eastern Tobago Roxborough  8.44112
## 496 Trinidad and Tobago Eastern Tobago Roxborough  3.36240
## 498 Trinidad and Tobago Eastern Tobago Roxborough  0.91163
## 877 Trinidad and Tobago Eastern Tobago Roxborough  5.62092
## 925 Trinidad and Tobago Eastern Tobago Roxborough  7.87263
## 926 Trinidad and Tobago Eastern Tobago Roxborough  7.47816
## 927 Trinidad and Tobago Eastern Tobago Roxborough  8.24676
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Eastern Tobago",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Eastern Tobago")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Penal/Debe

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Penal/Debe")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country      State   City Distance
## 173 Trinidad and Tobago Penal/Debe Peñal,  2.57071
## 839 Trinidad and Tobago Penal/Debe Peñal,  4.21321
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Penal/Debe",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Penal/Debe")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Point Fortin

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Point Fortin")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country        State         City Distance
## 840 Trinidad and Tobago Point Fortin Point Fortin 22.47289
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Point Fortin",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Point Fortin")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Princes Town

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Princes Town")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country        State         City Distance
## 554 Trinidad and Tobago Princes Town Princes Town  8.41931
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Princes Town",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Princes Town")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Juan/Laventille

library(readr)
library(knitr)
df_TAT <- subset (df, State == "San Juan/Laventille")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country               State       City Distance
## 405 Trinidad and Tobago San Juan/Laventille Laventille  7.37181
## 827 Trinidad and Tobago San Juan/Laventille Laventille  0.38521
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="San Juan/Laventille",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Juan/Laventille")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Sangre Grande

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Sangre Grande")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                  Country         State          City Distance
## 65   Trinidad and Tobago Sangre Grande Sangre Grande 29.28864
## 494  Trinidad and Tobago Sangre Grande Sangre Grande 33.51924
## 555  Trinidad and Tobago Sangre Grande Sangre Grande 33.10893
## 556  Trinidad and Tobago Sangre Grande Sangre Grande 33.10893
## 843  Trinidad and Tobago Sangre Grande Sangre Grande  2.00931
## 846  Trinidad and Tobago Sangre Grande Sangre Grande 30.29383
## 1183 Trinidad and Tobago Sangre Grande Sangre Grande 26.68822
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Sangre Grande",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Sangre Grande")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Siparia

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Siparia")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                  Country   State    City Distance
## 1302 Trinidad and Tobago Siparia Siparia    3.752
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Siparia",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Siparia")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Tobago

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Tobago")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                  Country  State        City Distance
## 30   Trinidad and Tobago Tobago Scarborough  9.11607
## 499  Trinidad and Tobago Tobago Scarborough  4.68038
## 500  Trinidad and Tobago Tobago Scarborough  6.81393
## 878  Trinidad and Tobago Tobago Scarborough  3.48176
## 958  Trinidad and Tobago Tobago Scarborough  6.35974
## 1174 Trinidad and Tobago Tobago Scarborough  3.22335
## 1175 Trinidad and Tobago Tobago Scarborough  3.88123
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Tobago",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Tobago")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Tunapuna/Piarco

library(readr)
library(knitr)
df_TAT <- subset (df, State == "Tunapuna/Piarco")
df_TAT %>% 
  select(Country, State, City, Distance) 
##                 Country           State     City Distance
## 497 Trinidad and Tobago Tunapuna/Piarco Paradise  2.64003
## 858 Trinidad and Tobago Tunapuna/Piarco Paradise 16.73194
## 887 Trinidad and Tobago Tunapuna/Piarco Paradise 13.75900
## 990 Trinidad and Tobago Tunapuna/Piarco Tunapuna  2.63186
ggplot(data=df_TAT, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_TAT,aes(x="Tunapuna/Piarco",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Tunapuna/Piarco")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_TAT <- subset (df, Country == "Trinidad and Tobago")
knitr::kable(head(df_TAT))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
30 224 9/1/07 NA Trinidad and Tobago TT Tobago 17000 Scarborough 9.11607 11.2415 -60.6742 (11.2415, -60.674199999999999) Landslide Landslide Medium Tropical cyclone Hurricane Felix NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161197580
61 357 11/17/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 7.33295 11.2965 -60.6312 (11.2965, -60.6312) Landslide Landslide Medium Rain NA NA Trinadad Express http://www.trinidadexpress.com/index.pl/article_news?id=161237574
65 390 12/11/07 NA Trinidad and Tobago TT Sangre Grande 15968 Sangre Grande 29.28864 10.8410 -61.0550 (10.840999999999999, -61.055) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA 3 Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
66 391 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 8.62938 11.3000 -60.6440 (11.3, -60.643999999999998) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
67 392 12/11/07 NA Trinidad and Tobago TT Eastern Tobago 0 Roxborough 2.66802 11.2670 -60.5660 (11.266999999999999, -60.566000000000003) Landslide Landslide Small Tropical cyclone Tropical Storm Olga NA NA Trinidad and Tobago’s Newsday http://www.newsday.co.tt/news/0,69681.html
149 780 9/7/08 NA Trinidad and Tobago TT Diego Martin 8140 Petit Valley 10.61854 10.7603 -61.4578 (10.760300000000001, -61.457799999999999) Landslide Landslide Medium Downpour NA NA http://www.newsday.co.tt/news/0,85847.html
Distance <- df_TAT$Distance

summary(df_TAT$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3852  3.1564  5.9110  8.2504  8.4964 33.5192
library(pastecs)
stat.desc(df_TAT)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
##                        id date time continent_code Country country_code State
## nbr.val      6.300000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          2.240000e+02   NA   NA             NA      NA           NA    NA
## max          6.301000e+03   NA   NA             NA      NA           NA    NA
## range        6.077000e+03   NA   NA             NA      NA           NA    NA
## sum          1.939570e+05   NA   NA             NA      NA           NA    NA
## median       2.759000e+03   NA   NA             NA      NA           NA    NA
## mean         3.078683e+03   NA   NA             NA      NA           NA    NA
## SE.mean      1.907885e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 3.813809e+02   NA   NA             NA      NA           NA    NA
## var          2.293217e+06   NA   NA             NA      NA           NA    NA
## std.dev      1.514337e+03   NA   NA             NA      NA           NA    NA
## coef.var     4.918783e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description     latitude
## nbr.val      6.300000e+01   NA  63.000000                   NA  63.00000000
## nbr.null     1.000000e+01   NA   0.000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.000000                   NA   0.00000000
## min          0.000000e+00   NA   0.385210                   NA  10.08760000
## max          1.572580e+05   NA  33.519240                   NA  11.31760000
## range        1.572580e+05   NA  33.134030                   NA   1.23000000
## sum          1.091655e+06   NA 519.777480                   NA 679.61780000
## median       8.140000e+03   NA   5.911010                   NA  10.71420000
## mean         1.732786e+04   NA   8.250436                   NA  10.78758413
## SE.mean      3.563658e+03   NA   1.064793                   NA   0.04203106
## CI.mean.0.95 7.123651e+03   NA   2.128491                   NA   0.08401889
## var          8.000786e+08   NA  71.428394                   NA   0.11129642
## std.dev      2.828566e+04   NA   8.451532                   NA   0.33361118
## coef.var     1.632381e+00   NA   1.024374                   NA   0.03092548
##                  longitude geolocation hazard_type landslide_type
## nbr.val       6.300000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -6.186420e+01          NA          NA             NA
## max          -6.054170e+01          NA          NA             NA
## range         1.322500e+00          NA          NA             NA
## sum          -3.856206e+03          NA          NA             NA
## median       -6.139170e+01          NA          NA             NA
## mean         -6.120962e+01          NA          NA             NA
## SE.mean       4.867603e-02          NA          NA             NA
## CI.mean.0.95  9.730199e-02          NA          NA             NA
## var           1.492694e-01          NA          NA             NA
## std.dev       3.863540e-01          NA          NA             NA
## coef.var     -6.311982e-03          NA          NA             NA
##              landslide_size trigger storm_name injuries  fatalities source_name
## nbr.val                  NA      NA         NA        1 44.00000000          NA
## nbr.null                 NA      NA         NA        1 40.00000000          NA
## nbr.na                   NA      NA         NA       62 19.00000000          NA
## min                      NA      NA         NA        0  0.00000000          NA
## max                      NA      NA         NA        0  3.00000000          NA
## range                    NA      NA         NA        0  3.00000000          NA
## sum                      NA      NA         NA        0  6.00000000          NA
## median                   NA      NA         NA        0  0.00000000          NA
## mean                     NA      NA         NA        0  0.13636364          NA
## SE.mean                  NA      NA         NA       NA  0.07687686          NA
## CI.mean.0.95             NA      NA         NA      NaN  0.15503697          NA
## var                      NA      NA         NA       NA  0.26004228          NA
## std.dev                  NA      NA         NA       NA  0.50994341          NA
## coef.var                 NA      NA         NA       NA  3.73958502          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="brown", alpha=0.7) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=11)) +
  ggtitle("Deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Trinidad y Tobago están medianamente bien distribuidos con un ligero sesgo hacia la izquierda y se considera la presencia de algunos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Venezuela

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_VEN <- subset (df, Country == "Venezuela")
knitr::kable(head(df_VEN))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
df_VEN %>% 
  select(Country, State, City, Distance)
##       Country            State          City Distance
## 165 Venezuela Distrito Federal       Caracas  2.92493
## 448 Venezuela           Vargas     Maiquetía  6.65506
## 530 Venezuela          Miranda  Santa Teresa  8.45736
## 531 Venezuela Distrito Federal       Caracas  2.95706
## 538 Venezuela Distrito Federal      Caricuao  7.90754
## 539 Venezuela Distrito Federal      Caricuao  5.64050
## 540 Venezuela Distrito Federal      Caricuao  5.74106
## 541 Venezuela Distrito Federal       Caracas  4.58994
## 542 Venezuela          Miranda        Baruta  2.69644
## 543 Venezuela          Miranda    El Hatillo  1.04263
## 544 Venezuela Distrito Federal       Caracas  3.14060
## 545 Venezuela Distrito Federal       Caracas  6.04235
## 546 Venezuela          Miranda       Guatire 15.84114
## 547 Venezuela Distrito Federal       Caracas  3.87793
## 548 Venezuela Distrito Federal       Caracas  3.65044
## 549 Venezuela Distrito Federal       Caracas  8.11953
## 599 Venezuela           Vargas     Maiquetía  7.89319
## 768 Venezuela           Aragua    El Consejo 14.28266
## 769 Venezuela           Falcón Santo Domingo 19.81345
## 847 Venezuela Distrito Federal       Caracas  2.55507
library(ggplot2)
ggplot(data=df_VEN, aes(x = "Venezuela", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_VEN, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el estado de Aragua

library(readr)
library(knitr)
df_VEN <- subset (df, State == "Aragua")
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country  State       City Distance
## 768 Venezuela Aragua El Consejo 14.28266
ggplot(data=df_VEN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_VEN,aes(x="Aragua",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Aragua")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el estado del Distrito Federal

library(readr)
library(knitr)
df_VEN <- subset (df, State == "Distrito Federal")
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country            State     City Distance
## 165 Venezuela Distrito Federal  Caracas  2.92493
## 531 Venezuela Distrito Federal  Caracas  2.95706
## 538 Venezuela Distrito Federal Caricuao  7.90754
## 539 Venezuela Distrito Federal Caricuao  5.64050
## 540 Venezuela Distrito Federal Caricuao  5.74106
## 541 Venezuela Distrito Federal  Caracas  4.58994
## 544 Venezuela Distrito Federal  Caracas  3.14060
## 545 Venezuela Distrito Federal  Caracas  6.04235
## 547 Venezuela Distrito Federal  Caracas  3.87793
## 548 Venezuela Distrito Federal  Caracas  3.65044
## 549 Venezuela Distrito Federal  Caracas  8.11953
## 847 Venezuela Distrito Federal  Caracas  2.55507
ggplot(data=df_VEN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_VEN,aes(x="Distrito Federal",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Distrito Federal")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el estado de Falcón

library(readr)
library(knitr)
df_VEN <- subset (df, State == "Falcón")
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country  State          City Distance
## 769 Venezuela Falcón Santo Domingo 19.81345
ggplot(data=df_VEN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_VEN,aes(x="Falcón",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Falcón")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el estado de Miranda

library(readr)
library(knitr)
df_VEN <- subset (df, State == "Miranda")
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country   State         City Distance
## 530 Venezuela Miranda Santa Teresa  8.45736
## 542 Venezuela Miranda       Baruta  2.69644
## 543 Venezuela Miranda   El Hatillo  1.04263
## 546 Venezuela Miranda      Guatire 15.84114
ggplot(data=df_VEN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_VEN,aes(x="Miranda",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Miranda")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el estado de Vargas

library(readr)
library(knitr)
df_VEN <- subset (df, State == "Vargas")
df_VEN %>% 
  select(Country, State, City, Distance) 
##       Country  State      City Distance
## 448 Venezuela Vargas Maiquetía  6.65506
## 599 Venezuela Vargas Maiquetía  7.89319
ggplot(data=df_VEN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_VEN,aes(x="Vargas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Vargas")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_VEN <- subset (df, Country == "Venezuela")
knitr::kable(head(df_VEN))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
Distance <- df_VEN$Distance

summary(df_VEN$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.043   3.095   5.691   6.691   7.961  19.813
library(pastecs)
stat.desc(df_VEN)
## Warning in min(x): no non-missing arguments to min; returning Inf
## Warning in max(x): no non-missing arguments to max; returning -Inf
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
##                        id date time continent_code Country country_code State
## nbr.val      2.000000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          8.960000e+02   NA   NA             NA      NA           NA    NA
## max          4.087000e+03   NA   NA             NA      NA           NA    NA
## range        3.191000e+03   NA   NA             NA      NA           NA    NA
## sum          5.679300e+04   NA   NA             NA      NA           NA    NA
## median       2.767500e+03   NA   NA             NA      NA           NA    NA
## mean         2.839650e+03   NA   NA             NA      NA           NA    NA
## SE.mean      1.378519e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 2.885274e+02   NA   NA             NA      NA           NA    NA
## var          3.800630e+05   NA   NA             NA      NA           NA    NA
## std.dev      6.164925e+02   NA   NA             NA      NA           NA    NA
## coef.var     2.171016e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      2.000000e+01   NA  20.0000000                   NA  20.00000000
## nbr.null     5.000000e+00   NA   0.0000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.00000000
## min          0.000000e+00   NA   1.0426300                   NA   8.68150000
## max          3.000000e+06   NA  19.8134500                   NA  10.61440000
## range        3.000000e+06   NA  18.7708200                   NA   1.93290000
## sum          2.787773e+07   NA 133.8288800                   NA 207.66930000
## median       2.615530e+05   NA   5.6907800                   NA  10.48790000
## mean         1.393886e+06   NA   6.6914440                   NA  10.38346500
## SE.mean      3.337376e+05   NA   1.0898349                   NA   0.09105869
## CI.mean.0.95 6.985209e+05   NA   2.2810507                   NA   0.19058803
## var          2.227616e+12   NA  23.7548025                   NA   0.16583371
## std.dev      1.492520e+06   NA   4.8738899                   NA   0.40722685
## coef.var     1.070762e+00   NA   0.7283764                   NA   0.03921878
##                  longitude geolocation hazard_type landslide_type
## nbr.val       2.000000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -7.070160e+01          NA          NA             NA
## max          -6.658060e+01          NA          NA             NA
## range         4.121000e+00          NA          NA             NA
## sum          -1.341936e+03          NA          NA             NA
## median       -6.691785e+01          NA          NA             NA
## mean         -6.709678e+01          NA          NA             NA
## SE.mean       1.925813e-01          NA          NA             NA
## CI.mean.0.95  4.030773e-01          NA          NA             NA
## var           7.417512e-01          NA          NA             NA
## std.dev       8.612498e-01          NA          NA             NA
## coef.var     -1.283593e-02          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        0  20.000000          NA
## nbr.null                 NA      NA         NA        0  10.000000          NA
## nbr.na                   NA      NA         NA       20   0.000000          NA
## min                      NA      NA         NA      Inf   0.000000          NA
## max                      NA      NA         NA     -Inf   8.000000          NA
## range                    NA      NA         NA     -Inf   8.000000          NA
## sum                      NA      NA         NA        0  28.000000          NA
## median                   NA      NA         NA       NA   0.500000          NA
## mean                     NA      NA         NA      NaN   1.400000          NA
## SE.mean                  NA      NA         NA       NA   0.509902          NA
## CI.mean.0.95             NA      NA         NA      NaN   1.067237          NA
## var                      NA      NA         NA       NA   5.200000          NA
## std.dev                  NA      NA         NA       NA   2.280351          NA
## coef.var                 NA      NA         NA       NA   1.628822          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="red", fill="orange", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=11)) +
  ggtitle("Deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("") +
  xlab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Venezuela están medianamente bien distribuidos con un ligero sesgo hacia la izquierda y se considera la presencia de algunos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Costa Rica

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_CR <- subset (df, Country == "Costa Rica")
knitr::kable(head(df_CR))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
38 249 9/9/07 NA Costa Rica CR Heredia 21947 Heredia 0.26208 10.0000 -84.1167 (10, -84.116699999999994) Landslide Landslide Medium Rain NA NA ticotimes.net http://www.ticotimes.net/dailyarchive/2007_09/0911072.htm
44 299 10/9/07 NA Costa Rica CR San José 3072 San Ignacio 4.57763 9.7789 -84.1250 (9.7789000000000001, -84.125) Landslide Complex Medium Rain NA 4 ticotimes.net http://www.ticotimes.net/dailyarchive/2007_10/1010071.htm
45 301 10/11/07 NA Costa Rica CR Alajuela 7014 Atenas 3.08459 9.9869 -84.4070 (9.9869000000000003, -84.406999999999996) Landslide Mudslide Large Rain NA 14 Agence France-Presse, afp.google.com http://afp.google.com/article/ALeqM5hu6a8oyAM1ycq9nU_6Zyj_l7F0AA
46 302 10/11/07 NA Costa Rica CR San José 26669 9.56251 10.0214 -83.9451 (10.0214, -83.945099999999996) Landslide Landslide Large Rain NA 10 International Herald http://www.iht.com/articles/ap/2007/10/12/america/LA-GEN-Costa-Rica-Mudslide.php
51 323 10/24/07 NA Costa Rica CR Puntarenas 6540 Miramar 3.82425 Mine construction 10.0715 -84.7575 (10.0715, -84.757499999999993) Landslide Mudslide Medium Downpour NA NA Reuters - AlertNet.org http://www.reuters.com/article/companyNewsAndPR/idUSN2435152820071025
102 556 5/29/08 NA Costa Rica CR Guanacaste 4108 Bagaces 17.65521 10.4024 -85.3555 (10.4024, -85.355500000000006) Landslide Landslide Medium Tropical cyclone Tropical Storm Alma NA NA http://www.reliefweb.int/rw/RWB.NSF/db900SID/ASAZ-7FHCHL?OpenDocument
df_CR %>% 
  select(Country, State, City, Distance)
##         Country      State                  City Distance
## 38   Costa Rica    Heredia               Heredia  0.26208
## 44   Costa Rica   San José           San Ignacio  4.57763
## 45   Costa Rica   Alajuela                Atenas  3.08459
## 46   Costa Rica   San José                        9.56251
## 51   Costa Rica Puntarenas               Miramar  3.82425
## 102  Costa Rica Guanacaste               Bagaces 17.65521
## 147  Costa Rica   San José         Daniel Flores  1.85787
## 153  Costa Rica   San José            San Isidro 16.24937
## 154  Costa Rica   San José              Santiago 12.85801
## 156  Costa Rica Puntarenas               Golfito 11.74074
## 157  Costa Rica Puntarenas               Miramar  8.92048
## 229  Costa Rica Puntarenas              San Vito 18.00524
## 302  Costa Rica   Alajuela          Desamparados  6.88715
## 311  Costa Rica    Heredia               Ángeles 19.51432
## 347  Costa Rica   Alajuela          Desamparados  6.92174
## 395  Costa Rica   Alajuela          Desamparados  4.24199
## 459  Costa Rica   Alajuela            San Rafael  1.47396
## 469  Costa Rica   San José              Salitral  0.25254
## 470  Costa Rica   San José              Salitral  0.25254
## 480  Costa Rica    Heredia               Ángeles 14.81614
## 501  Costa Rica   San José                Escazú  3.67691
## 502  Costa Rica   San José            San Marcos  0.55804
## 503  Costa Rica   Alajuela            San Rafael  9.61692
## 504  Costa Rica Guanacaste               Tilarán 10.21631
## 505  Costa Rica    Cartago                 Orosí 19.28722
## 506  Costa Rica Puntarenas               Golfito  7.87044
## 507  Costa Rica   San José                 Tejar  6.49523
## 508  Costa Rica   San José            San Isidro 15.64997
## 509  Costa Rica Puntarenas              Corredor  4.93053
## 510  Costa Rica Puntarenas               Parrita 13.48919
## 511  Costa Rica Puntarenas         Ciudad Cortés 20.06633
## 512  Costa Rica   San José            San Isidro 11.31047
## 513  Costa Rica   San José              Mercedes  8.21372
## 514  Costa Rica   Alajuela              Santiago  5.43516
## 529  Costa Rica    Heredia               Ángeles 19.54581
## 579  Costa Rica      Limón              Guápiles 17.23264
## 702  Costa Rica    Heredia               Ángeles 15.05161
## 780  Costa Rica   Alajuela                 Upala  0.70048
## 819  Costa Rica   San José            San Isidro 21.67452
## 828  Costa Rica    Cartago                   Cot  9.63616
## 884  Costa Rica    Heredia         Santo Domingo 21.95470
## 888  Costa Rica Guanacaste               Tilarán 12.33807
## 889  Costa Rica      Limón             Siquirres  5.36500
## 913  Costa Rica   San José         Daniel Flores  4.89954
## 1098 Costa Rica   Alajuela             Sabanilla  4.87432
## 1156 Costa Rica   Alajuela             Sabanilla 10.32968
## 1157 Costa Rica    Heredia         Santo Domingo  9.85736
## 1169 Costa Rica Guanacaste               Tilarán 12.21952
## 1173 Costa Rica Guanacaste               Tilarán 12.18115
## 1289 Costa Rica   Alajuela            La Fortuna  9.84213
## 1301 Costa Rica   Alajuela                        5.57523
## 1308 Costa Rica   Alajuela          Desamparados  5.95519
## 1342 Costa Rica   Alajuela           Rio Segundo 11.96524
## 1364 Costa Rica   Alajuela          Desamparados  5.12667
## 1383 Costa Rica    Cartago               Cartago  3.07297
## 1384 Costa Rica    Heredia Dulce Nombre de Jesus 10.01310
## 1385 Costa Rica   San José Dulce Nombre de Jesus  2.92605
## 1386 Costa Rica   San José            San Isidro 10.73752
## 1404 Costa Rica   San José            San Isidro 22.32368
## 1406 Costa Rica   San José Dulce Nombre de Jesus  8.39161
## 1461 Costa Rica   Alajuela            La Fortuna  5.96634
## 1475 Costa Rica   Alajuela                Atenas  6.80061
## 1528 Costa Rica   San José               Ángeles  9.53611
## 1529 Costa Rica   San José Dulce Nombre de Jesus  3.71407
## 1600 Costa Rica   San José              San Juan  0.72957
## 1642 Costa Rica   Alajuela         Santo Domingo  3.21979
## 1643 Costa Rica   Alajuela              Alajuela  3.08916
## 1644 Costa Rica   Alajuela               Naranjo  2.08469
## 1646 Costa Rica    Cartago                        5.15142
## 1647 Costa Rica    Cartago                   Cot  9.53493
## 1648 Costa Rica    Cartago               Cartago  2.94804
## 1649 Costa Rica Puntarenas          Buenos Aires  0.35225
## 1650 Costa Rica   San José              San José  1.16705
## 1651 Costa Rica   San José              Mercedes 10.01198
## 1652 Costa Rica   San José              Santiago  8.27042
library(ggplot2)
ggplot(data=df_CR, aes(x = "Costa Rica", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_CR, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Alajuela

library(readr)
library(knitr)
df_CR <- subset (df, State == "Alajuela")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country    State          City Distance
## 45   Costa Rica Alajuela        Atenas  3.08459
## 302  Costa Rica Alajuela  Desamparados  6.88715
## 347  Costa Rica Alajuela  Desamparados  6.92174
## 395  Costa Rica Alajuela  Desamparados  4.24199
## 459  Costa Rica Alajuela    San Rafael  1.47396
## 503  Costa Rica Alajuela    San Rafael  9.61692
## 514  Costa Rica Alajuela      Santiago  5.43516
## 780  Costa Rica Alajuela         Upala  0.70048
## 1098 Costa Rica Alajuela     Sabanilla  4.87432
## 1156 Costa Rica Alajuela     Sabanilla 10.32968
## 1289 Costa Rica Alajuela    La Fortuna  9.84213
## 1301 Costa Rica Alajuela                5.57523
## 1308 Costa Rica Alajuela  Desamparados  5.95519
## 1342 Costa Rica Alajuela   Rio Segundo 11.96524
## 1364 Costa Rica Alajuela  Desamparados  5.12667
## 1461 Costa Rica Alajuela    La Fortuna  5.96634
## 1475 Costa Rica Alajuela        Atenas  6.80061
## 1642 Costa Rica Alajuela Santo Domingo  3.21979
## 1643 Costa Rica Alajuela      Alajuela  3.08916
## 1644 Costa Rica Alajuela       Naranjo  2.08469
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Alajuela",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Alajuela")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Cartago

library(readr)
library(knitr)
df_CR <- subset (df, State == "Cartago")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country   State    City Distance
## 505  Costa Rica Cartago   Orosí 19.28722
## 828  Costa Rica Cartago     Cot  9.63616
## 1383 Costa Rica Cartago Cartago  3.07297
## 1646 Costa Rica Cartago          5.15142
## 1647 Costa Rica Cartago     Cot  9.53493
## 1648 Costa Rica Cartago Cartago  2.94804
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Cartago",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cartago")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Guanacaste

library(readr)
library(knitr)
df_CR <- subset (df, State == "Guanacaste")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country      State    City Distance
## 102  Costa Rica Guanacaste Bagaces 17.65521
## 504  Costa Rica Guanacaste Tilarán 10.21631
## 888  Costa Rica Guanacaste Tilarán 12.33807
## 1169 Costa Rica Guanacaste Tilarán 12.21952
## 1173 Costa Rica Guanacaste Tilarán 12.18115
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Guanacaste",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Guanacaste")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Heredia

library(readr)
library(knitr)
df_CR <- subset (df, State == "Heredia")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country   State                  City Distance
## 38   Costa Rica Heredia               Heredia  0.26208
## 311  Costa Rica Heredia               Ángeles 19.51432
## 480  Costa Rica Heredia               Ángeles 14.81614
## 529  Costa Rica Heredia               Ángeles 19.54581
## 702  Costa Rica Heredia               Ángeles 15.05161
## 884  Costa Rica Heredia         Santo Domingo 21.95470
## 1157 Costa Rica Heredia         Santo Domingo  9.85736
## 1384 Costa Rica Heredia Dulce Nombre de Jesus 10.01310
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Heredia",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Heredia")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Limón

library(readr)
library(knitr)
df_CR <- subset (df, State == "Limón")
df_CR %>% 
  select(Country, State, City, Distance) 
##        Country State      City Distance
## 579 Costa Rica Limón  Guápiles 17.23264
## 889 Costa Rica Limón Siquirres  5.36500
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Limón",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Limón")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de Puntarenas

library(readr)
library(knitr)
df_CR <- subset (df, State == "Puntarenas")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country      State          City Distance
## 51   Costa Rica Puntarenas       Miramar  3.82425
## 156  Costa Rica Puntarenas       Golfito 11.74074
## 157  Costa Rica Puntarenas       Miramar  8.92048
## 229  Costa Rica Puntarenas      San Vito 18.00524
## 506  Costa Rica Puntarenas       Golfito  7.87044
## 509  Costa Rica Puntarenas      Corredor  4.93053
## 510  Costa Rica Puntarenas       Parrita 13.48919
## 511  Costa Rica Puntarenas Ciudad Cortés 20.06633
## 1649 Costa Rica Puntarenas  Buenos Aires  0.35225
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="Puntarenas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Puntarenas")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para la provincia de San José

library(readr)
library(knitr)
df_CR <- subset (df, State == "San José")
df_CR %>% 
  select(Country, State, City, Distance) 
##         Country    State                  City Distance
## 44   Costa Rica San José           San Ignacio  4.57763
## 46   Costa Rica San José                        9.56251
## 147  Costa Rica San José         Daniel Flores  1.85787
## 153  Costa Rica San José            San Isidro 16.24937
## 154  Costa Rica San José              Santiago 12.85801
## 469  Costa Rica San José              Salitral  0.25254
## 470  Costa Rica San José              Salitral  0.25254
## 501  Costa Rica San José                Escazú  3.67691
## 502  Costa Rica San José            San Marcos  0.55804
## 507  Costa Rica San José                 Tejar  6.49523
## 508  Costa Rica San José            San Isidro 15.64997
## 512  Costa Rica San José            San Isidro 11.31047
## 513  Costa Rica San José              Mercedes  8.21372
## 819  Costa Rica San José            San Isidro 21.67452
## 913  Costa Rica San José         Daniel Flores  4.89954
## 1385 Costa Rica San José Dulce Nombre de Jesus  2.92605
## 1386 Costa Rica San José            San Isidro 10.73752
## 1404 Costa Rica San José            San Isidro 22.32368
## 1406 Costa Rica San José Dulce Nombre de Jesus  8.39161
## 1528 Costa Rica San José               Ángeles  9.53611
## 1529 Costa Rica San José Dulce Nombre de Jesus  3.71407
## 1600 Costa Rica San José              San Juan  0.72957
## 1650 Costa Rica San José              San José  1.16705
## 1651 Costa Rica San José              Mercedes 10.01198
## 1652 Costa Rica San José              Santiago  8.27042
ggplot(data=df_CR, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CR,aes(x="San José",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San José")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_CRC <- subset (df, Country == "Costa Rica")
knitr::kable(head(df_CRC))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
38 249 9/9/07 NA Costa Rica CR Heredia 21947 Heredia 0.26208 10.0000 -84.1167 (10, -84.116699999999994) Landslide Landslide Medium Rain NA NA ticotimes.net http://www.ticotimes.net/dailyarchive/2007_09/0911072.htm
44 299 10/9/07 NA Costa Rica CR San José 3072 San Ignacio 4.57763 9.7789 -84.1250 (9.7789000000000001, -84.125) Landslide Complex Medium Rain NA 4 ticotimes.net http://www.ticotimes.net/dailyarchive/2007_10/1010071.htm
45 301 10/11/07 NA Costa Rica CR Alajuela 7014 Atenas 3.08459 9.9869 -84.4070 (9.9869000000000003, -84.406999999999996) Landslide Mudslide Large Rain NA 14 Agence France-Presse, afp.google.com http://afp.google.com/article/ALeqM5hu6a8oyAM1ycq9nU_6Zyj_l7F0AA
46 302 10/11/07 NA Costa Rica CR San José 26669 9.56251 10.0214 -83.9451 (10.0214, -83.945099999999996) Landslide Landslide Large Rain NA 10 International Herald http://www.iht.com/articles/ap/2007/10/12/america/LA-GEN-Costa-Rica-Mudslide.php
51 323 10/24/07 NA Costa Rica CR Puntarenas 6540 Miramar 3.82425 Mine construction 10.0715 -84.7575 (10.0715, -84.757499999999993) Landslide Mudslide Medium Downpour NA NA Reuters - AlertNet.org http://www.reuters.com/article/companyNewsAndPR/idUSN2435152820071025
102 556 5/29/08 NA Costa Rica CR Guanacaste 4108 Bagaces 17.65521 10.4024 -85.3555 (10.4024, -85.355500000000006) Landslide Landslide Medium Tropical cyclone Tropical Storm Alma NA NA http://www.reliefweb.int/rw/RWB.NSF/db900SID/ASAZ-7FHCHL?OpenDocument
Distance <- df_CRC$Distance

summary(df_CRC$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2525  3.7692  8.2137  8.6152 12.0732 22.3237
library(pastecs)
stat.desc(df_CRC)
##                        id date time continent_code Country country_code State
## nbr.val      7.500000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          2.490000e+02   NA   NA             NA      NA           NA    NA
## max          7.496000e+03   NA   NA             NA      NA           NA    NA
## range        7.247000e+03   NA   NA             NA      NA           NA    NA
## sum          3.121850e+05   NA   NA             NA      NA           NA    NA
## median       3.762000e+03   NA   NA             NA      NA           NA    NA
## mean         4.162467e+03   NA   NA             NA      NA           NA    NA
## SE.mean      2.838021e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 5.654880e+02   NA   NA             NA      NA           NA    NA
## var          6.040771e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.457798e+03   NA   NA             NA      NA           NA    NA
## coef.var     5.904667e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      7.500000e+01   NA  75.0000000                   NA  75.00000000
## nbr.null     4.000000e+00   NA   0.0000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.00000000
## min          0.000000e+00   NA   0.2525400                   NA   8.61170000
## max          3.350070e+05   NA  22.3236800                   NA  10.89160000
## range        3.350070e+05   NA  22.0711400                   NA   2.27990000
## sum          1.127522e+06   NA 646.1411800                   NA 740.80410000
## median       6.784000e+03   NA   8.2137200                   NA   9.96430000
## mean         1.503363e+04   NA   8.6152157                   NA   9.87738800
## SE.mean      4.498709e+03   NA   0.6924979                   NA   0.05198610
## CI.mean.0.95 8.963873e+03   NA   1.3798322                   NA   0.10358456
## var          1.517878e+09   NA  35.9665004                   NA   0.20269158
## std.dev      3.895996e+04   NA   5.9972077                   NA   0.45021281
## coef.var     2.591521e+00   NA   0.6961181                   NA   0.04558015
##                  longitude geolocation hazard_type landslide_type
## nbr.val       7.500000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.535550e+01          NA          NA             NA
## max          -8.294180e+01          NA          NA             NA
## range         2.413700e+00          NA          NA             NA
## sum          -6.307925e+03          NA          NA             NA
## median       -8.408790e+01          NA          NA             NA
## mean         -8.410567e+01          NA          NA             NA
## SE.mean       5.429493e-02          NA          NA             NA
## CI.mean.0.95  1.081850e-01          NA          NA             NA
## var           2.210955e-01          NA          NA             NA
## std.dev       4.702079e-01          NA          NA             NA
## coef.var     -5.590680e-03          NA          NA             NA
##              landslide_size trigger storm_name   injuries fatalities
## nbr.val                  NA      NA         NA 27.0000000 60.0000000
## nbr.null                 NA      NA         NA 26.0000000 50.0000000
## nbr.na                   NA      NA         NA 48.0000000 15.0000000
## min                      NA      NA         NA  0.0000000  0.0000000
## max                      NA      NA         NA  3.0000000 23.0000000
## range                    NA      NA         NA  3.0000000 23.0000000
## sum                      NA      NA         NA  3.0000000 61.0000000
## median                   NA      NA         NA  0.0000000  0.0000000
## mean                     NA      NA         NA  0.1111111  1.0166667
## SE.mean                  NA      NA         NA  0.1111111  0.4750805
## CI.mean.0.95             NA      NA         NA  0.2283922  0.9506339
## var                      NA      NA         NA  0.3333333 13.5420904
## std.dev                  NA      NA         NA  0.5773503  3.6799579
## coef.var                 NA      NA         NA  5.1961524  3.6196308
##              source_name source_link
## nbr.val               NA          NA
## nbr.null              NA          NA
## nbr.na                NA          NA
## min                   NA          NA
## max                   NA          NA
## range                 NA          NA
## sum                   NA          NA
## median                NA          NA
## mean                  NA          NA
## SE.mean               NA          NA
## CI.mean.0.95          NA          NA
## var                   NA          NA
## std.dev               NA          NA
## coef.var              NA          NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="red", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Costa Rica están medianamente bien distribuidos con un ligero sesgo hacia la izquierda.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Cuba

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_CUB <- subset (df, Country == "Cuba")
knitr::kable(head(df_CUB))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
483 2611 10/18/10 NA Cuba CU Provincia de La Habana 132351 Cerro 0.89865 23.1098 -82.3691 (23.1098, -82.369100000000003) Landslide Complex Medium Tropical cyclone Tropical Storm Paula NA 0 http://www.reliefweb.int/rw/RWFiles2010.nsf/FilesByRWDocUnidFilename/VDUX-8ADM53-full_report.pdf/$File/full_report.pdf
515 2706 11/7/10 NA Cuba CU Guantanamo 48362 Baracoa 10.45795 20.2526 -74.4867 (20.252600000000001, -74.486699999999999) Landslide Landslide Medium Tropical cyclone Hurricane Tomas NA 0 http://www.solvision.co.cu/english/index.php?option=com_content&view=article&id=1631:viaduct-la-farola-in-baracoa-traffic-restored&catid=34:portada&Itemid=171
1031 5067 7/9/13 NA Cuba CU Artemisa Province 7205 Soroa 11.87914 22.7943 -83.1322 (22.7943, -83.132199999999997) Landslide Landslide Medium Downpour NA 0 www.havanatimes.org http://www.havanatimes.org/?p=96131
df_CUB %>% 
  select(Country, State, City, Distance)
##      Country                  State    City Distance
## 483     Cuba Provincia de La Habana   Cerro  0.89865
## 515     Cuba             Guantanamo Baracoa 10.45795
## 1031    Cuba      Artemisa Province   Soroa 11.87914
library(ggplot2)
ggplot(data=df_CUB, aes(x = "Cuba", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_CUB, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Artemisa Province.

library(readr)
library(knitr)
df_CUB <- subset (df, State == "Artemisa Province")
df_CUB %>% 
  select(Country, State, City, Distance) 
##      Country             State  City Distance
## 1031    Cuba Artemisa Province Soroa 11.87914
ggplot(data=df_CUB, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CUB,aes(x="Artemisa Province",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Artemisa Province")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Guantanamo.

library(readr)
library(knitr)
df_CUB <- subset (df, State == "Guantanamo")
df_CUB %>% 
  select(Country, State, City, Distance) 
##     Country      State    City Distance
## 515    Cuba Guantanamo Baracoa 10.45795
ggplot(data=df_CUB, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CUB,aes(x="Guantanamo",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Guantanamo")

### Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Provincia de La Habana.

library(readr)
library(knitr)
df_CUB <- subset (df, State == "Provincia de La Habana")
df_CUB %>% 
  select(Country, State, City, Distance) 
##     Country                  State  City Distance
## 483    Cuba Provincia de La Habana Cerro  0.89865
ggplot(data=df_CUB, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_CUB,aes(x="Provincia de La Habana",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Provincia de La Habana")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_CUB <- subset (df, Country == "Cuba")
knitr::kable(head(df_CUB))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
483 2611 10/18/10 NA Cuba CU Provincia de La Habana 132351 Cerro 0.89865 23.1098 -82.3691 (23.1098, -82.369100000000003) Landslide Complex Medium Tropical cyclone Tropical Storm Paula NA 0 http://www.reliefweb.int/rw/RWFiles2010.nsf/FilesByRWDocUnidFilename/VDUX-8ADM53-full_report.pdf/$File/full_report.pdf
515 2706 11/7/10 NA Cuba CU Guantanamo 48362 Baracoa 10.45795 20.2526 -74.4867 (20.252600000000001, -74.486699999999999) Landslide Landslide Medium Tropical cyclone Hurricane Tomas NA 0 http://www.solvision.co.cu/english/index.php?option=com_content&view=article&id=1631:viaduct-la-farola-in-baracoa-traffic-restored&catid=34:portada&Itemid=171
1031 5067 7/9/13 NA Cuba CU Artemisa Province 7205 Soroa 11.87914 22.7943 -83.1322 (22.7943, -83.132199999999997) Landslide Landslide Medium Downpour NA 0 www.havanatimes.org http://www.havanatimes.org/?p=96131
Distance <- df_CUB$Distance

summary(df_CUB$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.8986  5.6783 10.4580  7.7452 11.1685 11.8791
library(pastecs)
stat.desc(df_CUB)
## Warning in min(x): no non-missing arguments to min; returning Inf
## Warning in max(x): no non-missing arguments to max; returning -Inf
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
##                        id date time continent_code Country country_code State
## nbr.val      3.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          2.611000e+03   NA   NA             NA      NA           NA    NA
## max          5.067000e+03   NA   NA             NA      NA           NA    NA
## range        2.456000e+03   NA   NA             NA      NA           NA    NA
## sum          1.038400e+04   NA   NA             NA      NA           NA    NA
## median       2.706000e+03   NA   NA             NA      NA           NA    NA
## mean         3.461333e+03   NA   NA             NA      NA           NA    NA
## SE.mean      8.033016e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 3.456328e+03   NA   NA             NA      NA           NA    NA
## var          1.935880e+06   NA   NA             NA      NA           NA    NA
## std.dev      1.391359e+03   NA   NA             NA      NA           NA    NA
## coef.var     4.019720e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description   latitude
## nbr.val      3.000000e+00   NA  3.0000000                   NA  3.0000000
## nbr.null     0.000000e+00   NA  0.0000000                   NA  0.0000000
## nbr.na       0.000000e+00   NA  0.0000000                   NA  0.0000000
## min          7.205000e+03   NA  0.8986500                   NA 20.2526000
## max          1.323510e+05   NA 11.8791400                   NA 23.1098000
## range        1.251460e+05   NA 10.9804900                   NA  2.8572000
## sum          1.879180e+05   NA 23.2357400                   NA 66.1567000
## median       4.836200e+04   NA 10.4579500                   NA 22.7943000
## mean         6.263933e+04   NA  7.7452467                   NA 22.0522333
## SE.mean      3.682509e+04   NA  3.4477944                   NA  0.9044142
## CI.mean.0.95 1.584456e+05   NA 14.8346622                   NA  3.8913802
## var          4.068262e+09   NA 35.6618597                   NA  2.4538952
## std.dev      6.378293e+04   NA  5.9717552                   NA  1.5664914
## coef.var     1.018257e+00   NA  0.7710219                   NA  0.0710355
##                  longitude geolocation hazard_type landslide_type
## nbr.val         3.00000000          NA          NA             NA
## nbr.null        0.00000000          NA          NA             NA
## nbr.na          0.00000000          NA          NA             NA
## min           -83.13220000          NA          NA             NA
## max           -74.48670000          NA          NA             NA
## range           8.64550000          NA          NA             NA
## sum          -239.98800000          NA          NA             NA
## median        -82.36910000          NA          NA             NA
## mean          -79.99600000          NA          NA             NA
## SE.mean         2.76344412          NA          NA             NA
## CI.mean.0.95   11.89014040          NA          NA             NA
## var            22.90987027          NA          NA             NA
## std.dev         4.78642563          NA          NA             NA
## coef.var       -0.05983331          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        0          3          NA
## nbr.null                 NA      NA         NA        0          3          NA
## nbr.na                   NA      NA         NA        3          0          NA
## min                      NA      NA         NA      Inf          0          NA
## max                      NA      NA         NA     -Inf          0          NA
## range                    NA      NA         NA     -Inf          0          NA
## sum                      NA      NA         NA        0          0          NA
## median                   NA      NA         NA       NA          0          NA
## mean                     NA      NA         NA      NaN          0          NA
## SE.mean                  NA      NA         NA       NA          0          NA
## CI.mean.0.95             NA      NA         NA      NaN          0          NA
## var                      NA      NA         NA       NA          0          NA
## std.dev                  NA      NA         NA       NA          0          NA
## coef.var                 NA      NA         NA       NA        NaN          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="red", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Cuba presentan un claro sesgo hacia la izquierda.

Gráfico circular y de barras de las distancias de desplazamientos para el país de El Salvador

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_ES <- subset (df, Country == "El Salvador")
knitr::kable(head(df_ES))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
34 230 9/5/07 NA El Salvador SV Ahuachapán 7797 Concepción de Ataco 0.00273 13.8703 -89.8486 (13.8703, -89.848600000000005) Landslide Mudslide Medium Tropical cyclone Hurricane Felix NA NA Azcentral.com http://www.azcentral.com/news/articles/1108sr-fhsistercity1109-ON.html
105 564 6/2/08 NA El Salvador SV La Libertad 124694 Santa Tecla 4.96416 13.7205 -89.2687 (13.720499999999999, -89.268699999999995) Landslide Landslide Medium Tropical cyclone Tropical Storm Arthur NA NA http://news.xinhuanet.com/english/2008-06/04/content_8310737.htm
224 1285 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 7.60946 13.6409 -88.8699 (13.6409, -88.869900000000001) Landslide Complex Very_large Tropical cyclone Tropical Cyclone Ida NA 23 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
225 1286 11/8/09 NA El Salvador SV La Libertad 33767 Antiguo Cuscatlán 4.86219 13.7156 -89.2521 (13.7156, -89.252099999999999) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA 4 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
226 1287 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 5.90726 13.6094 -88.8488 (13.609400000000001, -88.848799999999997) Landslide Rockfall Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.bbc.co.uk/2/hi/in_depth/8349333.stm
227 1288 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 4.03125 13.6466 -88.8347 (13.646599999999999, -88.834699999999998) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.yahoo.com/s/afp/20091109/wl_afp/salvadorweatherstorm_20091109100952
df_ES %>% 
  select(Country, State, City, Distance)
##          Country        State                City Distance
## 34   El Salvador   Ahuachapán Concepción de Ataco  0.00273
## 105  El Salvador  La Libertad         Santa Tecla  4.96416
## 224  El Salvador  San Vicente         San Vicente  7.60946
## 225  El Salvador  La Libertad   Antiguo Cuscatlán  4.86219
## 226  El Salvador  San Vicente         San Vicente  5.90726
## 227  El Salvador  San Vicente         San Vicente  4.03125
## 453  El Salvador   Ahuachapán              Tacuba  5.29901
## 824  El Salvador San Salvador               Apopa  3.01739
## 1294 El Salvador   San Miguel          Chirilagua  6.94536
## 1366 El Salvador   San Miguel  San Rafael Oriente 10.06695
## 1367 El Salvador      Cabañas          San Martín  8.82525
## 1369 El Salvador    Sonsonate          Nahuizalco  4.23875
## 1370 El Salvador    Sonsonate           Sonzacate  3.22235
## 1371 El Salvador       La Paz  San Pedro Masahuat  0.31933
## 1372 El Salvador   San Miguel          Chirilagua  9.97227
## 1373 El Salvador    Santa Ana          Coatepeque  8.83210
## 1374 El Salvador  La Libertad         Santa Tecla  4.60655
## 1375 El Salvador San Salvador   Antiguo Cuscatlán  3.25227
## 1594 El Salvador    Santa Ana         Ciudad Arce  1.15810
## 1596 El Salvador  La Libertad         Santa Tecla  4.67722
## 1597 El Salvador  La Libertad         Santa Tecla  9.87553
## 1598 El Salvador    Sonsonate              Juayúa  0.49346
library(ggplot2)
ggplot(data=df_ES, aes(x = "El Salvador", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_ES, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Ahuachapán

library(readr)
library(knitr)
df_ES <- subset (df, State == "Ahuachapán")
df_ES %>% 
  select(Country, State, City, Distance) 
##         Country      State                City Distance
## 34  El Salvador Ahuachapán Concepción de Ataco  0.00273
## 453 El Salvador Ahuachapán              Tacuba  5.29901
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="Ahuachapán",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Ahuachapán")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Cabañas

library(readr)
library(knitr)
df_ES <- subset (df, State == "Cabañas")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country   State       City Distance
## 1367 El Salvador Cabañas San Martín  8.82525
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="Cabañas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cabañas")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de La Libertad

library(readr)
library(knitr)
df_ES <- subset (df, State == "La Libertad")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country       State              City Distance
## 105  El Salvador La Libertad       Santa Tecla  4.96416
## 184         Peru La Libertad            Parcoy  9.64894
## 185         Peru La Libertad        Aricapampa  0.00442
## 225  El Salvador La Libertad Antiguo Cuscatlán  4.86219
## 1374 El Salvador La Libertad       Santa Tecla  4.60655
## 1596 El Salvador La Libertad       Santa Tecla  4.67722
## 1597 El Salvador La Libertad       Santa Tecla  9.87553
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="La Libertad",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - La Libertad")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de La Paz

library(readr)
library(knitr)
df_ES <- subset (df, State == "La Paz")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country  State               City Distance
## 1371 El Salvador La Paz San Pedro Masahuat  0.31933
## 1616    Honduras La Paz           San José  4.69133
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="La Paz",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - La Paz")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Miguel

library(readr)
library(knitr)
df_ES <- subset (df, State == "San Miguel")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country      State               City Distance
## 1294 El Salvador San Miguel         Chirilagua  6.94536
## 1366 El Salvador San Miguel San Rafael Oriente 10.06695
## 1372 El Salvador San Miguel         Chirilagua  9.97227
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="San Miguel",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Miguel")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Salvador

library(readr)
library(knitr)
df_ES <- subset (df, State == "San Salvador")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country        State              City Distance
## 824  El Salvador San Salvador             Apopa  3.01739
## 1375 El Salvador San Salvador Antiguo Cuscatlán  3.25227
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="San Salvador",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Salvador")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Vicente

library(readr)
library(knitr)
df_ES <- subset (df, State == "San Vicente")
df_ES %>% 
  select(Country, State, City, Distance) 
##         Country       State        City Distance
## 224 El Salvador San Vicente San Vicente  7.60946
## 226 El Salvador San Vicente San Vicente  5.90726
## 227 El Salvador San Vicente San Vicente  4.03125
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="San Vicente",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Vicente")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Santa Ana

library(readr)
library(knitr)
df_ES <- subset (df, State == "Santa Ana")
df_ES %>% 
  select(Country, State, City, Distance) 
##          Country     State        City Distance
## 1373 El Salvador Santa Ana  Coatepeque   8.8321
## 1594 El Salvador Santa Ana Ciudad Arce   1.1581
ggplot(data=df_ES, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_ES,aes(x="Santa Ana",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Santa Ana")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_ESV <- subset (df, Country == "El Salvador")
knitr::kable(head(df_ESV))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
34 230 9/5/07 NA El Salvador SV Ahuachapán 7797 Concepción de Ataco 0.00273 13.8703 -89.8486 (13.8703, -89.848600000000005) Landslide Mudslide Medium Tropical cyclone Hurricane Felix NA NA Azcentral.com http://www.azcentral.com/news/articles/1108sr-fhsistercity1109-ON.html
105 564 6/2/08 NA El Salvador SV La Libertad 124694 Santa Tecla 4.96416 13.7205 -89.2687 (13.720499999999999, -89.268699999999995) Landslide Landslide Medium Tropical cyclone Tropical Storm Arthur NA NA http://news.xinhuanet.com/english/2008-06/04/content_8310737.htm
224 1285 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 7.60946 13.6409 -88.8699 (13.6409, -88.869900000000001) Landslide Complex Very_large Tropical cyclone Tropical Cyclone Ida NA 23 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
225 1286 11/8/09 NA El Salvador SV La Libertad 33767 Antiguo Cuscatlán 4.86219 13.7156 -89.2521 (13.7156, -89.252099999999999) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA 4 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
226 1287 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 5.90726 13.6094 -88.8488 (13.609400000000001, -88.848799999999997) Landslide Rockfall Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.bbc.co.uk/2/hi/in_depth/8349333.stm
227 1288 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 4.03125 13.6466 -88.8347 (13.646599999999999, -88.834699999999998) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.yahoo.com/s/afp/20091109/wl_afp/salvadorweatherstorm_20091109100952
Distance <- df_ESV$Distance

summary(df_ESV$Distance)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00273  3.22983  4.76971  5.09904  7.44344 10.06695
library(pastecs)
stat.desc(df_ESV)
##                        id date time continent_code Country country_code State
## nbr.val      2.200000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          2.300000e+02   NA   NA             NA      NA           NA    NA
## max          7.442000e+03   NA   NA             NA      NA           NA    NA
## range        7.212000e+03   NA   NA             NA      NA           NA    NA
## sum          1.086050e+05   NA   NA             NA      NA           NA    NA
## median       6.680000e+03   NA   NA             NA      NA           NA    NA
## mean         4.936591e+03   NA   NA             NA      NA           NA    NA
## SE.mean      5.803080e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 1.206817e+03   NA   NA             NA      NA           NA    NA
## var          7.408663e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.721886e+03   NA   NA             NA      NA           NA    NA
## coef.var     5.513696e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      2.200000e+01   NA  22.0000000                   NA  22.00000000
## nbr.null     0.000000e+00   NA   0.0000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.00000000
## min          2.654000e+03   NA   0.0027300                   NA  13.28170000
## max          1.246940e+05   NA  10.0669500                   NA  14.00070000
## range        1.220400e+05   NA  10.0642200                   NA   0.71900000
## sum          9.383360e+05   NA 112.1789400                   NA 301.25530000
## median       2.643100e+04   NA   4.7697050                   NA  13.71515000
## mean         4.265164e+04   NA   5.0990427                   NA  13.69342273
## SE.mean      9.849090e+03   NA   0.6720603                   NA   0.03809807
## CI.mean.0.95 2.048230e+04   NA   1.3976259                   NA   0.07922927
## var          2.134100e+09   NA   9.9366315                   NA   0.03193218
## std.dev      4.619633e+04   NA   3.1522423                   NA   0.17869578
## coef.var     1.083108e+00   NA   0.6182028                   NA   0.01304975
##                  longitude geolocation hazard_type landslide_type
## nbr.val       2.200000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.990440e+01          NA          NA             NA
## max          -8.808430e+01          NA          NA             NA
## range         1.820100e+00          NA          NA             NA
## sum          -1.961688e+03          NA          NA             NA
## median       -8.926030e+01          NA          NA             NA
## mean         -8.916765e+01          NA          NA             NA
## SE.mean       1.112458e-01          NA          NA             NA
## CI.mean.0.95  2.313484e-01          NA          NA             NA
## var           2.722640e-01          NA          NA             NA
## std.dev       5.217892e-01          NA          NA             NA
## coef.var     -5.851777e-03          NA          NA             NA
##              landslide_size trigger storm_name   injuries fatalities
## nbr.val                  NA      NA         NA 14.0000000  18.000000
## nbr.null                 NA      NA         NA 10.0000000  13.000000
## nbr.na                   NA      NA         NA  8.0000000   4.000000
## min                      NA      NA         NA  0.0000000   0.000000
## max                      NA      NA         NA  2.0000000  32.000000
## range                    NA      NA         NA  2.0000000  32.000000
## sum                      NA      NA         NA  6.0000000  63.000000
## median                   NA      NA         NA  0.0000000   0.000000
## mean                     NA      NA         NA  0.4285714   3.500000
## SE.mean                  NA      NA         NA  0.2020305   2.107022
## CI.mean.0.95             NA      NA         NA  0.4364604   4.445428
## var                      NA      NA         NA  0.5714286  79.911765
## std.dev                  NA      NA         NA  0.7559289   8.939338
## coef.var                 NA      NA         NA  1.7638342   2.554097
##              source_name source_link
## nbr.val               NA          NA
## nbr.null              NA          NA
## nbr.na                NA          NA
## min                   NA          NA
## max                   NA          NA
## range                 NA          NA
## sum                   NA          NA
## median                NA          NA
## mean                  NA          NA
## SE.mean               NA          NA
## CI.mean.0.95          NA          NA
## var                   NA          NA
## std.dev               NA          NA
## coef.var              NA          NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="blue", fill="blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para El Salvador están medianamente bien distribuidos con cierto sesgo hacia la derecha.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Guatemala

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_GUA <- subset (df, Country == "Guatemala")
knitr::kable(head(df_GUA))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
17 165 8/9/07 NA Guatemala GT Guatemala 47247 San José Pinula 4.74385 14.5667 -90.4500 (14.566700000000001, -90.45) Landslide Mudslide Medium Rain NA 5 International Herald http://www.iht.com/articles/ap/2007/08/09/america/LA-GEN-Guatemala-Deadly-Mudslide.php
27 198 8/21/07 NA Guatemala GT Alta Verapaz 2006 Lanquín 13.39817 15.6046 -90.0853 (15.6046, -90.085300000000004) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
28 199 8/21/07 NA Guatemala GT Izabal 18994 Morales 12.55184 15.5163 -88.9286 (15.516299999999999, -88.928600000000003) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
41 277 9/22/07 NA Guatemala GT Guatemala 994938 Guatemala City 2.79113 14.6229 -90.5316 (14.6229, -90.531599999999997) Landslide Mudslide Medium Rain NA 3 Fox News http://www.foxnews.com/story/0,2933,297714,00.html
104 563 6/1/08 NA Guatemala GT Escuintla 31329 Palín 3.10150 14.4226 -90.6755 (14.422599999999999, -90.6755) Landslide Mudslide Medium Tropical cyclone Tropical Storm Arthur NA 1 http://209.85.215.104/search?q=cache:QU_lPxNfk78J:www.plenglish.com/article.asp?ID=%7B1D4A74F7-CDCA-49D0-ABD4-D2E0FD9D2130%7D&language=EN+Colom+said+the+declaration+came+after+a+death+in+Palin+and+40+houses+partially&hl=en&ct=clnk&cd=1&gl=us&c
108 591 6/18/08 NA Guatemala GT Guatemala 994938 Guatemala City 3.12614 14.6510 -90.5403 (14.651, -90.540300000000002) Landslide Complex Medium Rain NA 8 http://cnnwire.blogs.cnn.com/2008/06/20/8-dead-in-rough-weather-in-guatemala/
df_GUA %>% 
  select(Country, State, City, Distance)
##        Country          State                        City Distance
## 17   Guatemala      Guatemala             San José Pinula  4.74385
## 27   Guatemala   Alta Verapaz                     Lanquín 13.39817
## 28   Guatemala         Izabal                     Morales 12.55184
## 41   Guatemala      Guatemala              Guatemala City  2.79113
## 104  Guatemala      Escuintla                       Palín  3.10150
## 108  Guatemala      Guatemala              Guatemala City  3.12614
## 120  Guatemala         Zacapa                    La Unión  0.80640
## 158  Guatemala  Chimaltenango            San José Poaquil  5.31511
## 162  Guatemala  Huehuetenango San Sebastián Huehuetenango  1.58358
## 169  Guatemala         Izabal                     Morales 23.92309
## 351  Guatemala Quetzaltenango                   Almolonga  0.77254
## 353  Guatemala      Escuintla                       Palín  0.18542
## 354  Guatemala      Guatemala                   Amatitlán  2.02891
## 355  Guatemala      Guatemala                   Chinautla  0.44764
## 356  Guatemala   Sacatepéquez        Santa María De Jesús  6.13527
## 357  Guatemala      Guatemala              Guatemala City  4.07930
## 358  Guatemala         Sololá        Santa Cruz La Laguna  6.00513
## 359  Guatemala  Chimaltenango              Santa Apolonia  0.99952
## 360  Guatemala         Sololá         San Pedro La Laguna  0.50611
## 361  Guatemala      Guatemala             San José Pinula  0.89040
## 362  Guatemala         Quiché             San Juan Cotzal  8.93658
## 363  Guatemala    Totonicapán                 Totonicapán  0.17513
## 372  Guatemala         Sololá         San Pablo La Laguna  3.85753
## 383  Guatemala      Guatemala                   Chinautla  3.85648
## 427  Guatemala      Guatemala                       Mixco  2.10418
## 428  Guatemala      Guatemala                       Mixco  3.64749
## 429  Guatemala      Guatemala       Santa Catarina Pinula  2.81128
## 430  Guatemala     Chiquimula             San Juan Ermita  6.15103
## 431  Guatemala  Huehuetenango               Malacatancito  0.03280
## 432  Guatemala         Sololá        San Andrés Semetabaj  0.00359
## 433  Guatemala   Alta Verapaz                      Senahú  2.30104
## 437  Guatemala         Sololá                     Nahualá  3.04642
## 438  Guatemala Quetzaltenango                     Colomba  0.92729
## 439  Guatemala         Quiché                    Chicamán 21.83272
## 440  Guatemala   Sacatepéquez                 Jocotenango  0.63089
## 441  Guatemala  Chimaltenango               Chimaltenango  1.36473
## 442  Guatemala         Quiché                   Sacapulas  0.35171
## 818  Guatemala  Huehuetenango                    Barillas  0.45507
## 885  Guatemala         Quiché                      Chajul  7.39906
## 1112 Guatemala     San Marcos                    Pajapita  0.96647
## 1244 Guatemala  Huehuetenango             San Pedro Necta  0.91108
## 1347 Guatemala         Sololá                       Zunil  7.03115
## 1352 Guatemala   Baja Verapaz                     Purulhá  5.88787
## 1353 Guatemala      Guatemala       Santa Catarina Pinula  2.70053
## 1354 Guatemala      Guatemala              Guatemala City  2.59620
## 1356 Guatemala         Quiché              San Luis Ixcán 22.56101
## 1357 Guatemala        Jutiapa                  Jalpatagua  4.51954
## 1358 Guatemala  Huehuetenango                      Cuilco  3.30989
## 1359 Guatemala      Guatemala                   Chinautla  5.94535
## 1360 Guatemala         Quiché                    Chinique  3.98185
## 1361 Guatemala     San Marcos                      Tacaná  0.75729
## 1557 Guatemala      Guatemala       Santa Catarina Pinula  0.94245
## 1559 Guatemala      Guatemala       Santa Catarina Pinula  3.96161
## 1560 Guatemala     Santa Rosa        Santa María Ixhuatán  0.82332
## 1561 Guatemala   Suchitepeque           San Juan Bautista  3.47803
## 1568 Guatemala      Guatemala                   Fraijanes  6.19218
## 1569 Guatemala  Chimaltenango                    Patzicía  5.52205
## 1570 Guatemala      Guatemala                       Mixco  1.87009
## 1571 Guatemala      Guatemala                      Petapa  4.20726
## 1572 Guatemala         Sololá          San Antonio Palopó  3.18658
## 1573 Guatemala         Sololá        San Andrés Semetabaj  0.67040
## 1574 Guatemala      Guatemala              Guatemala City  3.80312
## 1575 Guatemala      Guatemala              Guatemala City  1.68290
## 1576 Guatemala      Guatemala              Guatemala City  2.08425
## 1577 Guatemala      Guatemala              Guatemala City  3.25675
## 1578 Guatemala      Guatemala              Guatemala City  3.49341
## 1579 Guatemala      Guatemala              Guatemala City  1.83863
## 1580 Guatemala      Guatemala              Guatemala City  1.57381
## 1581 Guatemala      Guatemala              Guatemala City  1.70147
## 1582 Guatemala      Guatemala              Guatemala City  3.00314
## 1583 Guatemala         Quiché            Chichicastenango  2.27725
## 1584 Guatemala      Guatemala                   Chinautla  2.36376
## 1585 Guatemala      Guatemala                   Chinautla  2.66358
## 1588 Guatemala   Sacatepéquez     Santa Catarina Barahona  1.45200
## 1589 Guatemala   Alta Verapaz                     Cahabón  5.14479
## 1590 Guatemala      Escuintla            Nueva Concepción  8.25465
## 1591 Guatemala      Guatemala               Villa Canales  0.65744
## 1592 Guatemala         Sololá        San Andrés Semetabaj  0.75685
## 1595 Guatemala Quetzaltenango                  Coatepeque  1.81216
library(ggplot2)
ggplot(data=df_GUA, aes(x = "Guatemala", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_GUA, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Baja Verapaz

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Baja Verapaz")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country        State    City Distance
## 1352 Guatemala Baja Verapaz Purulhá  5.88787
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Baja Verapaz",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Baja Verapaz")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Chimaltenango

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Chimaltenango")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country         State             City Distance
## 158  Guatemala Chimaltenango San José Poaquil  5.31511
## 359  Guatemala Chimaltenango   Santa Apolonia  0.99952
## 441  Guatemala Chimaltenango    Chimaltenango  1.36473
## 1569 Guatemala Chimaltenango         Patzicía  5.52205
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Chimaltenango",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Chimaltenango")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Chiquimula

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Chiquimula")
df_GUA %>% 
  select(Country, State, City, Distance) 
##       Country      State            City Distance
## 430 Guatemala Chiquimula San Juan Ermita  6.15103
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Chiquimula",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Chiquimula")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Escuintla

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Escuintla")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country     State             City Distance
## 104  Guatemala Escuintla            Palín  3.10150
## 353  Guatemala Escuintla            Palín  0.18542
## 1590 Guatemala Escuintla Nueva Concepción  8.25465
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Escuintla",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Escuintla")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Guatemala

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Guatemala")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country     State                  City Distance
## 17   Guatemala Guatemala       San José Pinula  4.74385
## 41   Guatemala Guatemala        Guatemala City  2.79113
## 108  Guatemala Guatemala        Guatemala City  3.12614
## 354  Guatemala Guatemala             Amatitlán  2.02891
## 355  Guatemala Guatemala             Chinautla  0.44764
## 357  Guatemala Guatemala        Guatemala City  4.07930
## 361  Guatemala Guatemala       San José Pinula  0.89040
## 383  Guatemala Guatemala             Chinautla  3.85648
## 427  Guatemala Guatemala                 Mixco  2.10418
## 428  Guatemala Guatemala                 Mixco  3.64749
## 429  Guatemala Guatemala Santa Catarina Pinula  2.81128
## 1353 Guatemala Guatemala Santa Catarina Pinula  2.70053
## 1354 Guatemala Guatemala        Guatemala City  2.59620
## 1359 Guatemala Guatemala             Chinautla  5.94535
## 1557 Guatemala Guatemala Santa Catarina Pinula  0.94245
## 1559 Guatemala Guatemala Santa Catarina Pinula  3.96161
## 1568 Guatemala Guatemala             Fraijanes  6.19218
## 1570 Guatemala Guatemala                 Mixco  1.87009
## 1571 Guatemala Guatemala                Petapa  4.20726
## 1574 Guatemala Guatemala        Guatemala City  3.80312
## 1575 Guatemala Guatemala        Guatemala City  1.68290
## 1576 Guatemala Guatemala        Guatemala City  2.08425
## 1577 Guatemala Guatemala        Guatemala City  3.25675
## 1578 Guatemala Guatemala        Guatemala City  3.49341
## 1579 Guatemala Guatemala        Guatemala City  1.83863
## 1580 Guatemala Guatemala        Guatemala City  1.57381
## 1581 Guatemala Guatemala        Guatemala City  1.70147
## 1582 Guatemala Guatemala        Guatemala City  3.00314
## 1584 Guatemala Guatemala             Chinautla  2.36376
## 1585 Guatemala Guatemala             Chinautla  2.66358
## 1591 Guatemala Guatemala         Villa Canales  0.65744
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Guatemala",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Guatemala")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Izabal

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Izabal")
df_GUA %>% 
  select(Country, State, City, Distance) 
##       Country  State    City Distance
## 28  Guatemala Izabal Morales 12.55184
## 169 Guatemala Izabal Morales 23.92309
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Izabal",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Izabal")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Jutiapa

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Jutiapa")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country   State       City Distance
## 1357 Guatemala Jutiapa Jalpatagua  4.51954
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Jutiapa",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Jutiapa")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Quetzaltenango

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Quetzaltenango")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country          State       City Distance
## 351  Guatemala Quetzaltenango  Almolonga  0.77254
## 438  Guatemala Quetzaltenango    Colomba  0.92729
## 1595 Guatemala Quetzaltenango Coatepeque  1.81216
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Quetzaltenango",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Quetzaltenango")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Quiché

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Quiché")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country  State             City Distance
## 362  Guatemala Quiché  San Juan Cotzal  8.93658
## 439  Guatemala Quiché         Chicamán 21.83272
## 442  Guatemala Quiché        Sacapulas  0.35171
## 885  Guatemala Quiché           Chajul  7.39906
## 1356 Guatemala Quiché   San Luis Ixcán 22.56101
## 1360 Guatemala Quiché         Chinique  3.98185
## 1583 Guatemala Quiché Chichicastenango  2.27725
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Quiché",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Quiché")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Sacatepéquez

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Sacatepéquez")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country        State                    City Distance
## 356  Guatemala Sacatepéquez    Santa María De Jesús  6.13527
## 440  Guatemala Sacatepéquez             Jocotenango  0.63089
## 1588 Guatemala Sacatepéquez Santa Catarina Barahona  1.45200
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Sacatepéquez",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Sacatepéquez")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Marcos

library(readr)
library(knitr)
df_GUA <- subset (df, State == "San Marcos")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country      State     City Distance
## 1112 Guatemala San Marcos Pajapita  0.96647
## 1361 Guatemala San Marcos   Tacaná  0.75729
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="San Marcos",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Marcos")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Santa Rosa

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Santa Rosa")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country      State                 City Distance
## 1560 Guatemala Santa Rosa Santa María Ixhuatán  0.82332
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Santa Rosa",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Santa Rosa")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Sololá

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Sololá")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country  State                 City Distance
## 358  Guatemala Sololá Santa Cruz La Laguna  6.00513
## 360  Guatemala Sololá  San Pedro La Laguna  0.50611
## 372  Guatemala Sololá  San Pablo La Laguna  3.85753
## 432  Guatemala Sololá San Andrés Semetabaj  0.00359
## 437  Guatemala Sololá              Nahualá  3.04642
## 1347 Guatemala Sololá                Zunil  7.03115
## 1572 Guatemala Sololá   San Antonio Palopó  3.18658
## 1573 Guatemala Sololá San Andrés Semetabaj  0.67040
## 1592 Guatemala Sololá San Andrés Semetabaj  0.75685
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Sololá",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Sololá")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Suchitepeque

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Suchitepeque")
df_GUA %>% 
  select(Country, State, City, Distance) 
##        Country        State              City Distance
## 1561 Guatemala Suchitepeque San Juan Bautista  3.47803
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Suchitepeque",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Suchitepeque")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Totonicapán

library(readr)
library(knitr)
df_GUA <- subset (df, State == "Totonicapán")
df_GUA %>% 
  select(Country, State, City, Distance) 
##       Country       State        City Distance
## 363 Guatemala Totonicapán Totonicapán  0.17513
ggplot(data=df_GUA, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_GUA,aes(x="Totonicapán",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Totonicapán")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_GTM <- subset (df, Country == "Guatemala")
knitr::kable(head(df_GTM))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
17 165 8/9/07 NA Guatemala GT Guatemala 47247 San José Pinula 4.74385 14.5667 -90.4500 (14.566700000000001, -90.45) Landslide Mudslide Medium Rain NA 5 International Herald http://www.iht.com/articles/ap/2007/08/09/america/LA-GEN-Guatemala-Deadly-Mudslide.php
27 198 8/21/07 NA Guatemala GT Alta Verapaz 2006 Lanquín 13.39817 15.6046 -90.0853 (15.6046, -90.085300000000004) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
28 199 8/21/07 NA Guatemala GT Izabal 18994 Morales 12.55184 15.5163 -88.9286 (15.516299999999999, -88.928600000000003) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
41 277 9/22/07 NA Guatemala GT Guatemala 994938 Guatemala City 2.79113 14.6229 -90.5316 (14.6229, -90.531599999999997) Landslide Mudslide Medium Rain NA 3 Fox News http://www.foxnews.com/story/0,2933,297714,00.html
104 563 6/1/08 NA Guatemala GT Escuintla 31329 Palín 3.10150 14.4226 -90.6755 (14.422599999999999, -90.6755) Landslide Mudslide Medium Tropical cyclone Tropical Storm Arthur NA 1 http://209.85.215.104/search?q=cache:QU_lPxNfk78J:www.plenglish.com/article.asp?ID=%7B1D4A74F7-CDCA-49D0-ABD4-D2E0FD9D2130%7D&language=EN+Colom+said+the+declaration+came+after+a+death+in+Palin+and+40+houses+partially&hl=en&ct=clnk&cd=1&gl=us&c
108 591 6/18/08 NA Guatemala GT Guatemala 994938 Guatemala City 3.12614 14.6510 -90.5403 (14.651, -90.540300000000002) Landslide Complex Medium Rain NA 8 http://cnnwire.blogs.cnn.com/2008/06/20/8-dead-in-rough-weather-in-guatemala/
Distance <- df_GTM$Distance

summary(df_GTM$Distance)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00359  0.95446  2.70053  3.83694  4.36340 23.92309
library(pastecs)
stat.desc(df_GTM)
##                        id date time continent_code Country country_code State
## nbr.val      7.900000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          1.650000e+02   NA   NA             NA      NA           NA    NA
## max          7.439000e+03   NA   NA             NA      NA           NA    NA
## range        7.274000e+03   NA   NA             NA      NA           NA    NA
## sum          3.572230e+05   NA   NA             NA      NA           NA    NA
## median       5.475000e+03   NA   NA             NA      NA           NA    NA
## mean         4.521810e+03   NA   NA             NA      NA           NA    NA
## SE.mean      3.112730e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 6.196970e+02   NA   NA             NA      NA           NA    NA
## var          7.654381e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.766655e+03   NA   NA             NA      NA           NA    NA
## coef.var     6.118468e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      7.900000e+01   NA  79.0000000                   NA 7.900000e+01
## nbr.null     0.000000e+00   NA   0.0000000                   NA 0.000000e+00
## nbr.na       0.000000e+00   NA   0.0000000                   NA 0.000000e+00
## min          1.311000e+03   NA   0.0035900                   NA 1.419740e+01
## max          9.949380e+05   NA  23.9230900                   NA 1.580760e+01
## range        9.936270e+05   NA  23.9195000                   NA 1.610200e+00
## sum          1.624255e+07   NA 303.1182300                   NA 1.170505e+03
## median       1.899400e+04   NA   2.7005300                   NA 1.468080e+01
## mean         2.056019e+05   NA   3.8369396                   NA 1.481653e+01
## SE.mean      4.095993e+04   NA   0.5175386                   NA 4.216799e-02
## CI.mean.0.95 8.154496e+04   NA   1.0303402                   NA 8.395001e-02
## var          1.325396e+11   NA  21.1598488                   NA 1.404730e-01
## std.dev      3.640598e+05   NA   4.5999836                   NA 3.747973e-01
## coef.var     1.770702e+00   NA   1.1988679                   NA 2.529589e-02
##                  longitude geolocation hazard_type landslide_type
## nbr.val       7.900000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -9.207380e+01          NA          NA             NA
## max          -8.892860e+01          NA          NA             NA
## range         3.145200e+00          NA          NA             NA
## sum          -7.170565e+03          NA          NA             NA
## median       -9.061580e+01          NA          NA             NA
## mean         -9.076664e+01          NA          NA             NA
## SE.mean       6.449027e-02          NA          NA             NA
## CI.mean.0.95  1.283903e-01          NA          NA             NA
## var           3.285606e-01          NA          NA             NA
## std.dev       5.732021e-01          NA          NA             NA
## coef.var     -6.315118e-03          NA          NA             NA
##              landslide_size trigger storm_name   injuries  fatalities
## nbr.val                  NA      NA         NA 40.0000000   75.000000
## nbr.null                 NA      NA         NA 35.0000000   40.000000
## nbr.na                   NA      NA         NA 39.0000000    4.000000
## min                      NA      NA         NA  0.0000000    0.000000
## max                      NA      NA         NA  7.0000000  280.000000
## range                    NA      NA         NA  7.0000000  280.000000
## sum                      NA      NA         NA 19.0000000  482.000000
## median                   NA      NA         NA  0.0000000    0.000000
## mean                     NA      NA         NA  0.4750000    6.426667
## SE.mean                  NA      NA         NA  0.2401589    3.742773
## CI.mean.0.95             NA      NA         NA  0.4857672    7.457638
## var                      NA      NA         NA  2.3070513 1050.626306
## std.dev                  NA      NA         NA  1.5188980   32.413366
## coef.var                 NA      NA         NA  3.1976801    5.043574
##              source_name source_link
## nbr.val               NA          NA
## nbr.null              NA          NA
## nbr.na                NA          NA
## min                   NA          NA
## max                   NA          NA
## range                 NA          NA
## sum                   NA          NA
## median                NA          NA
## mean                  NA          NA
## SE.mean               NA          NA
## CI.mean.0.95          NA          NA
## var                   NA          NA
## std.dev               NA          NA
## coef.var              NA          NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="blue", fill="light blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Guatemala están medianamente bien distribuidos con sesgo hacia la izquierda y con algunos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Honduras

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_HON <- subset (df, Country == "Honduras")
knitr::kable(head(df_HON))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
159 854 10/19/08 NA Honduras HN Copán 4752 Corquín 0.43391 14.5637 -88.8693 (14.563700000000001, -88.869299999999996) Landslide Landslide Large Tropical cyclone Tropical Depression 16 NA 23 http://www.chron.com/disp/story.mpl/ap/world/6068144.html
160 855 10/20/08 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.99239 14.1080 -87.2137 (14.108000000000001, -87.213700000000003) Landslide Mudslide Large Tropical cyclone Tropical Depression 16 NA 29 http://in.ibtimes.com/articles/20081021/honduras-landslide-tegucigalpa-victim.htm
376 2062 7/12/10 5:30:00 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 0.98377 14.0831 -87.1978 (14.0831, -87.197800000000001) Landslide Mudslide Medium Downpour NA 1 http://mdn.mainichi.jp/mdnnews/news/20100713p2a00m0na013000c.html
381 2093 7/18/10 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 1.24404 14.0814 -87.1953 (14.0814, -87.195300000000003) Landslide Landslide Medium Downpour NA 0 http://www.insidecostarica.com/dailynews/2010/july/19/centralamerica10071903.htm
406 2217 8/7/10 Overnight NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.21442 14.0783 -87.2270 (14.0783, -87.227000000000004) Landslide Mudslide Medium Downpour NA 3
435 2358 8/29/10 4:30:00 NA Honduras HN Francisco Morazán 2288 Santa Lucía 4.75791 14.1015 -87.1607 (14.1015, -87.160700000000006) Landslide Rockfall Medium Downpour NA 5
df_HON %>% 
  select(Country, State, City, Distance)
##       Country              State                      City Distance
## 159  Honduras              Copán                   Corquín  0.43391
## 160  Honduras Francisco Morazán                Tegucigalpa  2.99239
## 376  Honduras Francisco Morazán                Tegucigalpa  0.98377
## 381  Honduras Francisco Morazán                Tegucigalpa  1.24404
## 406  Honduras Francisco Morazán                Tegucigalpa  2.21442
## 435  Honduras Francisco Morazán                Santa Lucía  4.75791
## 474  Honduras          Comayagua                 El Rancho  4.53362
## 485  Honduras              Colón                    Cusuna 36.37629
## 820  Honduras Francisco Morazán                Tegucigalpa  1.23639
## 1100 Honduras             Cortés               Los Caminos  3.53737
## 1279 Honduras          Choluteca          Ciudad Choluteca  3.69596
## 1288 Honduras               Yoro                      Yoro  0.31238
## 1363 Honduras         Ocotepeque                   Sinuapa  2.00805
## 1377 Honduras             Cortés          Agua Azul Rancho  0.97057
## 1379 Honduras      Santa Bárbara                  Agualote  2.91594
## 1599 Honduras         El Paraíso                            1.90052
## 1602 Honduras Francisco Morazán                    El Lolo  1.85897
## 1603 Honduras Francisco Morazán                Tegucigalpa  3.25281
## 1604 Honduras          Choluteca                    Duyure 11.67237
## 1605 Honduras          Choluteca                    Corpus  0.36987
## 1610 Honduras          Comayagua                  El Sauce  7.28575
## 1611 Honduras          Comayagua               La Libertad 17.28613
## 1612 Honduras          Comayagua Concepción de Guasistagua  8.52584
## 1613 Honduras              Copán       Santa Rosa de Copán  0.74414
## 1614 Honduras              Copán       Santa Rosa de Copán  0.28887
## 1615 Honduras              Copán              Ojos de Agua  1.39095
## 1616 Honduras             La Paz                  San José  4.69133
## 1617 Honduras              Copán                   Lucerna  5.89721
## 1618 Honduras         Ocotepeque                  La Labor  5.79867
## 1619 Honduras Francisco Morazán                Villa Nueva  2.00830
## 1620 Honduras      Santa Bárbara                     Ilama  2.87349
## 1622 Honduras Francisco Morazán                El Guapinol  3.54399
## 1623 Honduras               Yoro                La Sarrosa  6.66574
## 1624 Honduras Francisco Morazán                 El Tablón   3.12986
## 1638 Honduras Francisco Morazán                Tegucigalpa  0.91552
## 1639 Honduras Francisco Morazán                  Yaguacire  1.30583
## 1640 Honduras Francisco Morazán                  Río Abajo  3.63962
## 1641 Honduras Francisco Morazán                Tegucigalpa  2.91326
library(ggplot2)
ggplot(data=df_HON, aes(x = "Honduras", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_HON, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Choluteca

library(readr)
library(knitr)
df_HON <- subset (df, State == "Choluteca")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country     State             City Distance
## 1279 Honduras Choluteca Ciudad Choluteca  3.69596
## 1604 Honduras Choluteca           Duyure 11.67237
## 1605 Honduras Choluteca           Corpus  0.36987
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Choluteca",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Choluteca")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Colón

library(readr)
library(knitr)
df_HON <- subset (df, State == "Colón")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country State              City Distance
## 485  Honduras Colón            Cusuna 36.37629
## 557    Panama Colón          El Giral  1.80330
## 558    Panama Colón         Portobelo  0.09491
## 919    Panama Colón             Colón  0.16894
## 979    Panama Colón         Portobelo  2.67409
## 980    Panama Colón         Margarita  0.74760
## 981    Panama Colón             Colón  0.20365
## 1080   Panama Colón         Margarita  0.76740
## 1390   Panama Colón    Nuevo San Juan  4.74914
## 1606   Panama Colón Nueva Providencia  0.18619
## 1607   Panama Colón    María Chiquita  2.28589
## 1608   Panama Colón            Cativá  0.63948
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Colón",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Colón")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Comayagua

library(readr)
library(knitr)
df_HON <- subset (df, State == "Comayagua")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country     State                      City Distance
## 474  Honduras Comayagua                 El Rancho  4.53362
## 1610 Honduras Comayagua                  El Sauce  7.28575
## 1611 Honduras Comayagua               La Libertad 17.28613
## 1612 Honduras Comayagua Concepción de Guasistagua  8.52584
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Comayagua",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Comayagua")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Copán

library(readr)
library(knitr)
df_HON <- subset (df, State == "Copán")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country State                City Distance
## 159  Honduras Copán             Corquín  0.43391
## 1613 Honduras Copán Santa Rosa de Copán  0.74414
## 1614 Honduras Copán Santa Rosa de Copán  0.28887
## 1615 Honduras Copán        Ojos de Agua  1.39095
## 1617 Honduras Copán             Lucerna  5.89721
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Copán",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Copán")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Cortés

library(readr)
library(knitr)
df_HON <- subset (df, State == "Cortés")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country  State             City Distance
## 1100 Honduras Cortés      Los Caminos  3.53737
## 1377 Honduras Cortés Agua Azul Rancho  0.97057
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Cortés",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Cortés")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de El Paraíso

library(readr)
library(knitr)
df_HON <- subset (df, State == "El Paraíso")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country      State City Distance
## 1599 Honduras El Paraíso       1.90052
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="El Paraíso",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - El Paraíso")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de La Paz

library(readr)
library(knitr)
df_HON <- subset (df, State == "La Paz")
df_HON %>% 
  select(Country, State, City, Distance) 
##          Country  State               City Distance
## 1371 El Salvador La Paz San Pedro Masahuat  0.31933
## 1616    Honduras La Paz           San José  4.69133
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="La Paz",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - La Paz")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Ocotepeque

library(readr)
library(knitr)
df_HON <- subset (df, State == "Ocotepeque")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country      State     City Distance
## 1363 Honduras Ocotepeque  Sinuapa  2.00805
## 1618 Honduras Ocotepeque La Labor  5.79867
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Ocotepeque",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Ocotepeque")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Santa Bárbara

library(readr)
library(knitr)
df_HON <- subset (df, State == "Santa Bárbara")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country         State     City Distance
## 1379 Honduras Santa Bárbara Agualote  2.91594
## 1620 Honduras Santa Bárbara    Ilama  2.87349
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Santa Bárbara",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Santa Bárbara")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Yoro

library(readr)
library(knitr)
df_HON <- subset (df, State == "Yoro")
df_HON %>% 
  select(Country, State, City, Distance) 
##       Country State       City Distance
## 1288 Honduras  Yoro       Yoro  0.31238
## 1623 Honduras  Yoro La Sarrosa  6.66574
ggplot(data=df_HON, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_HON,aes(x="Yoro",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Yoro")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_HND <- subset (df, Country == "Honduras")
knitr::kable(head(df_HND))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
159 854 10/19/08 NA Honduras HN Copán 4752 Corquín 0.43391 14.5637 -88.8693 (14.563700000000001, -88.869299999999996) Landslide Landslide Large Tropical cyclone Tropical Depression 16 NA 23 http://www.chron.com/disp/story.mpl/ap/world/6068144.html
160 855 10/20/08 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.99239 14.1080 -87.2137 (14.108000000000001, -87.213700000000003) Landslide Mudslide Large Tropical cyclone Tropical Depression 16 NA 29 http://in.ibtimes.com/articles/20081021/honduras-landslide-tegucigalpa-victim.htm
376 2062 7/12/10 5:30:00 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 0.98377 14.0831 -87.1978 (14.0831, -87.197800000000001) Landslide Mudslide Medium Downpour NA 1 http://mdn.mainichi.jp/mdnnews/news/20100713p2a00m0na013000c.html
381 2093 7/18/10 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 1.24404 14.0814 -87.1953 (14.0814, -87.195300000000003) Landslide Landslide Medium Downpour NA 0 http://www.insidecostarica.com/dailynews/2010/july/19/centralamerica10071903.htm
406 2217 8/7/10 Overnight NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.21442 14.0783 -87.2270 (14.0783, -87.227000000000004) Landslide Mudslide Medium Downpour NA 3
435 2358 8/29/10 4:30:00 NA Honduras HN Francisco Morazán 2288 Santa Lucía 4.75791 14.1015 -87.1607 (14.1015, -87.160700000000006) Landslide Rockfall Medium Downpour NA 5
Distance <- df_HND$Distance

summary(df_HND$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2889  1.2595  2.9146  4.3730  4.6519 36.3763
library(pastecs)
stat.desc(df_HND)
##                        id date time continent_code Country country_code State
## nbr.val      3.800000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          8.540000e+02   NA   NA             NA      NA           NA    NA
## max          7.485000e+03   NA   NA             NA      NA           NA    NA
## range        6.631000e+03   NA   NA             NA      NA           NA    NA
## sum          2.290210e+05   NA   NA             NA      NA           NA    NA
## median       7.448500e+03   NA   NA             NA      NA           NA    NA
## mean         6.026868e+03   NA   NA             NA      NA           NA    NA
## SE.mean      3.671138e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 7.438432e+02   NA   NA             NA      NA           NA    NA
## var          5.121356e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.263041e+03   NA   NA             NA      NA           NA    NA
## coef.var     3.754921e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description     latitude
## nbr.val      3.800000e+01   NA  38.000000                   NA  38.00000000
## nbr.null     0.000000e+00   NA   0.000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.000000                   NA   0.00000000
## min          1.043000e+03   NA   0.288870                   NA  13.28610000
## max          8.508480e+05   NA  36.376290                   NA  15.52270000
## range        8.498050e+05   NA  36.087420                   NA   2.23660000
## sum          7.001138e+06   NA 166.172050                   NA 546.00580000
## median       1.936000e+03   NA   2.914600                   NA  14.20695000
## mean         1.842405e+05   NA   4.372949                   NA  14.36857368
## SE.mean      5.663200e+04   NA   1.023393                   NA   0.08447952
## CI.mean.0.95 1.147473e+05   NA   2.073592                   NA   0.17117178
## var          1.218729e+11   NA  39.798695                   NA   0.27119802
## std.dev      3.491031e+05   NA   6.308621                   NA   0.52076676
## coef.var     1.894823e+00   NA   1.442647                   NA   0.03624346
##                  longitude geolocation hazard_type landslide_type
## nbr.val       3.800000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.916660e+01          NA          NA             NA
## max          -8.526500e+01          NA          NA             NA
## range         3.901600e+00          NA          NA             NA
## sum          -3.329927e+03          NA          NA             NA
## median       -8.728760e+01          NA          NA             NA
## mean         -8.762966e+01          NA          NA             NA
## SE.mean       1.301577e-01          NA          NA             NA
## CI.mean.0.95  2.637245e-01          NA          NA             NA
## var           6.437585e-01          NA          NA             NA
## std.dev       8.023457e-01          NA          NA             NA
## coef.var     -9.156096e-03          NA          NA             NA
##              landslide_size trigger storm_name   injuries fatalities
## nbr.val                  NA      NA         NA 29.0000000 38.0000000
## nbr.null                 NA      NA         NA 26.0000000 25.0000000
## nbr.na                   NA      NA         NA  9.0000000  0.0000000
## min                      NA      NA         NA  0.0000000  0.0000000
## max                      NA      NA         NA  3.0000000 29.0000000
## range                    NA      NA         NA  3.0000000 29.0000000
## sum                      NA      NA         NA  6.0000000 86.0000000
## median                   NA      NA         NA  0.0000000  0.0000000
## mean                     NA      NA         NA  0.2068966  2.2631579
## SE.mean                  NA      NA         NA  0.1253499  0.9774733
## CI.mean.0.95             NA      NA         NA  0.2567675  1.9805491
## var                      NA      NA         NA  0.4556650 36.3072546
## std.dev                  NA      NA         NA  0.6750296  6.0255502
## coef.var                 NA      NA         NA  3.2626433  2.6624524
##              source_name source_link
## nbr.val               NA          NA
## nbr.null              NA          NA
## nbr.na                NA          NA
## min                   NA          NA
## max                   NA          NA
## range                 NA          NA
## sum                   NA          NA
## median                NA          NA
## mean                  NA          NA
## SE.mean               NA          NA
## CI.mean.0.95          NA          NA
## var                   NA          NA
## std.dev               NA          NA
## coef.var              NA          NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="light blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamiento para Honduras están bien distribuidos y se considera la presencia de ciertos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Jamaica

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_JAM <- subset (df, Country == "Jamaica")
knitr::kable(head(df_JAM))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
18 174 8/11/07 NA Jamaica JM Portland 14400 Port Antonio 7.79027 18.1258 -76.5082 (18.125800000000002, -76.508200000000002) Landslide Landslide Medium Rain NA NA Jamaica Gleaner http://www.jamaica-gleaner.com/gleaner/20070812/lead/lead2.html
48 304 10/12/07 NA Jamaica JM St. Elizabeth 1371 Maggotty 4.57363 18.1257 -77.7405 (18.125699999999998, -77.740499999999997) Landslide Complex Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2039/26/
50 314 10/17/07 NA Jamaica JM Saint Thomas 2382 Bath 0.21825 17.9500 -76.3500 (17.95, -76.349999999999994) Landslide Mudslide Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2193/26/
54 339 10/31/07 NA Jamaica JM Saint Thomas 2634 Easington 6.51940 17.9384 -76.6479 (17.938400000000001, -76.647900000000007) Landslide Landslide Medium Tropical cyclone Tropical Storm Noel NA 1 RadioJamaica http://www.radiojamaica.com/content/view/2583/26/
55 340 10/31/07 NA Jamaica JM Saint Catherine 4085 Riversdale 5.46381 18.2152 -76.9659 (18.215199999999999, -76.965900000000005) Landslide Complex Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2933/26/
56 341 10/31/07 NA Jamaica JM Saint Andrew 1088 Gordon Town 0.96514 18.0370 -76.7088 (18.036999999999999, -76.708799999999997) Landslide Landslide Medium Tropical cyclone Tropical Storm Noel NA NA Jamaica Observer http://www.jamaicaobserver.com/news/html/20071101T010000-0500_128916_OBS_DEADLY_RAIN.asp
df_JAM %>% 
  select(Country, State, City, Distance)
##      Country           State                   City Distance
## 18   Jamaica        Portland           Port Antonio  7.79027
## 48   Jamaica   St. Elizabeth               Maggotty  4.57363
## 50   Jamaica    Saint Thomas                   Bath  0.21825
## 54   Jamaica    Saint Thomas              Easington  6.51940
## 55   Jamaica Saint Catherine             Riversdale  5.46381
## 56   Jamaica    Saint Andrew            Gordon Town  0.96514
## 60   Jamaica       Saint Ann Saint Annнўд‰ед‹ўs Bay  3.96533
## 93   Jamaica       Saint Ann              Ocho Rios  0.53886
## 143  Jamaica    Saint Andrew             Mavis Bank  9.83051
## 146  Jamaica    Saint Thomas                   Bath  1.71217
## 237  Jamaica        Portland             Moore Town  5.02351
## 305  Jamaica    Saint Thomas              Easington  4.53632
## 306  Jamaica       Clarendon              Chapelton  9.53953
## 307  Jamaica       Clarendon                May Pen  0.56186
## 308  Jamaica        Portland               Buff Bay  2.78885
## 309  Jamaica        Portland           Port Antonio  4.46942
## 408  Jamaica    Saint Andrew             Stony Hill  5.98731
## 444  Jamaica        Portland             Moore Town  0.59599
## 456  Jamaica        Portland             Moore Town  7.81269
## 460  Jamaica      Saint Mary               Richmond  1.24727
## 461  Jamaica    Saint Andrew             Stony Hill 10.84467
## 462  Jamaica Saint Catherine               Bog Walk  5.86530
## 466  Jamaica    Saint Andrew             Stony Hill  2.13878
## 486  Jamaica      Saint Mary               Richmond  8.74635
## 522  Jamaica        Portland            Manchioneal  0.71773
## 588  Jamaica      Saint Mary               Richmond  3.77580
## 589  Jamaica        Portland               Buff Bay  7.52317
## 900  Jamaica        Portland            Manchioneal  4.13454
## 920  Jamaica        Portland             Moore Town  3.17930
## 1310 Jamaica        Portland           Port Antonio  3.60799
## 1628 Jamaica Saint Catherine               Bog Walk  6.71269
## 1629 Jamaica       Saint Ann Saint Annнўд‰ед‹ўs Bay  1.08196
## 1630 Jamaica        Portland           Port Antonio  4.68732
library(ggplot2)
ggplot(data=df_JAM, aes(x = "Jamaica", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_JAM, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Clarendon

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Clarendon")
df_JAM %>% 
  select(Country, State, City, Distance) 
##     Country     State      City Distance
## 306 Jamaica Clarendon Chapelton  9.53953
## 307 Jamaica Clarendon   May Pen  0.56186
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Clarendon",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Clarendon")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Saint Andrew

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Saint Andrew")
df_JAM %>% 
  select(Country, State, City, Distance) 
##      Country        State        City Distance
## 56   Jamaica Saint Andrew Gordon Town  0.96514
## 143  Jamaica Saint Andrew  Mavis Bank  9.83051
## 408  Jamaica Saint Andrew  Stony Hill  5.98731
## 461  Jamaica Saint Andrew  Stony Hill 10.84467
## 466  Jamaica Saint Andrew  Stony Hill  2.13878
## 476 Dominica Saint Andrew  Calibishie  2.64873
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Saint Andrew",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Saint Andrew")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Saint Ann

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Saint Ann")
df_JAM %>% 
  select(Country, State, City, Distance) 
##      Country     State                   City Distance
## 60   Jamaica Saint Ann Saint Annнўд‰ед‹ўs Bay  3.96533
## 93   Jamaica Saint Ann              Ocho Rios  0.53886
## 1629 Jamaica Saint Ann Saint Annнўд‰ед‹ўs Bay  1.08196
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Saint Ann",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Saint Ann")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Saint Catherine

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Saint Catherine")
df_JAM %>% 
  select(Country, State, City, Distance) 
##      Country           State       City Distance
## 55   Jamaica Saint Catherine Riversdale  5.46381
## 462  Jamaica Saint Catherine   Bog Walk  5.86530
## 1628 Jamaica Saint Catherine   Bog Walk  6.71269
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Saint Catherine",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Saint Catherine")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Saint Mary

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Saint Mary")
df_JAM %>% 
  select(Country, State, City, Distance) 
##     Country      State     City Distance
## 460 Jamaica Saint Mary Richmond  1.24727
## 486 Jamaica Saint Mary Richmond  8.74635
## 588 Jamaica Saint Mary Richmond  3.77580
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Saint Mary",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Saint Mary")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Saint Thomas

library(readr)
library(knitr)
df_JAM <- subset (df, State == "Saint Thomas")
df_JAM %>% 
  select(Country, State, City, Distance) 
##     Country        State      City Distance
## 50  Jamaica Saint Thomas      Bath  0.21825
## 54  Jamaica Saint Thomas Easington  6.51940
## 146 Jamaica Saint Thomas      Bath  1.71217
## 305 Jamaica Saint Thomas Easington  4.53632
ggplot(data=df_JAM, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_JAM,aes(x="Saint Thomas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Saint Thomas")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_JMC <- subset (df, Country == "Jamaica")
knitr::kable(head(df_JMC))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
18 174 8/11/07 NA Jamaica JM Portland 14400 Port Antonio 7.79027 18.1258 -76.5082 (18.125800000000002, -76.508200000000002) Landslide Landslide Medium Rain NA NA Jamaica Gleaner http://www.jamaica-gleaner.com/gleaner/20070812/lead/lead2.html
48 304 10/12/07 NA Jamaica JM St. Elizabeth 1371 Maggotty 4.57363 18.1257 -77.7405 (18.125699999999998, -77.740499999999997) Landslide Complex Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2039/26/
50 314 10/17/07 NA Jamaica JM Saint Thomas 2382 Bath 0.21825 17.9500 -76.3500 (17.95, -76.349999999999994) Landslide Mudslide Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2193/26/
54 339 10/31/07 NA Jamaica JM Saint Thomas 2634 Easington 6.51940 17.9384 -76.6479 (17.938400000000001, -76.647900000000007) Landslide Landslide Medium Tropical cyclone Tropical Storm Noel NA 1 RadioJamaica http://www.radiojamaica.com/content/view/2583/26/
55 340 10/31/07 NA Jamaica JM Saint Catherine 4085 Riversdale 5.46381 18.2152 -76.9659 (18.215199999999999, -76.965900000000005) Landslide Complex Medium Rain NA NA RadioJamaica http://www.radiojamaica.com/content/view/2933/26/
56 341 10/31/07 NA Jamaica JM Saint Andrew 1088 Gordon Town 0.96514 18.0370 -76.7088 (18.036999999999999, -76.708799999999997) Landslide Landslide Medium Tropical cyclone Tropical Storm Noel NA NA Jamaica Observer http://www.jamaicaobserver.com/news/html/20071101T010000-0500_128916_OBS_DEADLY_RAIN.asp
Distance <- df_JMC$Distance

summary(df_JMC$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.2182  1.7122  4.4694  4.4593  6.5194 10.8447
library(pastecs)
stat.desc(df_JAM)
## Warning in min(x): no non-missing arguments to min; returning Inf
## Warning in max(x): no non-missing arguments to max; returning -Inf
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
##                        id date time continent_code Country country_code State
## nbr.val      4.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          3.140000e+02   NA   NA             NA      NA           NA    NA
## max          1.760000e+03   NA   NA             NA      NA           NA    NA
## range        1.446000e+03   NA   NA             NA      NA           NA    NA
## sum          3.187000e+03   NA   NA             NA      NA           NA    NA
## median       5.565000e+02   NA   NA             NA      NA           NA    NA
## mean         7.967500e+02   NA   NA             NA      NA           NA    NA
## SE.mean      3.380028e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 1.075676e+03   NA   NA             NA      NA           NA    NA
## var          4.569836e+05   NA   NA             NA      NA           NA    NA
## std.dev      6.760056e+02   NA   NA             NA      NA           NA    NA
## coef.var     8.484539e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description     latitude
## nbr.val      4.000000e+00   NA  4.0000000                   NA 4.000000e+00
## nbr.null     0.000000e+00   NA  0.0000000                   NA 0.000000e+00
## nbr.na       0.000000e+00   NA  0.0000000                   NA 0.000000e+00
## min          2.382000e+03   NA  0.2182500                   NA 1.793840e+01
## max          2.634000e+03   NA  6.5194000                   NA 1.796470e+01
## range        2.520000e+02   NA  6.3011500                   NA 2.630000e-02
## sum          1.003200e+04   NA 12.9861400                   NA 7.180110e+01
## median       2.508000e+03   NA  3.1242450                   NA 1.794900e+01
## mean         2.508000e+03   NA  3.2465350                   NA 1.795028e+01
## SE.mean      7.274613e+01   NA  1.4112635                   NA 5.434055e-03
## CI.mean.0.95 2.315107e+02   NA  4.4912704                   NA 1.729359e-02
## var          2.116800e+04   NA  7.9666589                   NA 1.181158e-04
## std.dev      1.454923e+02   NA  2.8225270                   NA 1.086811e-02
## coef.var     5.801127e-02   NA  0.8693968                   NA 6.054565e-04
##                  longitude geolocation hazard_type landslide_type
## nbr.val       4.000000e+00          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -7.664790e+01          NA          NA             NA
## max          -7.633300e+01          NA          NA             NA
## range         3.149000e-01          NA          NA             NA
## sum          -3.059144e+02          NA          NA             NA
## median       -7.646675e+01          NA          NA             NA
## mean         -7.647860e+01          NA          NA             NA
## SE.mean       8.031387e-02          NA          NA             NA
## CI.mean.0.95  2.555946e-01          NA          NA             NA
## var           2.580127e-02          NA          NA             NA
## std.dev       1.606277e-01          NA          NA             NA
## coef.var     -2.100297e-03          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        0  2.0000000          NA
## nbr.null                 NA      NA         NA        0  1.0000000          NA
## nbr.na                   NA      NA         NA        4  2.0000000          NA
## min                      NA      NA         NA      Inf  0.0000000          NA
## max                      NA      NA         NA     -Inf  1.0000000          NA
## range                    NA      NA         NA     -Inf  1.0000000          NA
## sum                      NA      NA         NA        0  1.0000000          NA
## median                   NA      NA         NA       NA  0.5000000          NA
## mean                     NA      NA         NA      NaN  0.5000000          NA
## SE.mean                  NA      NA         NA       NA  0.5000000          NA
## CI.mean.0.95             NA      NA         NA      NaN  6.3531024          NA
## var                      NA      NA         NA       NA  0.5000000          NA
## std.dev                  NA      NA         NA       NA  0.7071068          NA
## coef.var                 NA      NA         NA       NA  1.4142136          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="light blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Jamaica se encuentran medianamente bien distribuidos y presentan un ligero sesgo hacia la izquierda.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Nicaragua

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_NIC <- subset (df, Country == "Nicaragua")
knitr::kable(head(df_NIC))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
33 229 9/4/07 NA Nicaragua NI Atlántico Norte 6315 Bonanza 54.90196 13.6670 -84.2435 (13.667, -84.243499999999997) Landslide Complex Medium Tropical cyclone Hurricane Felix NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/
151 826 10/3/08 NA Nicaragua NI Masaya 5182 Tisma 14.49301 12.1200 -85.8900 (12.12, -85.89) Landslide Landslide Medium Downpour NA 9 CBC http://www.cbc.ca/world/story/2008/10/04/nicaragua-flooding.html
420 2289 8/20/10 NA Nicaragua NI Managua 16469 El Crucero 5.84054 12.0420 -86.2998 (12.042, -86.299800000000005) Landslide Mudslide Medium Downpour NA 3
424 2330 8/25/10 NA Nicaragua NI Jinotega 2367 San José de Bocay 1.36745 13.5317 -85.5325 (13.531700000000001, -85.532499999999999) Landslide Landslide Medium Downpour NA NA
1261 6089 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.14242 Unknown 12.3535 -84.8095 (12.3535, -84.8095) Landslide Landslide Small Continuous rain 0 0 Wilfried Strauch
1262 6090 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.24511 Unknown 12.3521 -84.8080 (12.3521, -84.808000000000007) Landslide Landslide Medium Continuous rain 0 0 Wilfried Strauch
df_NIC %>% 
  select(Country, State, City, Distance)
##        Country           State                City Distance
## 33   Nicaragua Atlántico Norte             Bonanza 54.90196
## 151  Nicaragua          Masaya               Tisma 14.49301
## 420  Nicaragua         Managua          El Crucero  5.84054
## 424  Nicaragua        Jinotega   San José de Bocay  1.36745
## 1261 Nicaragua       Chontales       Santo Domingo 31.14242
## 1262 Nicaragua       Chontales       Santo Domingo 31.24511
## 1263 Nicaragua       Chontales       Santo Domingo 31.37360
## 1264 Nicaragua       Chontales       Santo Domingo 31.10125
## 1265 Nicaragua       Chontales       Santo Domingo 30.99704
## 1266 Nicaragua       Chontales       Santo Domingo 30.77070
## 1267 Nicaragua       Chontales       Santo Domingo 30.27546
## 1268 Nicaragua       Chontales       Santo Domingo 29.95253
## 1269 Nicaragua       Chontales       Santo Domingo 29.92927
## 1270 Nicaragua       Chontales       Santo Domingo 28.90294
## 1271 Nicaragua       Chontales       Santo Domingo 32.69694
## 1272 Nicaragua       Chontales       Santo Domingo 32.96402
## 1273 Nicaragua       Chontales       Santo Domingo 32.77401
## 1274 Nicaragua       Chontales       Santo Domingo 29.94574
## 1299 Nicaragua         Managua      Ciudad Sandino  5.59574
## 1321 Nicaragua      Ogun State             Bonanza  0.37593
## 1380 Nicaragua           Rivas          Altagracia  1.97784
## 1381 Nicaragua           Rivas          Altagracia  5.77119
## 1382 Nicaragua    Río San Juan          San Carlos  0.67752
## 1626 Nicaragua        Jinotega              Wiwilí 25.81514
## 1627 Nicaragua        Jinotega            Jinotega  2.44880
## 1631 Nicaragua          Madriz         Las Sabanas  7.21108
## 1632 Nicaragua          Madriz         Las Sabanas  4.86364
## 1633 Nicaragua         Managua           Terrabona 18.92056
## 1634 Nicaragua      Ogun State             Bonanza 10.61568
## 1636 Nicaragua      Ogun State               Siuna  1.68056
## 1637 Nicaragua          Masaya San Juan de Oriente  1.56730
library(ggplot2)
ggplot(data=df_NIC, aes(x = "Nicaragua", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_NIC, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Atlántico Norte

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Atlántico Norte")
df_NIC %>% 
  select(Country, State, City, Distance) 
##      Country           State    City Distance
## 33 Nicaragua Atlántico Norte Bonanza 54.90196
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Atlántico Norte",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Atlántico Norte")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Chontales

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Chontales")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country     State          City Distance
## 1261 Nicaragua Chontales Santo Domingo 31.14242
## 1262 Nicaragua Chontales Santo Domingo 31.24511
## 1263 Nicaragua Chontales Santo Domingo 31.37360
## 1264 Nicaragua Chontales Santo Domingo 31.10125
## 1265 Nicaragua Chontales Santo Domingo 30.99704
## 1266 Nicaragua Chontales Santo Domingo 30.77070
## 1267 Nicaragua Chontales Santo Domingo 30.27546
## 1268 Nicaragua Chontales Santo Domingo 29.95253
## 1269 Nicaragua Chontales Santo Domingo 29.92927
## 1270 Nicaragua Chontales Santo Domingo 28.90294
## 1271 Nicaragua Chontales Santo Domingo 32.69694
## 1272 Nicaragua Chontales Santo Domingo 32.96402
## 1273 Nicaragua Chontales Santo Domingo 32.77401
## 1274 Nicaragua Chontales Santo Domingo 29.94574
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Chontales",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Chontales")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Jinotega

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Jinotega")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country    State              City Distance
## 424  Nicaragua Jinotega San José de Bocay  1.36745
## 1626 Nicaragua Jinotega            Wiwilí 25.81514
## 1627 Nicaragua Jinotega          Jinotega  2.44880
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Jinotega",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Jinotega")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Madriz

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Madriz")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country  State        City Distance
## 1631 Nicaragua Madriz Las Sabanas  7.21108
## 1632 Nicaragua Madriz Las Sabanas  4.86364
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Madriz",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Madriz")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Managua

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Managua")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country   State           City Distance
## 420  Nicaragua Managua     El Crucero  5.84054
## 1299 Nicaragua Managua Ciudad Sandino  5.59574
## 1633 Nicaragua Managua      Terrabona 18.92056
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Managua",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Managua")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Masaya

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Masaya")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country  State                City Distance
## 151  Nicaragua Masaya               Tisma 14.49301
## 1637 Nicaragua Masaya San Juan de Oriente  1.56730
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Masaya",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Masaya")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Ogun State

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Ogun State")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country      State    City Distance
## 1321 Nicaragua Ogun State Bonanza  0.37593
## 1634 Nicaragua Ogun State Bonanza 10.61568
## 1636 Nicaragua Ogun State   Siuna  1.68056
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Ogun State",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Ogun State")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Río San Juan

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Río San Juan")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country        State       City Distance
## 1382 Nicaragua Río San Juan San Carlos  0.67752
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Río San Juan",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Río San Juan")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Rivas

library(readr)
library(knitr)
df_NIC <- subset (df, State == "Rivas")
df_NIC %>% 
  select(Country, State, City, Distance) 
##        Country State       City Distance
## 1380 Nicaragua Rivas Altagracia  1.97784
## 1381 Nicaragua Rivas Altagracia  5.77119
ggplot(data=df_NIC, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_NIC,aes(x="Rivas",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Rivas")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_NCR <- subset (df, Country == "Nicaragua")
knitr::kable(head(df_NCR))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
33 229 9/4/07 NA Nicaragua NI Atlántico Norte 6315 Bonanza 54.90196 13.6670 -84.2435 (13.667, -84.243499999999997) Landslide Complex Medium Tropical cyclone Hurricane Felix NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/
151 826 10/3/08 NA Nicaragua NI Masaya 5182 Tisma 14.49301 12.1200 -85.8900 (12.12, -85.89) Landslide Landslide Medium Downpour NA 9 CBC http://www.cbc.ca/world/story/2008/10/04/nicaragua-flooding.html
420 2289 8/20/10 NA Nicaragua NI Managua 16469 El Crucero 5.84054 12.0420 -86.2998 (12.042, -86.299800000000005) Landslide Mudslide Medium Downpour NA 3
424 2330 8/25/10 NA Nicaragua NI Jinotega 2367 San José de Bocay 1.36745 13.5317 -85.5325 (13.531700000000001, -85.532499999999999) Landslide Landslide Medium Downpour NA NA
1261 6089 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.14242 Unknown 12.3535 -84.8095 (12.3535, -84.8095) Landslide Landslide Small Continuous rain 0 0 Wilfried Strauch
1262 6090 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.24511 Unknown 12.3521 -84.8080 (12.3521, -84.808000000000007) Landslide Landslide Medium Continuous rain 0 0 Wilfried Strauch
Distance <- df_NCR$Distance

summary(df_NCR$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.3759  5.2297 25.8151 19.2966 31.0491 54.9020
library(pastecs)
stat.desc(df_NCR)
##                        id date time continent_code Country country_code State
## nbr.val      3.100000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          2.290000e+02   NA   NA             NA      NA           NA    NA
## max          7.481000e+03   NA   NA             NA      NA           NA    NA
## range        7.252000e+03   NA   NA             NA      NA           NA    NA
## sum          1.835850e+05   NA   NA             NA      NA           NA    NA
## median       6.100000e+03   NA   NA             NA      NA           NA    NA
## mean         5.922097e+03   NA   NA             NA      NA           NA    NA
## SE.mean      3.381976e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 6.906916e+02   NA   NA             NA      NA           NA    NA
## var          3.545706e+06   NA   NA             NA      NA           NA    NA
## std.dev      1.883004e+03   NA   NA             NA      NA           NA    NA
## coef.var     3.179624e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      3.100000e+01   NA  31.0000000                   NA  31.00000000
## nbr.null     0.000000e+00   NA   0.0000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.00000000
## min          1.257000e+03   NA   0.3759300                   NA  11.12970000
## max          7.001300e+04   NA  54.9019600                   NA  14.02560000
## range        6.875600e+04   NA  54.5260300                   NA   2.89590000
## sum          2.941580e+05   NA 598.1949700                   NA 390.48210000
## median       5.827000e+03   NA  25.8151400                   NA  12.35020000
## mean         9.488968e+03   NA  19.2966119                   NA  12.59619677
## SE.mean      2.567661e+03   NA   2.6411002                   NA   0.13419490
## CI.mean.0.95 5.243863e+03   NA   5.3938462                   NA   0.27406254
## var          2.043793e+08   NA 216.2377168                   NA   0.55825639
## std.dev      1.429613e+04   NA  14.7050235                   NA   0.74716557
## coef.var     1.506605e+00   NA   0.7620521                   NA   0.05931676
##                  longitude geolocation hazard_type landslide_type
## nbr.val       3.100000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.661460e+01          NA          NA             NA
## max          -8.424350e+01          NA          NA             NA
## range         2.371100e+00          NA          NA             NA
## sum          -2.642577e+03          NA          NA             NA
## median       -8.481950e+01          NA          NA             NA
## mean         -8.524444e+01          NA          NA             NA
## SE.mean       1.206052e-01          NA          NA             NA
## CI.mean.0.95  2.463087e-01          NA          NA             NA
## var           4.509141e-01          NA          NA             NA
## std.dev       6.715013e-01          NA          NA             NA
## coef.var     -7.877363e-03          NA          NA             NA
##              landslide_size trigger storm_name  injuries fatalities source_name
## nbr.val                  NA      NA         NA 27.000000 29.0000000          NA
## nbr.null                 NA      NA         NA 26.000000 24.0000000          NA
## nbr.na                   NA      NA         NA  4.000000  2.0000000          NA
## min                      NA      NA         NA  0.000000  0.0000000          NA
## max                      NA      NA         NA 38.000000  9.0000000          NA
## range                    NA      NA         NA 38.000000  9.0000000          NA
## sum                      NA      NA         NA 38.000000 29.0000000          NA
## median                   NA      NA         NA  0.000000  0.0000000          NA
## mean                     NA      NA         NA  1.407407  1.0000000          NA
## SE.mean                  NA      NA         NA  1.407407  0.4862645          NA
## CI.mean.0.95             NA      NA         NA  2.892967  0.9960678          NA
## var                      NA      NA         NA 53.481481  6.8571429          NA
## std.dev                  NA      NA         NA  7.313103  2.6186147          NA
## coef.var                 NA      NA         NA  5.196152  2.6186147          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="blue", fill="blue", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos para Nicaragua presentan sesgo hacia la izquierda.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Panama

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_PAN <- subset (df, Country == "Panama")
knitr::kable(head(df_PAN))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
141 750 8/26/08 NA Panama PA Panamá 1287 Cerro Azul 1.84596 9.1559 -79.4295 (9.1559000000000008, -79.429500000000004) Landslide Landslide Medium Downpour NA NA http://news.xinhuanet.com/english/2008-08/27/content_9721298.htm
167 905 11/25/08 NA Panama PA Chiriquí 6123 Boquete 9.83700 8.7870 -82.3440 (8.7870000000000008, -82.343999999999994) Landslide Complex Medium Downpour NA 8 http://www.iht.com/articles/ap/2008/11/26/news/LT-Panama-Flooding.php
557 2794 12/8/10 NA Panama PA Colón 1310 El Giral 1.80330 9.2332 -79.6961 (9.2332000000000001, -79.696100000000001) Landslide Landslide Medium Downpour NA 0 http://www.portworld.com/news/i98731/Panama_Canal_disrupted_by_floods
558 2795 12/9/10 Morning NA Panama PA Colón 1274 Portobelo 0.09491 Deforested slope 9.5493 -79.6505 (9.5493000000000006, -79.650499999999994) Landslide Mudslide Medium Downpour NA 8 Fox News Latino http://latino.foxnews.com/latino/news/2010/12/09/heavy-rains-kill-panama-force-canal-close/
591 3167 3/2/11 Night NA Panama PA Los Santos 1283 La Palma 13.40535 7.5955 -80.3800 (7.5955000000000004, -80.38) Landslide Landslide Medium Downpour NA 0 http://www.newsroompanama.com/panama/2434-off-season-rain-creating-crop-worries-and-landslides.html
592 3168 3/2/11 Night NA Panama PA Bocas del Toro 8114 Almirante 8.41491 9.3224 -82.4732 (9.3224, -82.473200000000006) Landslide Landslide Medium Downpour NA 0 http://www.newsroompanama.com/panama/2434-off-season-rain-creating-crop-worries-and-landslides.html
df_PAN %>% 
  select(Country, State, City, Distance)
##      Country          State              City Distance
## 141   Panama         Panamá        Cerro Azul  1.84596
## 167   Panama       Chiriquí           Boquete  9.83700
## 557   Panama          Colón          El Giral  1.80330
## 558   Panama          Colón         Portobelo  0.09491
## 591   Panama     Los Santos          La Palma 13.40535
## 592   Panama Bocas del Toro         Almirante  8.41491
## 919   Panama          Colón             Colón  0.16894
## 979   Panama          Colón         Portobelo  2.67409
## 980   Panama          Colón         Margarita  0.74760
## 981   Panama          Colón             Colón  0.20365
## 1080  Panama          Colón         Margarita  0.76740
## 1166  Panama         Panamá       Las Cumbres  2.81479
## 1387  Panama       Chiriquí            Volcán  0.35187
## 1388  Panama       Chiriquí        Río Sereno  0.64491
## 1389  Panama         Panamá       Alcaldedíaz  1.41526
## 1390  Panama          Colón    Nuevo San Juan  4.74914
## 1391  Panama         Panamá     San Miguelito  4.18074
## 1392  Panama       Chiriquí       Cerro Punta  3.33873
## 1393  Panama         Panamá             Ancón  2.24069
## 1606  Panama          Colón Nueva Providencia  0.18619
## 1607  Panama          Colón    María Chiquita  2.28589
## 1608  Panama          Colón            Cativá  0.63948
## 1609  Panama         Panamá    Las Margaritas  0.48725
## 1645  Panama Bocas del Toro        Punta Peña  0.29869
## 1653  Panama Bocas del Toro       Changuinola  5.97977
## 1654  Panama Bocas del Toro   Valle del Risco  6.65185
## 1655  Panama Bocas del Toro      Pueblo Nuevo  3.92621
## 1656  Panama Bocas del Toro   Valle del Risco  5.13913
## 1657  Panama Bocas del Toro          Cauchero  4.45630
## 1658  Panama       Chiriquí     Boca de Balsa  2.44254
## 1659  Panama       Chiriquí        Río Sereno  3.66775
## 1660  Panama       Chiriquí    Palmira Centro  0.90169
## 1661  Panama       Chiriquí            Breñón  0.37999
## 1662  Panama         Panamá     San Miguelito  2.57852
## 1663  Panama       Chiriquí       Monte Lirio  6.74338
## 1664  Panama          Coclé         Caballero  0.21605
## 1665  Panama         Panamá     San Miguelito  2.59449
## 1666  Panama         Panamá     San Miguelito  3.30848
## 1667  Panama         Panamá     San Miguelito  3.54386
## 1668  Panama         Panamá          Arraiján  1.80341
library(ggplot2)
ggplot(data=df_PAN, aes(x = "Panama", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_PAN, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Bocas del Toro

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Bocas del Toro")
df_PAN %>% 
  select(Country, State, City, Distance) 
##      Country          State            City Distance
## 592   Panama Bocas del Toro       Almirante  8.41491
## 1645  Panama Bocas del Toro      Punta Peña  0.29869
## 1653  Panama Bocas del Toro     Changuinola  5.97977
## 1654  Panama Bocas del Toro Valle del Risco  6.65185
## 1655  Panama Bocas del Toro    Pueblo Nuevo  3.92621
## 1656  Panama Bocas del Toro Valle del Risco  5.13913
## 1657  Panama Bocas del Toro        Cauchero  4.45630
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Bocas del Toro",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Bocas del Toro")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Chiriquí

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Chiriquí")
df_PAN %>% 
  select(Country, State, City, Distance) 
##      Country    State           City Distance
## 167   Panama Chiriquí        Boquete  9.83700
## 1387  Panama Chiriquí         Volcán  0.35187
## 1388  Panama Chiriquí     Río Sereno  0.64491
## 1392  Panama Chiriquí    Cerro Punta  3.33873
## 1658  Panama Chiriquí  Boca de Balsa  2.44254
## 1659  Panama Chiriquí     Río Sereno  3.66775
## 1660  Panama Chiriquí Palmira Centro  0.90169
## 1661  Panama Chiriquí         Breñón  0.37999
## 1663  Panama Chiriquí    Monte Lirio  6.74338
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Chiriquí",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Chiriquí")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Coclé

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Coclé")
df_PAN %>% 
  select(Country, State, City, Distance) 
##      Country State      City Distance
## 1664  Panama Coclé Caballero  0.21605
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Coclé",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Coclé")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Colón

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Colón")
df_PAN %>% 
  select(Country, State, City, Distance) 
##       Country State              City Distance
## 485  Honduras Colón            Cusuna 36.37629
## 557    Panama Colón          El Giral  1.80330
## 558    Panama Colón         Portobelo  0.09491
## 919    Panama Colón             Colón  0.16894
## 979    Panama Colón         Portobelo  2.67409
## 980    Panama Colón         Margarita  0.74760
## 981    Panama Colón             Colón  0.20365
## 1080   Panama Colón         Margarita  0.76740
## 1390   Panama Colón    Nuevo San Juan  4.74914
## 1606   Panama Colón Nueva Providencia  0.18619
## 1607   Panama Colón    María Chiquita  2.28589
## 1608   Panama Colón            Cativá  0.63948
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Colón",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Colón")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Los Santos

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Los Santos")
df_PAN %>% 
  select(Country, State, City, Distance) 
##     Country      State     City Distance
## 591  Panama Los Santos La Palma 13.40535
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Los Santos",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Los Santos")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Panamá

library(readr)
library(knitr)
df_PAN <- subset (df, State == "Panamá")
df_PAN %>% 
  select(Country, State, City, Distance) 
##      Country  State           City Distance
## 141   Panama Panamá     Cerro Azul  1.84596
## 1166  Panama Panamá    Las Cumbres  2.81479
## 1389  Panama Panamá    Alcaldedíaz  1.41526
## 1391  Panama Panamá  San Miguelito  4.18074
## 1393  Panama Panamá          Ancón  2.24069
## 1609  Panama Panamá Las Margaritas  0.48725
## 1662  Panama Panamá  San Miguelito  2.57852
## 1665  Panama Panamá  San Miguelito  2.59449
## 1666  Panama Panamá  San Miguelito  3.30848
## 1667  Panama Panamá  San Miguelito  3.54386
## 1668  Panama Panamá       Arraiján  1.80341
ggplot(data=df_PAN, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PAN,aes(x="Panamá",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Panamá")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_PNM <- subset (df, Country == "Panama")
knitr::kable(head(df_PNM))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
141 750 8/26/08 NA Panama PA Panamá 1287 Cerro Azul 1.84596 9.1559 -79.4295 (9.1559000000000008, -79.429500000000004) Landslide Landslide Medium Downpour NA NA http://news.xinhuanet.com/english/2008-08/27/content_9721298.htm
167 905 11/25/08 NA Panama PA Chiriquí 6123 Boquete 9.83700 8.7870 -82.3440 (8.7870000000000008, -82.343999999999994) Landslide Complex Medium Downpour NA 8 http://www.iht.com/articles/ap/2008/11/26/news/LT-Panama-Flooding.php
557 2794 12/8/10 NA Panama PA Colón 1310 El Giral 1.80330 9.2332 -79.6961 (9.2332000000000001, -79.696100000000001) Landslide Landslide Medium Downpour NA 0 http://www.portworld.com/news/i98731/Panama_Canal_disrupted_by_floods
558 2795 12/9/10 Morning NA Panama PA Colón 1274 Portobelo 0.09491 Deforested slope 9.5493 -79.6505 (9.5493000000000006, -79.650499999999994) Landslide Mudslide Medium Downpour NA 8 Fox News Latino http://latino.foxnews.com/latino/news/2010/12/09/heavy-rains-kill-panama-force-canal-close/
591 3167 3/2/11 Night NA Panama PA Los Santos 1283 La Palma 13.40535 7.5955 -80.3800 (7.5955000000000004, -80.38) Landslide Landslide Medium Downpour NA 0 http://www.newsroompanama.com/panama/2434-off-season-rain-creating-crop-worries-and-landslides.html
592 3168 3/2/11 Night NA Panama PA Bocas del Toro 8114 Almirante 8.41491 9.3224 -82.4732 (9.3224, -82.473200000000006) Landslide Landslide Medium Downpour NA 0 http://www.newsroompanama.com/panama/2434-off-season-rain-creating-crop-worries-and-landslides.html
Distance <- df_PNM$Distance

summary(df_PNM$Distance)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.09491  0.64355  2.36422  2.94825  3.98984 13.40535
library(pastecs)
stat.desc(df_PNM)
##                        id date time continent_code Country country_code State
## nbr.val      4.000000e+01   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          7.500000e+02   NA   NA             NA      NA           NA    NA
## max          7.512000e+03   NA   NA             NA      NA           NA    NA
## range        6.762000e+03   NA   NA             NA      NA           NA    NA
## sum          2.479400e+05   NA   NA             NA      NA           NA    NA
## median       7.450500e+03   NA   NA             NA      NA           NA    NA
## mean         6.198500e+03   NA   NA             NA      NA           NA    NA
## SE.mean      3.051354e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 6.171945e+02   NA   NA             NA      NA           NA    NA
## var          3.724304e+06   NA   NA             NA      NA           NA    NA
## std.dev      1.929846e+03   NA   NA             NA      NA           NA    NA
## coef.var     3.113407e-01   NA   NA             NA      NA           NA    NA
##                population City    Distance location_description     latitude
## nbr.val      4.000000e+01   NA  40.0000000                   NA  40.00000000
## nbr.null     8.000000e+00   NA   0.0000000                   NA   0.00000000
## nbr.na       0.000000e+00   NA   0.0000000                   NA   0.00000000
## min          0.000000e+00   NA   0.0949100                   NA   7.59550000
## max          3.215010e+05   NA  13.4053500                   NA   9.56760000
## range        3.215010e+05   NA  13.3104400                   NA   1.97210000
## sum          2.041483e+06   NA 117.9301600                   NA 361.65930000
## median       2.365500e+03   NA   2.3642150                   NA   9.07300000
## mean         5.103707e+04   NA   2.9482540                   NA   9.04148250
## SE.mean      1.674111e+04   NA   0.4634140                   NA   0.05632097
## CI.mean.0.95 3.386208e+04   NA   0.9373432                   NA   0.11391991
## var          1.121058e+10   NA   8.5900997                   NA   0.12688206
## std.dev      1.058800e+05   NA   2.9308872                   NA   0.35620508
## coef.var     2.074571e+00   NA   0.9941095                   NA   0.03939676
##                  longitude geolocation hazard_type landslide_type
## nbr.val       4.000000e+01          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -8.286620e+01          NA          NA             NA
## max          -7.908960e+01          NA          NA             NA
## range         3.776600e+00          NA          NA             NA
## sum          -3.232397e+03          NA          NA             NA
## median       -7.989490e+01          NA          NA             NA
## mean         -8.080992e+01          NA          NA             NA
## SE.mean       2.230672e-01          NA          NA             NA
## CI.mean.0.95  4.511960e-01          NA          NA             NA
## var           1.990359e+00          NA          NA             NA
## std.dev       1.410801e+00          NA          NA             NA
## coef.var     -1.745826e-02          NA          NA             NA
##              landslide_size trigger storm_name  injuries fatalities source_name
## nbr.val                  NA      NA         NA 28.000000 38.0000000          NA
## nbr.null                 NA      NA         NA 27.000000 33.0000000          NA
## nbr.na                   NA      NA         NA 12.000000  2.0000000          NA
## min                      NA      NA         NA  0.000000  0.0000000          NA
## max                      NA      NA         NA 45.000000  8.0000000          NA
## range                    NA      NA         NA 45.000000  8.0000000          NA
## sum                      NA      NA         NA 45.000000 23.0000000          NA
## median                   NA      NA         NA  0.000000  0.0000000          NA
## mean                     NA      NA         NA  1.607143  0.6052632          NA
## SE.mean                  NA      NA         NA  1.607143  0.3099568          NA
## CI.mean.0.95             NA      NA         NA  3.297585  0.6280321          NA
## var                      NA      NA         NA 72.321429  3.6507824          NA
## std.dev                  NA      NA         NA  8.504201  1.9107021          NA
## coef.var                 NA      NA         NA  5.291503  3.1568121          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="blue", fill="red", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos para Panamá se encuentran bien distribuidos y se considera la presencial de algunos datos aberrantes.

Gráfico circular y de barras de las distancias de desplazamientos para el país de Puerto Rico

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

library(readr)
library(knitr)
df_PUE <- subset (df, Country == "Puerto Rico")
knitr::kable(head(df_PUE))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
68 393 12/12/07 NA Puerto Rico PR San Juan 418140 San Juan 6.91777 18.4320 -66.0510 (18.431999999999999, -66.051000000000002) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA AP.google.com http://ap.google.com/article/ALeqM5gVWjsPEiqe1tEu2mhBIRaxxGi8owD8TFVR600
477 2550 10/6/10 NA Puerto Rico PR Orocovis 944 Orocovis 6.85760 18.1652 -66.3969 (18.165199999999999, -66.396900000000002) Landslide Complex Medium Tropical cyclone Tropical Storm Otto NA 0 http://www.whitehouse.gov/the-press-office/2010/10/26/president-obama-signs-puerto-rico-disaster-declaration
1396 6708 5/18/14 16:30 NA Puerto Rico PR Vega Alta 12036 Vega Alta 3.49090 Mine construction 18.3806 -66.3319 (18.380600000000001, -66.331900000000005) Landslide Other Small Rain 0 0 Telemundo http://www.telemundopr.com/telenoticias/puerto-rico/Deslizamiento-deja-a-familias-incomunicadas-en-Vega-Alta-258522361.html
1397 6709 9/24/14 NA Puerto Rico PR Aguada 4040 Aguada 1.40257 Unknown 18.3711 -67.1782 (18.371099999999998, -67.178200000000004) Landslide Landslide Medium Downpour 0 0 Telemundo http://www.telemundopr.com/telenoticias/puerto-rico/Viviendas-inhabitables-luego-de-deslizamiento-de-tierras-en-Aguada-277123031.html
1398 6710 8/24/14 3:00 NA Puerto Rico PR Ponce 5080 Adjuntas 5.78872 Unknown 18.1283 -66.6810 (18.128299999999999, -66.680999999999997) Landslide Landslide Small Downpour 0 0 Perla del Sur http://www.periodicolaperla.com/index.php?option=com_content&view=article&id=6371:surgen-nuevos-deslizamientos-en-ponce&catid=135:actualidad-del-sur&Itemid=423
1399 6711 8/24/14 NA Puerto Rico PR Ponce 5080 Adjuntas 6.89036 Unknown 18.1254 -66.6700 (18.125399999999999, -66.67) Landslide Landslide Medium Downpour 0 0 Perla del Sur http://www.periodicolaperla.com/index.php?option=com_content&view=article&id=6371:surgen-nuevos-deslizamientos-en-ponce&catid=135:actualidad-del-sur&Itemid=423
df_PUE %>% 
  select(Country, State, City, Distance)
##          Country     State      City Distance
## 68   Puerto Rico  San Juan  San Juan  6.91777
## 477  Puerto Rico  Orocovis  Orocovis  6.85760
## 1396 Puerto Rico Vega Alta Vega Alta  3.49090
## 1397 Puerto Rico    Aguada    Aguada  1.40257
## 1398 Puerto Rico     Ponce  Adjuntas  5.78872
## 1399 Puerto Rico     Ponce  Adjuntas  6.89036
## 1400 Puerto Rico  Villalba  Villalba  3.65535
library(ggplot2)
ggplot(data=df_PUE, aes(x = "Puerto Rico", y = Distance, fill=State)) +
  geom_bar(stat = "identity", width = 1, color = "black") +
  coord_polar("y", start = 0)

ggplot(data=df_PUE, aes(fill=State, y=Distance, x="State")) +
  geom_bar(position="dodge", stat="identity")

### Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Aguada.

library(readr)
library(knitr)
df_PUE <- subset (df, State == "Aguada")
df_PUE %>% 
  select(Country, State, City, Distance) 
##          Country  State   City Distance
## 1397 Puerto Rico Aguada Aguada  1.40257
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="Aguada",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Aguada")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Orocovis

library(readr)
library(knitr)
df_PUE <- subset (df, State == "Orocovis")
df_PUE %>% 
  select(Country, State, City, Distance) 
##         Country    State     City Distance
## 477 Puerto Rico Orocovis Orocovis   6.8576
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="Orocovis",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Orocovis")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Ponce

library(readr)
library(knitr)
df_PUE <- subset (df, State == "Ponce")
df_PUE %>% 
  select(Country, State, City, Distance) 
##          Country State     City Distance
## 1398 Puerto Rico Ponce Adjuntas  5.78872
## 1399 Puerto Rico Ponce Adjuntas  6.89036
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="Ponce",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Ponce")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de San Juan

library(readr)
library(knitr)
df_PUE <- subset (df, State == "San Juan")
df_PUE %>% 
  select(Country, State, City, Distance) 
##        Country    State     City Distance
## 68 Puerto Rico San Juan San Juan  6.91777
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="San Juan",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - San Juan")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Vega Alta

library(readr)
library(knitr)
df_PUE <- subset (df, State == "Vega Alta")
df_PUE %>% 
  select(Country, State, City, Distance) 
##          Country     State      City Distance
## 1396 Puerto Rico Vega Alta Vega Alta   3.4909
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="Vega Alta",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Vega Alta")

Gráfico circular porcentual y de barras apiladas de las distancias de desplazamientos para el departamento de Villalba

library(readr)
library(knitr)
df_PUE <- subset (df, State == "Villalba")
df_PUE %>% 
  select(Country, State, City, Distance) 
##          Country    State     City Distance
## 1400 Puerto Rico Villalba Villalba  3.65535
ggplot(data=df_PUE, aes(x=City, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

ggplot(df_PUE,aes(x="Villalba",y=Distance, fill=City))+
  geom_bar(stat = "identity",
           color="black")+
    geom_text(aes(label=(Distance*1)),
              position=position_stack(vjust=0.5),color="white",size=2)+
  coord_polar(theta = "y")+
    labs(title="Gráfico de distancia de desplazamiento - Villalba")

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")

library(ggplot2)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"

df_PRC <- subset (df, Country == "Puerto Rico")
knitr::kable(head(df_PRC))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
68 393 12/12/07 NA Puerto Rico PR San Juan 418140 San Juan 6.91777 18.4320 -66.0510 (18.431999999999999, -66.051000000000002) Landslide Landslide Medium Tropical cyclone Tropical Storm Olga NA NA AP.google.com http://ap.google.com/article/ALeqM5gVWjsPEiqe1tEu2mhBIRaxxGi8owD8TFVR600
477 2550 10/6/10 NA Puerto Rico PR Orocovis 944 Orocovis 6.85760 18.1652 -66.3969 (18.165199999999999, -66.396900000000002) Landslide Complex Medium Tropical cyclone Tropical Storm Otto NA 0 http://www.whitehouse.gov/the-press-office/2010/10/26/president-obama-signs-puerto-rico-disaster-declaration
1396 6708 5/18/14 16:30 NA Puerto Rico PR Vega Alta 12036 Vega Alta 3.49090 Mine construction 18.3806 -66.3319 (18.380600000000001, -66.331900000000005) Landslide Other Small Rain 0 0 Telemundo http://www.telemundopr.com/telenoticias/puerto-rico/Deslizamiento-deja-a-familias-incomunicadas-en-Vega-Alta-258522361.html
1397 6709 9/24/14 NA Puerto Rico PR Aguada 4040 Aguada 1.40257 Unknown 18.3711 -67.1782 (18.371099999999998, -67.178200000000004) Landslide Landslide Medium Downpour 0 0 Telemundo http://www.telemundopr.com/telenoticias/puerto-rico/Viviendas-inhabitables-luego-de-deslizamiento-de-tierras-en-Aguada-277123031.html
1398 6710 8/24/14 3:00 NA Puerto Rico PR Ponce 5080 Adjuntas 5.78872 Unknown 18.1283 -66.6810 (18.128299999999999, -66.680999999999997) Landslide Landslide Small Downpour 0 0 Perla del Sur http://www.periodicolaperla.com/index.php?option=com_content&view=article&id=6371:surgen-nuevos-deslizamientos-en-ponce&catid=135:actualidad-del-sur&Itemid=423
1399 6711 8/24/14 NA Puerto Rico PR Ponce 5080 Adjuntas 6.89036 Unknown 18.1254 -66.6700 (18.125399999999999, -66.67) Landslide Landslide Medium Downpour 0 0 Perla del Sur http://www.periodicolaperla.com/index.php?option=com_content&view=article&id=6371:surgen-nuevos-deslizamientos-en-ponce&catid=135:actualidad-del-sur&Itemid=423
Distance <- df_PRC$Distance

summary(df_PRC$Distance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.403   3.573   5.789   5.000   6.874   6.918
library(pastecs)
stat.desc(df_PRC)
##                        id date time continent_code Country country_code State
## nbr.val      7.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.null     0.000000e+00   NA   NA             NA      NA           NA    NA
## nbr.na       0.000000e+00   NA   NA             NA      NA           NA    NA
## min          3.930000e+02   NA   NA             NA      NA           NA    NA
## max          6.712000e+03   NA   NA             NA      NA           NA    NA
## range        6.319000e+03   NA   NA             NA      NA           NA    NA
## sum          3.649300e+04   NA   NA             NA      NA           NA    NA
## median       6.709000e+03   NA   NA             NA      NA           NA    NA
## mean         5.213286e+03   NA   NA             NA      NA           NA    NA
## SE.mean      9.943773e+02   NA   NA             NA      NA           NA    NA
## CI.mean.0.95 2.433154e+03   NA   NA             NA      NA           NA    NA
## var          6.921504e+06   NA   NA             NA      NA           NA    NA
## std.dev      2.630875e+03   NA   NA             NA      NA           NA    NA
## coef.var     5.046482e-01   NA   NA             NA      NA           NA    NA
##                population City   Distance location_description     latitude
## nbr.val      7.000000e+00   NA  7.0000000                   NA 7.000000e+00
## nbr.null     0.000000e+00   NA  0.0000000                   NA 0.000000e+00
## nbr.na       0.000000e+00   NA  0.0000000                   NA 0.000000e+00
## min          9.440000e+02   NA  1.4025700                   NA 1.812540e+01
## max          4.181400e+05   NA  6.9177700                   NA 1.843200e+01
## range        4.171960e+05   NA  5.5152000                   NA 3.066000e-01
## sum          4.498750e+05   NA 35.0032700                   NA 1.277604e+02
## median       5.080000e+03   NA  5.7887200                   NA 1.816520e+01
## mean         6.426786e+04   NA  5.0004671                   NA 1.825149e+01
## SE.mean      5.899213e+04   NA  0.8215987                   NA 5.137584e-02
## CI.mean.0.95 1.443485e+05   NA  2.0103796                   NA 1.257122e-01
## var          2.436050e+10   NA  4.7251712                   NA 1.847634e-02
## std.dev      1.560785e+05   NA  2.1737459                   NA 1.359277e-01
## coef.var     2.428562e+00   NA  0.4347086                   NA 7.447487e-03
##                  longitude geolocation hazard_type landslide_type
## nbr.val       7.000000e+00          NA          NA             NA
## nbr.null      0.000000e+00          NA          NA             NA
## nbr.na        0.000000e+00          NA          NA             NA
## min          -6.717820e+01          NA          NA             NA
## max          -6.605100e+01          NA          NA             NA
## range         1.127200e+00          NA          NA             NA
## sum          -4.657880e+02          NA          NA             NA
## median       -6.647900e+01          NA          NA             NA
## mean         -6.654114e+01          NA          NA             NA
## SE.mean       1.336926e-01          NA          NA             NA
## CI.mean.0.95  3.271341e-01          NA          NA             NA
## var           1.251161e-01          NA          NA             NA
## std.dev       3.537175e-01          NA          NA             NA
## coef.var     -5.315771e-03          NA          NA             NA
##              landslide_size trigger storm_name injuries fatalities source_name
## nbr.val                  NA      NA         NA        5          6          NA
## nbr.null                 NA      NA         NA        5          6          NA
## nbr.na                   NA      NA         NA        2          1          NA
## min                      NA      NA         NA        0          0          NA
## max                      NA      NA         NA        0          0          NA
## range                    NA      NA         NA        0          0          NA
## sum                      NA      NA         NA        0          0          NA
## median                   NA      NA         NA        0          0          NA
## mean                     NA      NA         NA        0          0          NA
## SE.mean                  NA      NA         NA        0          0          NA
## CI.mean.0.95             NA      NA         NA        0          0          NA
## var                      NA      NA         NA        0          0          NA
## std.dev                  NA      NA         NA        0          0          NA
## coef.var                 NA      NA         NA      NaN        NaN          NA
##              source_link
## nbr.val               NA
## nbr.null              NA
## nbr.na                NA
## min                   NA
## max                   NA
## range                 NA
## sum                   NA
## median                NA
## mean                  NA
## SE.mean               NA
## CI.mean.0.95          NA
## var                   NA
## std.dev               NA
## coef.var              NA
#### Caja y extensión


library(tidyverse)
library(hrbrthemes)
library(viridis)

df <- data.frame(Distance)
df %>% ggplot(aes(x = "", y = Distance)) +
  geom_boxplot(color="black", fill="yellow", alpha=0.5) +
  theme_ipsum() +
  theme(legend.position="none", plot.title = element_text(size=20)) +
ggtitle("Longitd de deslizamientos") +
  coord_flip() +
  xlab("") +
  ylab("")

Como puede observarse en el diagrama de caja y extensión, los datos de longitud de deslizamientos para Puerto Rico presentan un claro sesgo hacia la izquierda.

CONCLUSIÓN

Por medio de este análisis, interpretación y representación de la información brindada por el Catalogo Global de Deslizamientos de Tierra (GLC), fue posible establecer relaciones entre diferentes variables presentes en los datos disponibles para los países de Colombia, Ecuador, Perú, Trinidad y Tobago, y Venezuela, pertenecientes a Sudamérica. Entre estas se destacan el tipo de deslizamientos asociados a las regiones y el porcentaje de eventos que desatan deslizamientos en los países estudiados. Además, fue posible organizar en un diagrama de caja y extensión los datos asociados a la distancia de deslizamiento en Colombia, en el cual se afirma que la media de los desplazamientos en el país es de al rededor 5 km (Q2) y en donde se permiten valores para el estudio de estos que van aproximadamente de 0 km (Q1) a 25 km (Q3), y en el cual existen datos con magnitud superior a estos límites o bigotes denominados datos aberrantes, los cuales no deberían ser tomados en cuenta al momento de realizar un estudio sobre distancia recorrida en un deslizamiento en el país.

REFERENCIAS