Introducción
En este informe se presenta el desarrollo de tablas de frecuencia simple y agrupada, medidas de tendencia central, medidas de variabilidad, medidas de posición y diagramas de caja y bigotes con el fin organizar de una mejor manera la información y así tener una buena comprensión de los de diferentes datos en los países de América como lo son Barbados, Belice, Bermuda, Brasil, Canadá, Colombia, Costa Rica, Cuba, Dominicana, Ecuador, El Salvador, Guatemala, Haití, Honduras, Jamaica, México, Puerto Rico, Perú, Panamá, República Dominicana, Saint lucia, Saint vincent and the Grenadine, Trinidad y Tobago, Estados unidos, Islas vírgenes y Venezuela. Para realizar el siguiente informe usamos R estudio el cual es un software creado para el análisis estadístico, además de facilitar la creación de gráficos como lo son el circular, el de barras, etc. Haciendo este trabajo ponemos en práctica los conocimientos previamente adquiridos poniéndolos una situación, en este caso el deslizamiento de los suelos a causa de la lluvia en todo el mundo la cual es un evento al que nos podemos enfrentar diariamente como geólogos. Además, tenemos como objetivo principal el poder desarrollar las habilidades mediante el uso de la informática y el análisis estadístico.
Barbados
Para Barbados, solo hubo un deslizamiento en el estado de Saint Joseph, siendo esta la única ciudad donde aparecen datos.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Barbados")
table(pais$state.province)
##
## Saint Joseph
## 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Saint Joseph |
1 |
100 |
100 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="yellow", fill="darkblue", width=0.5) +
xlab("Barbados") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))
### Diagrama de caja
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Barbados")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
##
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
##
## first, last
stat.desc(pais$population)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
## nbr.val nbr.null nbr.na min max range
## 1 0 0 1765 1765 0
## sum median mean SE.mean CI.mean.0.95 var
## 1765 1765 1765 NA NaN NA
## std.dev coef.var
## NA NA
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
## nbr.val nbr.null nbr.na min max range
## 1.00000 0.00000 0.00000 2.87363 2.87363 0.00000
## sum median mean SE.mean CI.mean.0.95 var
## 2.87363 2.87363 2.87363 NA NaN NA
## std.dev coef.var
## NA NA
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')

Belize
Para Belize, solo hay un estado para la cual se tomaron datos y esta fue Cayo, donde se reportó un deslizamiento.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Belize")
table(pais$state.province)
##
## Cayo
## 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue4", fill="red", width=0.5) +
xlab("Belize") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))
### Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Belize")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
## nbr.val nbr.null nbr.na min max range
## 1 0 0 13381 13381 0
## sum median mean SE.mean CI.mean.0.95 var
## 13381 13381 13381 NA NaN NA
## std.dev coef.var
## NA NA
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## Warning in qt((0.5 + p/2), (Nbrval - 1)): NaNs produced
## nbr.val nbr.null nbr.na min max range
## 1.00000 0.00000 0.00000 9.71758 9.71758 0.00000
## sum median mean SE.mean CI.mean.0.95 var
## 9.71758 9.71758 9.71758 NA NaN NA
## std.dev coef.var
## NA NA
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')

Bermuda
En Bermuda, se reportaron dos deslizamientos en Hamilton city.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Bermuda")
table(pais$state.province)
##
## Hamilton city
## 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Hamilton city |
2 |
100 |
100 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow", width=0.5) +
xlab("Bermuda") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Brazil
En el caso de Brazil, se reportaron deslizamiento en 3 estados: Pará, Amapá y Maranhão, siendo el primero donde más deslizamientos hubo (2) y en los otros solo 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Brazil")
table(pais$state.province)
##
## Amapá Maranhão Pará
## 1 1 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Pará |
2 |
50 |
50 |
50 |
50 |
| Amapá |
1 |
25 |
25 |
75 |
75 |
| Maranhão |
1 |
25 |
25 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Brazil") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Pará","Amapá","Maranhão"),
value = c(50, 25, 25))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
## Loading required package: scales
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
##
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
##
## col_factor
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
BRA <- subset (df, Country == "Brazil")
knitr::kable(head(BRA))
BRA %>%
select(Country, State, City, Distance)
## Country State City Distance
## 193 Brazil Pará Altamira 1.01848
## 194 Brazil Maranhão Barra do Corda 61.75306
## 947 Brazil Amapá Santana 0.17020
## 1348 Brazil Pará Abaetetuba 1.04062
ggplot(data= BRA, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Diagrama de Caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Brazil")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 4.000000e+00 0.000000e+00 0.000000e+00 4.890100e+04 8.392700e+04 3.502600e+04
## sum median mean SE.mean CI.mean.0.95 var
## 2.817660e+05 7.446900e+04 7.044150e+04 7.659093e+03 2.437465e+04 2.346468e+08
## std.dev coef.var
## 1.531819e+04 2.174597e-01
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 4.000000 0.000000 0.000000 0.170200 61.753060 61.582860
## sum median mean SE.mean CI.mean.0.95 var
## 63.982360 1.029550 15.995590 15.253836 48.544513 930.717994
## std.dev coef.var
## 30.507671 1.907255
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Pará","Amapá","Maranhão") ,
Frecuencia = c(1,1,2))
knitr::kable(df)
| Pará |
1 |
| Amapá |
1 |
| Maranhão |
2 |
library(qcc)
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores"
)

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Maranhão 2 2 50 50
## Pará 1 3 25 75
## Amapá 1 4 25 100
Canada
Para Canada se presentaron deslizamientos en 3 estados: Ontario, Quebec y Nova Scotia, para las cuales el número de deslizamientos fue de 6, 3 y 1 respectivamente.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Canada")
table(pais$state.province)
##
## Nova Scotia Ontario Quebec
## 1 6 3
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Ontario |
6 |
60 |
60 |
60 |
60 |
| Quebec |
3 |
30 |
30 |
90 |
90 |
| Nova Scotia |
1 |
10 |
10 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Canada") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Ontario","Quebec","Nova Scotia"),
value = c(60, 30, 10))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
CAN <- subset (df, Country == "Canada")
knitr::kable(head(CAN))
CAN %>%
select(Country, State, City, Distance)
## Country State City Distance
## 4 Canada Quebec Châteauguay 2.98682
## 14 Canada Ontario Ottawa 1.74759
## 379 Canada Ontario Ancaster 5.11510
## 451 Canada Quebec Saint-Lazare 3.16544
## 929 Canada Ontario Guelph 12.17933
## 1320 Canada Ontario Hamilton 4.79449
## 1349 Canada Quebec Sutton 4.33884
## 1492 Canada Ontario Owen Sound 1.84109
## 1512 Canada Nova Scotia Digby 11.62624
## 1680 Canada Ontario Hamilton 2.00473
ggplot(data= CAN, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Driagrama de caja En Canada, el tamaño máximo de la población donde ha ocurrido un deslizamiento resgistrado en esta base de datos es 812129. Por otro lado, el mayor deslizamiento tuvo una longitud de 2.74 kilometros.
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Canada")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 1.000000e+01 0.000000e+00 0.000000e+00 2.052000e+03 8.121290e+05 8.100770e+05
## sum median mean SE.mean CI.mean.0.95 var
## 2.089303e+06 3.800900e+04 2.089303e+05 9.314769e+04 2.107147e+05 8.676492e+10
## std.dev coef.var
## 2.945588e+05 1.409843e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 10.0000000 0.0000000 0.0000000 1.7475900 12.1793300 10.4317400
## sum median mean SE.mean CI.mean.0.95 var
## 49.7996700 3.7521400 4.9799670 1.2151153 2.7487818 14.7650519
## std.dev coef.var
## 3.8425320 0.7715979
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
En general, los valores de distancia de los desplazamientos en Canada son uniformes, con solo dos eventos atípicos.
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Ontario","Quebec","Nova Scotia") ,
Frecuencia = c(6,3,1))
knitr::kable(df)
| Ontario |
6 |
| Quebec |
3 |
| Nova Scotia |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores"
)

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Ontario 6 6 60 60
## Quebec 3 9 30 90
## Nova Scotia 1 10 10 100
Colombia
En Colombia, el número de deslizamientos se rpeortó de acuerdo al departamento donde ocurrió, siendo el de mayor frecuencia Antioquia con 19 deslizamientos, y los de menor frecuencia fueron: Bolívar, Meta, Putumayo, Quindío y Sucre, que solo tuvieron 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Colombia")
table(pais$state.province)
##
## Antioquia Bolívar Boyacá Caldas
## 19 1 3 10
## Caquetá Cauca Córdoba Cundinamarca
## 2 5 3 7
## Huila Magdalena Meta Nariño
## 6 3 1 5
## Norte de Santander Putumayo Quindío Risaralda
## 5 1 1 4
## Santander Sucre Tolima Valle del Cauca
## 11 1 4 4
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Antioquia |
19 |
19.8 |
19.8 |
19.8 |
19.8 |
| Santander |
11 |
11.5 |
11.5 |
31.2 |
31.2 |
| Caldas |
10 |
10.4 |
10.4 |
41.7 |
41.7 |
| Cundinamarca |
7 |
7.3 |
7.3 |
49.0 |
49.0 |
| Huila |
6 |
6.2 |
6.2 |
55.2 |
55.2 |
| Cauca |
5 |
5.2 |
5.2 |
60.4 |
60.4 |
| Nariño |
5 |
5.2 |
5.2 |
65.6 |
65.6 |
| Norte de Santander |
5 |
5.2 |
5.2 |
70.8 |
70.8 |
| Risaralda |
4 |
4.2 |
4.2 |
75.0 |
75.0 |
| Tolima |
4 |
4.2 |
4.2 |
79.2 |
79.2 |
| Valle del Cauca |
4 |
4.2 |
4.2 |
83.3 |
83.3 |
| Boyacá |
3 |
3.1 |
3.1 |
86.5 |
86.5 |
| Córdoba |
3 |
3.1 |
3.1 |
89.6 |
89.6 |
| Magdalena |
3 |
3.1 |
3.1 |
92.7 |
92.7 |
| Caquetá |
2 |
2.1 |
2.1 |
94.8 |
94.8 |
| Bolívar |
1 |
1.0 |
1.0 |
95.8 |
95.8 |
| Meta |
1 |
1.0 |
1.0 |
96.9 |
96.9 |
| Putumayo |
1 |
1.0 |
1.0 |
97.9 |
97.9 |
| Quindío |
1 |
1.0 |
1.0 |
99.0 |
99.0 |
| Sucre |
1 |
1.0 |
1.0 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Colombia") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Antioquia","Santander","Caldas","Cundinamarca","Huila","Cauca","Nariño","Norte de Santander","Risaralda","Tolima","Valle del Cauca","Boyacá","Córdoba","Magdalena","Caquetá","Bolìvar","Meta","Putumayo","Quindìo","Sucre"),
value = c(19.8, 11.5, 10.4, 7.3, 6.2, 5.2, 5.2, 5.2, 4.2, 4.2, 4.2, 3.1, 3.1, 3.1, 2.1,1,1,1,1,1))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=4) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","darkgoldenrod4","brown4","burlywood1","burlywood3","blue1","blue4","blueviolet","chartreuse","cornflowerblue","aliceblue","springgreen","yellow"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
COL <- subset (df, Country == "Colombia")
knitr::kable(head(COL))
COL %>%
select(Country, State, City, Distance)
## Country State City Distance
## 8 Colombia Risaralda Pereira 0.62022
## 49 Colombia Cauca Suárez 8.46579
## 70 Colombia Tolima Ambalema 6.96130
## 103 Colombia Antioquia Medellín 5.12170
## 110 Colombia Norte de Santander Hacarí 0.38844
## 117 Colombia Cundinamarca Quetame 8.58891
## 119 Colombia Antioquia Briceño 6.44532
## 133 Colombia Antioquia Caldas 1.27637
## 134 Colombia Córdoba Cereté 0.68544
## 152 Colombia Córdoba Moñitos 23.49217
## 163 Colombia Antioquia Medellín 4.09028
## 166 Colombia Cauca Miranda 0.70558
## 180 Colombia Huila Hobo 10.18040
## 191 Colombia Córdoba Sahagún 0.14776
## 303 Colombia Cundinamarca Girardot 0.30587
## 340 Colombia Valle del Cauca Cali 1.84941
## 349 Colombia Meta Puerto López 22.53724
## 352 Colombia Cundinamarca Soacha 10.36239
## 396 Colombia Magdalena Ciénaga 51.84125
## 403 Colombia Norte de Santander San Calixto 7.85369
## 425 Colombia Santander Málaga 2.99929
## 434 Colombia Santander Málaga 2.99929
## 454 Colombia Risaralda Apía 8.18229
## 455 Colombia Antioquia Giraldo 2.55282
## 479 Colombia Boyacá San Pablo de Borbur 1.53032
## 517 Colombia Risaralda Quinchía 0.11421
## 518 Colombia Antioquia Medellín 2.18776
## 519 Colombia Sucre San Marcos 25.51411
## 520 Colombia Cundinamarca La Calera 7.28959
## 523 Colombia Caldas Marquetalia 17.48659
## 524 Colombia Caldas Marquetalia 3.72195
## 525 Colombia Caldas Marulanda 0.72830
## 526 Colombia Norte de Santander Arboledas 14.62503
## 527 Colombia Santander San Andrés 3.06383
## 528 Colombia Antioquia Cáceres 4.29197
## 553 Colombia Antioquia Bello 2.04898
## 574 Colombia Nariño San Pablo 4.95353
## 594 Colombia Santander Matanza 6.16385
## 619 Colombia Caldas Villamaría 2.36822
## 621 Colombia Norte de Santander Cúcuta 3.60520
## 623 Colombia Caldas Manizales 1.70850
## 629 Colombia Antioquia Medellín 4.19867
## 631 Colombia Nariño El Tambo 0.60599
## 632 Colombia Nariño El Tambo 3.81445
## 637 Colombia Caldas Manizales 1.07765
## 638 Colombia Caldas Villamaría 15.82404
## 640 Colombia Antioquia Santa Rosa de Osos 18.91189
## 643 Colombia Santander Florián 0.44753
## 644 Colombia Cundinamarca San Antonio del Tequendama 6.08628
## 658 Colombia Antioquia Municipio de Copacabana 7.98838
## 659 Colombia Antioquia Frontino 5.06960
## 690 Colombia Boyacá Samacá 0.85976
## 701 Colombia Boyacá Belén 2.28425
## 714 Colombia Valle del Cauca Cali 8.30406
## 715 Colombia Santander Lebrija 9.21217
## 716 Colombia Santander Piedecuesta 10.55986
## 718 Colombia Santander San Vicente de Chucurí 0.80432
## 753 Colombia Bolívar Santa Rosa del Sur 26.89879
## 821 Colombia Antioquia Medellín 1.73101
## 822 Colombia Valle del Cauca Buenaventura 20.25692
## 826 Colombia Antioquia Ciudad Bolívar 24.48479
## 830 Colombia Quindío Calarcá 1.35196
## 831 Colombia Caldas Manizales 0.64094
## 832 Colombia Tolima Cajamarca 8.56086
## 835 Colombia Tolima Cajamarca 7.87303
## 836 Colombia Cundinamarca Funza 9.23778
## 838 Colombia Tolima Carmen de Apicalá 9.65157
## 848 Colombia Santander Los Santos 12.61362
## 849 Colombia Cundinamarca Soacha 5.17650
## 850 Colombia Cauca La Cruz 0.64469
## 851 Colombia Caldas Norcasia 16.94642
## 852 Colombia Nariño San Lorenzo 0.37809
## 853 Colombia Magdalena Santa Marta 0.79694
## 854 Colombia Caldas Aranzazu 2.53047
## 855 Colombia Risaralda Dos Quebradas 0.74201
## 859 Colombia Antioquia Envigado 2.07081
## 876 Colombia Antioquia Amalfi 11.11685
## 879 Colombia Caquetá Florencia 15.42607
## 911 Colombia Huila San Agustín 6.84683
## 921 Colombia Norte de Santander San Calixto 11.19714
## 928 Colombia Huila Gigante 0.93184
## 1054 Colombia Caquetá Florencia 15.16116
## 1071 Colombia Huila Áquira 3.14201
## 1207 Colombia Nariño Cumbitara 16.97776
## 1220 Colombia Valle del Cauca Palmira 7.70237
## 1221 Colombia Huila Palermo 0.00003
## 1222 Colombia Santander Bucaramanga 1.33829
## 1290 Colombia Magdalena Ariguaní 28.50569
## 1305 Colombia Santander San Vicente de Chucurí 1.08964
## 1344 Colombia Cauca Almaguer 17.31514
## 1362 Colombia Antioquia Barbosa 7.78677
## 1456 Colombia Putumayo San Francisco 1.47940
## 1457 Colombia Antioquia Salgar 3.09014
## 1471 Colombia Cauca Jambaló 8.81287
## 1565 Colombia Huila Rivera 20.31227
## 1669 Colombia Antioquia Mutatá 15.04256
ggplot(data= COL, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
En promedio poblacional en zonas con deslizamientos en Colombia es 222180 personas; mientras que el promedio de la distancia de dichos deslizamientos es 7.62 kilometros.
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Colombia")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 9.600000e+01 0.000000e+00 0.000000e+00 1.091000e+03 2.392877e+06 2.391786e+06
## sum median mean SE.mean CI.mean.0.95 var
## 2.132931e+07 9.940500e+03 2.221804e+05 5.633984e+04 1.118487e+05 3.047210e+11
## std.dev coef.var
## 5.520154e+05 2.484538e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 96.0000000 0.0000000 0.0000000 0.0000300 51.8412500 51.8412200
## sum median mean SE.mean CI.mean.0.95 var
## 731.9660900 5.0115650 7.6246468 0.8623174 1.7119165 71.3847624
## std.dev coef.var
## 8.4489504 1.1081104
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
Para Colombia, hay seis datos atípicos sobre la magnitud de los deslizamientos, todos hacia valores mayores al último cuartil (hacia la derecha), y de distancias no tan uniformes.
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Antioquia","Santander","Caldas","Cundinamarca","Huila","Cauca","Nariño","Norte de Santander","Risaralda","Tolima","Valle del Cauca","Boyacá","Córdoba","Magdalena","Caquetá","Bolìvar","Meta","Putumayo","Quindìo","Sucre") ,
Frecuencia = c(19,11,10,7,6,5,5,5,5,4,4,4,3,3,2,1,1,1,1,1))
knitr::kable(df)
| Antioquia |
19 |
| Santander |
11 |
| Caldas |
10 |
| Cundinamarca |
7 |
| Huila |
6 |
| Cauca |
5 |
| Nariño |
5 |
| Norte de Santander |
5 |
| Risaralda |
5 |
| Tolima |
4 |
| Valle del Cauca |
4 |
| Boyacá |
4 |
| Córdoba |
3 |
| Magdalena |
3 |
| Caquetá |
2 |
| Bolìvar |
1 |
| Meta |
1 |
| Putumayo |
1 |
| Quindìo |
1 |
| Sucre |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores"
)

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Antioquia 19.000000 19.000000 19.387755 19.387755
## Santander 11.000000 30.000000 11.224490 30.612245
## Caldas 10.000000 40.000000 10.204082 40.816327
## Cundinamarca 7.000000 47.000000 7.142857 47.959184
## Huila 6.000000 53.000000 6.122449 54.081633
## Cauca 5.000000 58.000000 5.102041 59.183673
## Nariño 5.000000 63.000000 5.102041 64.285714
## Norte de Santander 5.000000 68.000000 5.102041 69.387755
## Risaralda 5.000000 73.000000 5.102041 74.489796
## Tolima 4.000000 77.000000 4.081633 78.571429
## Valle del Cauca 4.000000 81.000000 4.081633 82.653061
## Boyacá 4.000000 85.000000 4.081633 86.734694
## Córdoba 3.000000 88.000000 3.061224 89.795918
## Magdalena 3.000000 91.000000 3.061224 92.857143
## Caquetá 2.000000 93.000000 2.040816 94.897959
## Bolìvar 1.000000 94.000000 1.020408 95.918367
## Meta 1.000000 95.000000 1.020408 96.938776
## Putumayo 1.000000 96.000000 1.020408 97.959184
## Quindìo 1.000000 97.000000 1.020408 98.979592
## Sucre 1.000000 98.000000 1.020408 100.000000
Costa Rica
Para el país de Costa Rica se presentaron datos en 7 estados donde el que tuvo mayor número de deslizamientos fue San José con 25 y el de menor fue Limón con solo 2.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Costa Rica")
table(pais$state.province)
##
## Alajuela Cartago Guanacaste Heredia Limón Puntarenas San José
## 20 6 5 8 2 9 25
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| San José |
25 |
33.3 |
33.3 |
33.3 |
33.3 |
| Alajuela |
20 |
26.7 |
26.7 |
60.0 |
60.0 |
| Puntarenas |
9 |
12.0 |
12.0 |
72.0 |
72.0 |
| Heredia |
8 |
10.7 |
10.7 |
82.7 |
82.7 |
| Cartago |
6 |
8.0 |
8.0 |
90.7 |
90.7 |
| Guanacaste |
5 |
6.7 |
6.7 |
97.3 |
97.3 |
| Limón |
2 |
2.7 |
2.7 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Costa Rica") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("San José", "Alajuela","Puntarenas","Heredia","Cartago","Guanacaste","Limón"),
value = c(33.3, 26.7, 12, 10.7, 8, 6.7, 2.7))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
COS <- subset (df, Country == "Costa Rica")
knitr::kable(head(COS))
COS %>%
select(Country, State, City, Distance)
## Country State City Distance
## 38 Costa Rica Heredia Heredia 0.26208
## 44 Costa Rica San José San Ignacio 4.57763
## 45 Costa Rica Alajuela Atenas 3.08459
## 46 Costa Rica San José 9.56251
## 51 Costa Rica Puntarenas Miramar 3.82425
## 102 Costa Rica Guanacaste Bagaces 17.65521
## 147 Costa Rica San José Daniel Flores 1.85787
## 153 Costa Rica San José San Isidro 16.24937
## 154 Costa Rica San José Santiago 12.85801
## 156 Costa Rica Puntarenas Golfito 11.74074
## 157 Costa Rica Puntarenas Miramar 8.92048
## 229 Costa Rica Puntarenas San Vito 18.00524
## 302 Costa Rica Alajuela Desamparados 6.88715
## 311 Costa Rica Heredia Ángeles 19.51432
## 347 Costa Rica Alajuela Desamparados 6.92174
## 395 Costa Rica Alajuela Desamparados 4.24199
## 459 Costa Rica Alajuela San Rafael 1.47396
## 469 Costa Rica San José Salitral 0.25254
## 470 Costa Rica San José Salitral 0.25254
## 480 Costa Rica Heredia Ángeles 14.81614
## 501 Costa Rica San José Escazú 3.67691
## 502 Costa Rica San José San Marcos 0.55804
## 503 Costa Rica Alajuela San Rafael 9.61692
## 504 Costa Rica Guanacaste Tilarán 10.21631
## 505 Costa Rica Cartago Orosí 19.28722
## 506 Costa Rica Puntarenas Golfito 7.87044
## 507 Costa Rica San José Tejar 6.49523
## 508 Costa Rica San José San Isidro 15.64997
## 509 Costa Rica Puntarenas Corredor 4.93053
## 510 Costa Rica Puntarenas Parrita 13.48919
## 511 Costa Rica Puntarenas Ciudad Cortés 20.06633
## 512 Costa Rica San José San Isidro 11.31047
## 513 Costa Rica San José Mercedes 8.21372
## 514 Costa Rica Alajuela Santiago 5.43516
## 529 Costa Rica Heredia Ángeles 19.54581
## 579 Costa Rica Limón Guápiles 17.23264
## 702 Costa Rica Heredia Ángeles 15.05161
## 780 Costa Rica Alajuela Upala 0.70048
## 819 Costa Rica San José San Isidro 21.67452
## 828 Costa Rica Cartago Cot 9.63616
## 884 Costa Rica Heredia Santo Domingo 21.95470
## 888 Costa Rica Guanacaste Tilarán 12.33807
## 889 Costa Rica Limón Siquirres 5.36500
## 913 Costa Rica San José Daniel Flores 4.89954
## 1098 Costa Rica Alajuela Sabanilla 4.87432
## 1156 Costa Rica Alajuela Sabanilla 10.32968
## 1157 Costa Rica Heredia Santo Domingo 9.85736
## 1169 Costa Rica Guanacaste Tilarán 12.21952
## 1173 Costa Rica Guanacaste Tilarán 12.18115
## 1289 Costa Rica Alajuela La Fortuna 9.84213
## 1301 Costa Rica Alajuela 5.57523
## 1308 Costa Rica Alajuela Desamparados 5.95519
## 1342 Costa Rica Alajuela Rio Segundo 11.96524
## 1364 Costa Rica Alajuela Desamparados 5.12667
## 1383 Costa Rica Cartago Cartago 3.07297
## 1384 Costa Rica Heredia Dulce Nombre de Jesus 10.01310
## 1385 Costa Rica San José Dulce Nombre de Jesus 2.92605
## 1386 Costa Rica San José San Isidro 10.73752
## 1404 Costa Rica San José San Isidro 22.32368
## 1406 Costa Rica San José Dulce Nombre de Jesus 8.39161
## 1461 Costa Rica Alajuela La Fortuna 5.96634
## 1475 Costa Rica Alajuela Atenas 6.80061
## 1528 Costa Rica San José Ángeles 9.53611
## 1529 Costa Rica San José Dulce Nombre de Jesus 3.71407
## 1600 Costa Rica San José San Juan 0.72957
## 1642 Costa Rica Alajuela Santo Domingo 3.21979
## 1643 Costa Rica Alajuela Alajuela 3.08916
## 1644 Costa Rica Alajuela Naranjo 2.08469
## 1646 Costa Rica Cartago 5.15142
## 1647 Costa Rica Cartago Cot 9.53493
## 1648 Costa Rica Cartago Cartago 2.94804
## 1649 Costa Rica Puntarenas Buenos Aires 0.35225
## 1650 Costa Rica San José San José 1.16705
## 1651 Costa Rica San José Mercedes 10.01198
## 1652 Costa Rica San José Santiago 8.27042
ggplot(data= COS, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de Caja
La diferencia entre las mayores poblaciones y menores poblaciones donde ha ocurrido algún deslizamiento en Costa Rica es 335007 habitantes. Mientras que el rango para la distancia de los delizamientos es 22.07 kilometros.
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Costa Rica")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 7.500000e+01 4.000000e+00 0.000000e+00 0.000000e+00 3.350070e+05 3.350070e+05
## sum median mean SE.mean CI.mean.0.95 var
## 1.127522e+06 6.784000e+03 1.503363e+04 4.498709e+03 8.963873e+03 1.517878e+09
## std.dev coef.var
## 3.895996e+04 2.591521e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 75.0000000 0.0000000 0.0000000 0.2525400 22.3236800 22.0711400
## sum median mean SE.mean CI.mean.0.95 var
## 646.1411800 8.2137200 8.6152157 0.6924979 1.3798322 35.9665004
## std.dev coef.var
## 5.9972077 0.6961181
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
En el gráfico de caja para Costa Rica, es posible distinguir fácilmente que el valor de la mediana es 8,2 aproximandamente, y que los valores a la izquierda de esta medida, son más dispersos a comparación de los valores hacia la derecha.
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("San José", "Alajuela","Puntarenas","Heredia","Cartago","Guanacaste","Limón") ,
Frecuencia = c(25,20,9,8,6,5,2))
knitr::kable(df)
| San José |
25 |
| Alajuela |
20 |
| Puntarenas |
9 |
| Heredia |
8 |
| Cartago |
6 |
| Guanacaste |
5 |
| Limón |
2 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## San José 25.000000 25.000000 33.333333 33.333333
## Alajuela 20.000000 45.000000 26.666667 60.000000
## Puntarenas 9.000000 54.000000 12.000000 72.000000
## Heredia 8.000000 62.000000 10.666667 82.666667
## Cartago 6.000000 68.000000 8.000000 90.666667
## Guanacaste 5.000000 73.000000 6.666667 97.333333
## Limón 2.000000 75.000000 2.666667 100.000000
Cuba
En CUba solo se reportaron 3 estados con deslizamientos, 1 para cada uno de ellos.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Cuba")
table(pais$state.province)
##
## Artemisa Province Guantanamo Provincia de La Habana
## 1 1 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Artemisa Province |
1 |
33.3 |
33.3 |
33.3 |
33.3 |
| Guantanamo |
1 |
33.3 |
33.3 |
66.7 |
66.7 |
| Provincia de La Habana |
1 |
33.3 |
33.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Cuba") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Artemisa Province","Guantanamo","Provincia de La Habana"),
value = c(33.3, 33.3, 33.3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
CUB <- subset (df, Country == "Cuba")
knitr::kable(head(CUB))
CUB %>%
select(Country, State, City, Distance)
## Country State City Distance
## 483 Cuba Provincia de La Habana Cerro 0.89865
## 515 Cuba Guantanamo Baracoa 10.45795
## 1031 Cuba Artemisa Province Soroa 11.87914
ggplot(data= CUB, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Cuba")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 3.000000e+00 0.000000e+00 0.000000e+00 7.205000e+03 1.323510e+05 1.251460e+05
## sum median mean SE.mean CI.mean.0.95 var
## 1.879180e+05 4.836200e+04 6.263933e+04 3.682509e+04 1.584456e+05 4.068262e+09
## std.dev coef.var
## 6.378293e+04 1.018257e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 3.0000000 0.0000000 0.0000000 0.8986500 11.8791400 10.9804900
## sum median mean SE.mean CI.mean.0.95 var
## 23.2357400 10.4579500 7.7452467 3.4477944 14.8346622 35.6618597
## std.dev coef.var
## 5.9717552 0.7710219
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Artemisa Province","Guantanamo","Provincia de La Habana") ,
Frecuencia = c(1,1,1))
knitr::kable(df)
| Artemisa Province |
1 |
| Guantanamo |
1 |
| Provincia de La Habana |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Artemisa Province 1.00000 1.00000 33.33333 33.33333
## Guantanamo 1.00000 2.00000 33.33333 66.66667
## Provincia de La Habana 1.00000 3.00000 33.33333 100.00000
Dominican Republic
En República Dominicanahubo 7 estados son deslizamientos, siendo Santiago el que más tuvo (4), y Hato Mayor, San Cristobal y santo Domingo con solo 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Dominican Republic")
table(pais$state.province)
##
## Distrito Nacional Hato Mayor La Vega Puerto Plata
## 3 1 2 3
## San Cristóbal Santiago Santo Domingo
## 1 4 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Santiago |
4 |
26.7 |
26.7 |
26.7 |
26.7 |
| Distrito Nacional |
3 |
20.0 |
20.0 |
46.7 |
46.7 |
| Puerto Plata |
3 |
20.0 |
20.0 |
66.7 |
66.7 |
| La Vega |
2 |
13.3 |
13.3 |
80.0 |
80.0 |
| Hato Mayor |
1 |
6.7 |
6.7 |
86.7 |
86.7 |
| San Cristóbal |
1 |
6.7 |
6.7 |
93.3 |
93.3 |
| Santo Domingo |
1 |
6.7 |
6.7 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Domician Republic") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Santiago","Distrito Nacional","Puerto Plata","La Vega","Hato Mayor","San Cristóbal","Santo Domingo"),
value = c(26.7, 20, 20, 13.3, 6.7, 6.7, 6.7))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
DOM_RE <- subset (df, Country == "Dominican Republic")
knitr::kable(head(DOM_RE))
DOM_RE %>%
select(Country, State, City, Distance)
## Country State City Distance
## 15 Dominican Republic Distrito Nacional San Carlos 1.70298
## 52 Dominican Republic San Cristóbal Bajos de Haina 1.72138
## 58 Dominican Republic La Vega Río Verde Abajo 3.72637
## 64 Dominican Republic Santiago Santiago de los Caballeros 1.10868
## 132 Dominican Republic Hato Mayor Sabana de La Mar 0.75284
## 138 Dominican Republic Distrito Nacional La Agustina 5.71058
## 178 Dominican Republic Santiago Pedro García 4.86398
## 211 Dominican Republic Puerto Plata Altamira 0.88500
## 212 Dominican Republic Santiago Tamboril 4.31327
## 750 Dominican Republic Santiago San José de Las Matas 2.72462
## 774 Dominican Republic Distrito Nacional Santo Domingo 0.55721
## 833 Dominican Republic La Vega Constanza 0.52969
## 923 Dominican Republic Puerto Plata Puerto Plata 1.19636
## 1394 Dominican Republic Santo Domingo Santo Domingo Este 3.98059
## 1395 Dominican Republic Puerto Plata Luperón 1.54885
ggplot(data= DOM_RE, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Dominican Republic")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 1.500000e+01 1.000000e+00 0.000000e+00 0.000000e+00 2.201941e+06 2.201941e+06
## sum median mean SE.mean CI.mean.0.95 var
## 3.729279e+06 1.345600e+04 2.486186e+05 1.601963e+05 3.435870e+05 3.849430e+11
## std.dev coef.var
## 6.204378e+05 2.495540e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 15.0000000 0.0000000 0.0000000 0.5296900 5.7105800 5.1808900
## sum median mean SE.mean CI.mean.0.95 var
## 35.3224000 1.7029800 2.3548267 0.4456851 0.9558995 2.9795286
## std.dev coef.var
## 1.7261311 0.7330183
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Santiago","Distrito Nacional","Puerto Plata","La Vega","Hato Mayor","San Cristóbal","Santo Domingo") ,
Frecuencia = c(4,3,3,2,1,1,1))
knitr::kable(df)
| Santiago |
4 |
| Distrito Nacional |
3 |
| Puerto Plata |
3 |
| La Vega |
2 |
| Hato Mayor |
1 |
| San Cristóbal |
1 |
| Santo Domingo |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Santiago 4.000000 4.000000 26.666667 26.666667
## Distrito Nacional 3.000000 7.000000 20.000000 46.666667
## Puerto Plata 3.000000 10.000000 20.000000 66.666667
## La Vega 2.000000 12.000000 13.333333 80.000000
## Hato Mayor 1.000000 13.000000 6.666667 86.666667
## San Cristóbal 1.000000 14.000000 6.666667 93.333333
## Santo Domingo 1.000000 15.000000 6.666667 100.000000
Dominica
Para el país de Dominica se presentaron 7 estados con deslizamientos donde el de mayor número de deslizamientos reportados fue Saint Paul con 4 y Saint Patrick con 4, el resto tuvo solamente 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Dominica")
table(pais$state.province)
##
## Saint Andrew Saint George Saint John Saint Joseph Saint Mark
## 1 1 1 1 1
## Saint Patrick Saint Paul
## 4 5
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Saint Paul |
5 |
35.7 |
35.7 |
35.7 |
35.7 |
| Saint Patrick |
4 |
28.6 |
28.6 |
64.3 |
64.3 |
| Saint Andrew |
1 |
7.1 |
7.1 |
71.4 |
71.4 |
| Saint George |
1 |
7.1 |
7.1 |
78.6 |
78.6 |
| Saint John |
1 |
7.1 |
7.1 |
85.7 |
85.7 |
| Saint Joseph |
1 |
7.1 |
7.1 |
92.9 |
92.9 |
| Saint Mark |
1 |
7.1 |
7.1 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Dominica") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Saint Paul","Saint Patrick","Saint Andrew","Saint George","Saint John","Saint Joseph","Saint Mark"),
value = c(35.7, 28.6, 7.1, 7.1, 7.1, 7.1, 7.1))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
DOM <- subset (df, Country == "Dominica")
knitr::kable(head(DOM))
DOM %>%
select(Country, State, City, Distance)
## Country State City Distance
## 20 Dominica Saint Paul Pont Cassé 3.39516
## 39 Dominica Saint George Roseau 2.59849
## 267 Dominica Saint Paul Pont Cassé 3.98646
## 297 Dominica Saint Patrick Berekua 2.08997
## 298 Dominica Saint Paul Pont Cassé 3.78784
## 299 Dominica Saint Patrick Berekua 4.08252
## 300 Dominica Saint Patrick Berekua 5.61495
## 301 Dominica Saint Patrick La Plaine 5.11600
## 304 Dominica Saint Paul Pont Cassé 6.45930
## 476 Dominica Saint Andrew Calibishie 2.64873
## 1190 Dominica Saint Paul Pont Cassé 4.20239
## 1193 Dominica Saint John Portsmouth 5.92994
## 1194 Dominica Saint Mark Soufrière 1.80847
## 1201 Dominica Saint Joseph Saint Joseph 2.38605
ggplot(data= DOM, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Dominica")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 1.400000e+01 0.000000e+00 0.000000e+00 7.020000e+02 1.657100e+04 1.586900e+04
## sum median mean SE.mean CI.mean.0.95 var
## 3.749000e+04 1.374000e+03 2.677857e+03 1.099107e+03 2.374475e+03 1.691249e+07
## std.dev coef.var
## 4.112480e+03 1.535735e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 14.0000000 0.0000000 0.0000000 1.8084700 6.4593000 4.6508300
## sum median mean SE.mean CI.mean.0.95 var
## 54.1062700 3.8871500 3.8647336 0.3969319 0.8575192 2.2057691
## std.dev coef.var
## 1.4851832 0.3842912
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Saint Paul","Saint Patrick","Saint Andrew","Saint George","Saint John","Saint Joseph","Saint Mark") ,
Frecuencia = c(5,4,1,1,1,1,1))
knitr::kable(df)
| Saint Paul |
5 |
| Saint Patrick |
4 |
| Saint Andrew |
1 |
| Saint George |
1 |
| Saint John |
1 |
| Saint Joseph |
1 |
| Saint Mark |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Saint Paul 5.000000 5.000000 35.714286 35.714286
## Saint Patrick 4.000000 9.000000 28.571429 64.285714
## Saint Andrew 1.000000 10.000000 7.142857 71.428571
## Saint George 1.000000 11.000000 7.142857 78.571429
## Saint John 1.000000 12.000000 7.142857 85.714286
## Saint Joseph 1.000000 13.000000 7.142857 92.857143
## Saint Mark 1.000000 14.000000 7.142857 100.000000
Ecuador
Para el caso de Ecuador se muestran datos en 14 estados, el doble de los anteriores, donde el de mayor frecuencia de deslizamientos fue Pichincha con 9.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Ecuador")
table(pais$state.province)
##
## Azuay Carchi
## 2 2
## Cotopaxi Esmeraldas
## 1 2
## Guayas Loja
## 1 4
## Manabi Morona-Santiago
## 2 1
## Napo Pichincha
## 1 9
## Santo Domingo de los Tsáchilas Sucumbios
## 1 1
## Tungurahua Zamora-Chinchipe
## 1 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Pichincha |
9 |
30.0 |
30.0 |
30.0 |
30.0 |
| Loja |
4 |
13.3 |
13.3 |
43.3 |
43.3 |
| Azuay |
2 |
6.7 |
6.7 |
50.0 |
50.0 |
| Carchi |
2 |
6.7 |
6.7 |
56.7 |
56.7 |
| Esmeraldas |
2 |
6.7 |
6.7 |
63.3 |
63.3 |
| Manabi |
2 |
6.7 |
6.7 |
70.0 |
70.0 |
| Zamora-Chinchipe |
2 |
6.7 |
6.7 |
76.7 |
76.7 |
| Cotopaxi |
1 |
3.3 |
3.3 |
80.0 |
80.0 |
| Guayas |
1 |
3.3 |
3.3 |
83.3 |
83.3 |
| Morona-Santiago |
1 |
3.3 |
3.3 |
86.7 |
86.7 |
| Napo |
1 |
3.3 |
3.3 |
90.0 |
90.0 |
| Santo Domingo de los Tsáchilas |
1 |
3.3 |
3.3 |
93.3 |
93.3 |
| Sucumbios |
1 |
3.3 |
3.3 |
96.7 |
96.7 |
| Tungurahua |
1 |
3.3 |
3.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Ecuador") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Pichincha","Loja","Azuay","Carchi","Esmeraldas","Manabi","Zamora-Chinchipe","Cotopaxi","Guayas","Morona-Santiago","Napo","Santo Domingo de los Tsáchilas13","Sucumbios","Tungurahua"),
value = c(30, 13.3, 6.7, 6.7, 6.7, 6.7, 6.7, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=4) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","brown4","burlywood1","blue1","blueviolet","chartreuse","aliceblue"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
ECU <- subset (df, Country == "Ecuador")
knitr::kable(head(ECU))
ECU %>%
select(Country, State, City, Distance)
## Country State City
## 9 Ecuador Zamora-Chinchipe Zamora
## 10 Ecuador Loja Loja
## 11 Ecuador Pichincha Sangolquí
## 78 Ecuador Napo Archidona
## 87 Ecuador Pichincha Quito
## 218 Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
## 238 Ecuador Pichincha Machachi
## 253 Ecuador Tungurahua Baños
## 339 Ecuador Esmeraldas Esmeraldas
## 586 Ecuador Pichincha Machachi
## 587 Ecuador Cotopaxi Saquisilí
## 660 Ecuador Morona-Santiago Macas
## 697 Ecuador Pichincha Quito
## 751 Ecuador Carchi El Ángel
## 868 Ecuador Manabi Chone
## 872 Ecuador Manabi Tosagua
## 942 Ecuador Guayas Balao
## 956 Ecuador Esmeraldas Esmeraldas
## 984 Ecuador Pichincha Cayambe
## 1304 Ecuador Carchi San Gabriel
## 1332 Ecuador Pichincha Quito
## 1333 Ecuador Pichincha Quito
## 1335 Ecuador Sucumbios Gonzalo Pizarro
## 1365 Ecuador Azuay Cuenca
## 1368 Ecuador Zamora-Chinchipe Zamora
## 1451 Ecuador Loja Macará
## 1452 Ecuador Loja Loja
## 1453 Ecuador Loja Catamayo
## 1454 Ecuador Azuay Cuenca
## 1566 Ecuador Pichincha Quito
## Distance
## 9 0.47714
## 10 0.35649
## 11 33.94603
## 78 50.21741
## 87 1.56942
## 218 1.16036
## 238 26.18676
## 253 11.91442
## 339 2.81891
## 586 25.82923
## 587 30.81169
## 660 46.77007
## 697 4.39517
## 751 28.29459
## 868 19.85816
## 872 7.67919
## 942 16.34404
## 956 21.26652
## 984 45.69792
## 1304 10.47204
## 1332 26.72137
## 1333 23.97854
## 1335 11.55916
## 1365 13.21139
## 1368 1.23724
## 1451 18.88784
## 1452 1.82885
## 1453 17.57187
## 1454 10.16196
## 1566 4.25486
ggplot(data= ECU, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
En Ecuador, el tamaño máximo de la población donde ha ocurrido un deslizamiento resgistrado en esta base de datos es 1399814 personas. Por otro lado, el mayor deslizamiento tuvo una longitud de 50.21 kilometros.
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Ecuador")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 3.000000e+01 1.000000e+00 0.000000e+00 0.000000e+00 1.399814e+06 1.399814e+06
## sum median mean SE.mean CI.mean.0.95 var
## 8.599781e+06 2.574200e+04 2.866594e+05 9.355366e+04 1.913387e+05 2.625686e+11
## std.dev coef.var
## 5.124145e+05 1.787538e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 30.0000000 0.0000000 0.0000000 0.3564900 50.2174100 49.8609200
## sum median mean SE.mean CI.mean.0.95 var
## 515.4786400 14.7777150 17.1826213 2.6348903 5.3889557 208.2794055
## std.dev coef.var
## 14.4318885 0.8399119
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
Para las longitudes de los deslizamientos en Ecuador no son tan dispersos, con una mediana de 14.77 kilometros; y cuartiles no tan dispersos, a excepción del último.
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Pichincha","Loja","Azuay","Carchi","Esmeraldas","Manabi","Zamora-Chinchipe","Cotopaxi","Guayas","Morona-Santiago","Napo","Santo Domingo de los Tsáchilas13","Sucumbios","Tungurahua") ,
Frecuencia = c(9,4,2,2,2,2,2,1,1,1,1,1,1,1))
knitr::kable(df)
| Pichincha |
9 |
| Loja |
4 |
| Azuay |
2 |
| Carchi |
2 |
| Esmeraldas |
2 |
| Manabi |
2 |
| Zamora-Chinchipe |
2 |
| Cotopaxi |
1 |
| Guayas |
1 |
| Morona-Santiago |
1 |
| Napo |
1 |
| Santo Domingo de los Tsáchilas13 |
1 |
| Sucumbios |
1 |
| Tungurahua |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage
## Pichincha 9.000000 9.000000 30.000000
## Loja 4.000000 13.000000 13.333333
## Azuay 2.000000 15.000000 6.666667
## Carchi 2.000000 17.000000 6.666667
## Esmeraldas 2.000000 19.000000 6.666667
## Manabi 2.000000 21.000000 6.666667
## Zamora-Chinchipe 2.000000 23.000000 6.666667
## Cotopaxi 1.000000 24.000000 3.333333
## Guayas 1.000000 25.000000 3.333333
## Morona-Santiago 1.000000 26.000000 3.333333
## Napo 1.000000 27.000000 3.333333
## Santo Domingo de los Tsáchilas13 1.000000 28.000000 3.333333
## Sucumbios 1.000000 29.000000 3.333333
## Tungurahua 1.000000 30.000000 3.333333
##
## Pareto chart analysis for Frecuencia
## Cum.Percent.
## Pichincha 30.000000
## Loja 43.333333
## Azuay 50.000000
## Carchi 56.666667
## Esmeraldas 63.333333
## Manabi 70.000000
## Zamora-Chinchipe 76.666667
## Cotopaxi 80.000000
## Guayas 83.333333
## Morona-Santiago 86.666667
## Napo 90.000000
## Santo Domingo de los Tsáchilas13 93.333333
## Sucumbios 96.666667
## Tungurahua 100.000000
El Salvador
En El Salvador se presentaron datos en 9 estados donde el de mayor número de deslizamientos fue La Libertad con 9, y los de menor número fueron Cabañas y La Paz con 1 deslizamiento reportado.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "El Salvador")
table(pais$state.province)
##
## Ahuachapán Cabañas La Libertad La Paz San Miguel San Salvador
## 2 1 5 1 3 2
## San Vicente Santa Ana Sonsonate
## 3 2 3
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| La Libertad |
5 |
22.7 |
22.7 |
22.7 |
22.7 |
| San Miguel |
3 |
13.6 |
13.6 |
36.4 |
36.4 |
| San Vicente |
3 |
13.6 |
13.6 |
50.0 |
50.0 |
| Sonsonate |
3 |
13.6 |
13.6 |
63.6 |
63.6 |
| Ahuachapán |
2 |
9.1 |
9.1 |
72.7 |
72.7 |
| San Salvador |
2 |
9.1 |
9.1 |
81.8 |
81.8 |
| Santa Ana |
2 |
9.1 |
9.1 |
90.9 |
90.9 |
| Cabañas |
1 |
4.5 |
4.5 |
95.5 |
95.5 |
| La Paz |
1 |
4.5 |
4.5 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("El Salvador") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("La Libertad","San Miguel","San Vicente","Sonsonate","Ahuachapán","San Salvador","Santa Ana","Cabañas","La Paz"),
value = c(22.7, 13.6, 13.6, 13.6, 9.1, 9.1, 9.1, 4.5, 4.5))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
EL_SAL <- subset (df, Country == "El Salvador")
knitr::kable(head(EL_SAL))
EL_SAL %>%
select(Country, State, City, Distance)
## Country State City Distance
## 34 El Salvador Ahuachapán Concepción de Ataco 0.00273
## 105 El Salvador La Libertad Santa Tecla 4.96416
## 224 El Salvador San Vicente San Vicente 7.60946
## 225 El Salvador La Libertad Antiguo Cuscatlán 4.86219
## 226 El Salvador San Vicente San Vicente 5.90726
## 227 El Salvador San Vicente San Vicente 4.03125
## 453 El Salvador Ahuachapán Tacuba 5.29901
## 824 El Salvador San Salvador Apopa 3.01739
## 1294 El Salvador San Miguel Chirilagua 6.94536
## 1366 El Salvador San Miguel San Rafael Oriente 10.06695
## 1367 El Salvador Cabañas San Martín 8.82525
## 1369 El Salvador Sonsonate Nahuizalco 4.23875
## 1370 El Salvador Sonsonate Sonzacate 3.22235
## 1371 El Salvador La Paz San Pedro Masahuat 0.31933
## 1372 El Salvador San Miguel Chirilagua 9.97227
## 1373 El Salvador Santa Ana Coatepeque 8.83210
## 1374 El Salvador La Libertad Santa Tecla 4.60655
## 1375 El Salvador San Salvador Antiguo Cuscatlán 3.25227
## 1594 El Salvador Santa Ana Ciudad Arce 1.15810
## 1596 El Salvador La Libertad Santa Tecla 4.67722
## 1597 El Salvador La Libertad Santa Tecla 9.87553
## 1598 El Salvador Sonsonate Juayúa 0.49346
ggplot(data= EL_SAL, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "El Salvador")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 2.200000e+01 0.000000e+00 0.000000e+00 2.654000e+03 1.246940e+05 1.220400e+05
## sum median mean SE.mean CI.mean.0.95 var
## 9.383360e+05 2.643100e+04 4.265164e+04 9.849090e+03 2.048230e+04 2.134100e+09
## std.dev coef.var
## 4.619633e+04 1.083108e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 22.0000000 0.0000000 0.0000000 0.0027300 10.0669500 10.0642200
## sum median mean SE.mean CI.mean.0.95 var
## 112.1789400 4.7697050 5.0990427 0.6720603 1.3976259 9.9366315
## std.dev coef.var
## 3.1522423 0.6182028
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')
### Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("La Libertad","San Miguel","San Vicente","Sonsonate","Ahuachapán","San Salvador","Santa Ana","Cabañas","La Paz") ,
Frecuencia = c(5,3,3,3,2,2,2,1,1))
knitr::kable(df)
| La Libertad |
5 |
| San Miguel |
3 |
| San Vicente |
3 |
| Sonsonate |
3 |
| Ahuachapán |
2 |
| San Salvador |
2 |
| Santa Ana |
2 |
| Cabañas |
1 |
| La Paz |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## La Libertad 5.000000 5.000000 22.727273 22.727273
## San Miguel 3.000000 8.000000 13.636364 36.363636
## San Vicente 3.000000 11.000000 13.636364 50.000000
## Sonsonate 3.000000 14.000000 13.636364 63.636364
## Ahuachapán 2.000000 16.000000 9.090909 72.727273
## San Salvador 2.000000 18.000000 9.090909 81.818182
## Santa Ana 2.000000 20.000000 9.090909 90.909091
## Cabañas 1.000000 21.000000 4.545455 95.454545
## La Paz 1.000000 22.000000 4.545455 100.000000
Guatemala
Para Guatmela, el número de estados con deslizamientos aumentó, siendo 18, y teniendo un número máximo de eventos en el estado de Guatemala con 31 deslizamientos registrados.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Guatemala")
table(pais$state.province)
##
## Alta Verapaz Baja Verapaz Chimaltenango Chiquimula Escuintla
## 3 1 4 1 3
## Guatemala Huehuetenango Izabal Jutiapa Quetzaltenango
## 31 5 2 1 3
## Quiché Sacatepéquez San Marcos Santa Rosa Sololá
## 7 3 2 1 9
## Suchitepeque Totonicapán Zacapa
## 1 1 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Guatemala |
31 |
39.2 |
39.2 |
39.2 |
39.2 |
| Sololá |
9 |
11.4 |
11.4 |
50.6 |
50.6 |
| Quiché |
7 |
8.9 |
8.9 |
59.5 |
59.5 |
| Huehuetenango |
5 |
6.3 |
6.3 |
65.8 |
65.8 |
| Chimaltenango |
4 |
5.1 |
5.1 |
70.9 |
70.9 |
| Alta Verapaz |
3 |
3.8 |
3.8 |
74.7 |
74.7 |
| Escuintla |
3 |
3.8 |
3.8 |
78.5 |
78.5 |
| Quetzaltenango |
3 |
3.8 |
3.8 |
82.3 |
82.3 |
| Sacatepéquez |
3 |
3.8 |
3.8 |
86.1 |
86.1 |
| Izabal |
2 |
2.5 |
2.5 |
88.6 |
88.6 |
| San Marcos |
2 |
2.5 |
2.5 |
91.1 |
91.1 |
| Baja Verapaz |
1 |
1.3 |
1.3 |
92.4 |
92.4 |
| Chiquimula |
1 |
1.3 |
1.3 |
93.7 |
93.7 |
| Jutiapa |
1 |
1.3 |
1.3 |
94.9 |
94.9 |
| Santa Rosa |
1 |
1.3 |
1.3 |
96.2 |
96.2 |
| Suchitepeque |
1 |
1.3 |
1.3 |
97.5 |
97.5 |
| Totonicapán |
1 |
1.3 |
1.3 |
98.7 |
98.7 |
| Zacapa |
1 |
1.3 |
1.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Guatemala") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Guatemala","Sololá","Quiché","Huehuetenango","Chimaltenango","Alta Verapaz33","Escuintla","Quetzaltenango","Sacatepéquez33","Izabal","San Marcos","Baja Verapaz","Chiquimula","Jutiapa","Santa Rosa","Suchitepeque","Totonicapán","Zacapa"),
value = c(39.2, 11.4, 8.9, 6.3, 5.1, 3.8, 3.8, 3.8, 3.8, 2.5, 2.5, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=4) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","darkgoldenrod4","brown4","burlywood1","burlywood3","blue1","blue4","blueviolet","chartreuse","springgreen","yellow"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
GUA <- subset (df, Country == "Guatemala")
knitr::kable(head(GUA))
GUA %>%
select(Country, State, City, Distance)
## Country State City Distance
## 17 Guatemala Guatemala San José Pinula 4.74385
## 27 Guatemala Alta Verapaz Lanquín 13.39817
## 28 Guatemala Izabal Morales 12.55184
## 41 Guatemala Guatemala Guatemala City 2.79113
## 104 Guatemala Escuintla Palín 3.10150
## 108 Guatemala Guatemala Guatemala City 3.12614
## 120 Guatemala Zacapa La Unión 0.80640
## 158 Guatemala Chimaltenango San José Poaquil 5.31511
## 162 Guatemala Huehuetenango San Sebastián Huehuetenango 1.58358
## 169 Guatemala Izabal Morales 23.92309
## 351 Guatemala Quetzaltenango Almolonga 0.77254
## 353 Guatemala Escuintla Palín 0.18542
## 354 Guatemala Guatemala Amatitlán 2.02891
## 355 Guatemala Guatemala Chinautla 0.44764
## 356 Guatemala Sacatepéquez Santa María De Jesús 6.13527
## 357 Guatemala Guatemala Guatemala City 4.07930
## 358 Guatemala Sololá Santa Cruz La Laguna 6.00513
## 359 Guatemala Chimaltenango Santa Apolonia 0.99952
## 360 Guatemala Sololá San Pedro La Laguna 0.50611
## 361 Guatemala Guatemala San José Pinula 0.89040
## 362 Guatemala Quiché San Juan Cotzal 8.93658
## 363 Guatemala Totonicapán Totonicapán 0.17513
## 372 Guatemala Sololá San Pablo La Laguna 3.85753
## 383 Guatemala Guatemala Chinautla 3.85648
## 427 Guatemala Guatemala Mixco 2.10418
## 428 Guatemala Guatemala Mixco 3.64749
## 429 Guatemala Guatemala Santa Catarina Pinula 2.81128
## 430 Guatemala Chiquimula San Juan Ermita 6.15103
## 431 Guatemala Huehuetenango Malacatancito 0.03280
## 432 Guatemala Sololá San Andrés Semetabaj 0.00359
## 433 Guatemala Alta Verapaz Senahú 2.30104
## 437 Guatemala Sololá Nahualá 3.04642
## 438 Guatemala Quetzaltenango Colomba 0.92729
## 439 Guatemala Quiché Chicamán 21.83272
## 440 Guatemala Sacatepéquez Jocotenango 0.63089
## 441 Guatemala Chimaltenango Chimaltenango 1.36473
## 442 Guatemala Quiché Sacapulas 0.35171
## 818 Guatemala Huehuetenango Barillas 0.45507
## 885 Guatemala Quiché Chajul 7.39906
## 1112 Guatemala San Marcos Pajapita 0.96647
## 1244 Guatemala Huehuetenango San Pedro Necta 0.91108
## 1347 Guatemala Sololá Zunil 7.03115
## 1352 Guatemala Baja Verapaz Purulhá 5.88787
## 1353 Guatemala Guatemala Santa Catarina Pinula 2.70053
## 1354 Guatemala Guatemala Guatemala City 2.59620
## 1356 Guatemala Quiché San Luis Ixcán 22.56101
## 1357 Guatemala Jutiapa Jalpatagua 4.51954
## 1358 Guatemala Huehuetenango Cuilco 3.30989
## 1359 Guatemala Guatemala Chinautla 5.94535
## 1360 Guatemala Quiché Chinique 3.98185
## 1361 Guatemala San Marcos Tacaná 0.75729
## 1557 Guatemala Guatemala Santa Catarina Pinula 0.94245
## 1559 Guatemala Guatemala Santa Catarina Pinula 3.96161
## 1560 Guatemala Santa Rosa Santa María Ixhuatán 0.82332
## 1561 Guatemala Suchitepeque San Juan Bautista 3.47803
## 1568 Guatemala Guatemala Fraijanes 6.19218
## 1569 Guatemala Chimaltenango Patzicía 5.52205
## 1570 Guatemala Guatemala Mixco 1.87009
## 1571 Guatemala Guatemala Petapa 4.20726
## 1572 Guatemala Sololá San Antonio Palopó 3.18658
## 1573 Guatemala Sololá San Andrés Semetabaj 0.67040
## 1574 Guatemala Guatemala Guatemala City 3.80312
## 1575 Guatemala Guatemala Guatemala City 1.68290
## 1576 Guatemala Guatemala Guatemala City 2.08425
## 1577 Guatemala Guatemala Guatemala City 3.25675
## 1578 Guatemala Guatemala Guatemala City 3.49341
## 1579 Guatemala Guatemala Guatemala City 1.83863
## 1580 Guatemala Guatemala Guatemala City 1.57381
## 1581 Guatemala Guatemala Guatemala City 1.70147
## 1582 Guatemala Guatemala Guatemala City 3.00314
## 1583 Guatemala Quiché Chichicastenango 2.27725
## 1584 Guatemala Guatemala Chinautla 2.36376
## 1585 Guatemala Guatemala Chinautla 2.66358
## 1588 Guatemala Sacatepéquez Santa Catarina Barahona 1.45200
## 1589 Guatemala Alta Verapaz Cahabón 5.14479
## 1590 Guatemala Escuintla Nueva Concepción 8.25465
## 1591 Guatemala Guatemala Villa Canales 0.65744
## 1592 Guatemala Sololá San Andrés Semetabaj 0.75685
## 1595 Guatemala Quetzaltenango Coatepeque 1.81216
ggplot(data= GUA, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Guatemala")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 7.900000e+01 0.000000e+00 0.000000e+00 1.311000e+03 9.949380e+05 9.936270e+05
## sum median mean SE.mean CI.mean.0.95 var
## 1.624255e+07 1.899400e+04 2.056019e+05 4.095993e+04 8.154496e+04 1.325396e+11
## std.dev coef.var
## 3.640598e+05 1.770702e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 79.0000000 0.0000000 0.0000000 0.0035900 23.9230900 23.9195000
## sum median mean SE.mean CI.mean.0.95 var
## 303.1182300 2.7005300 3.8369396 0.5175386 1.0303402 21.1598488
## std.dev coef.var
## 4.5999836 1.1988679
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')

Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Guatemala","Sololá","Quiché","Huehuetenango","Chimaltenango","Alta Verapaz33","Escuintla","Quetzaltenango","Sacatepéquez33","Izabal","San Marcos","Baja Verapaz","Chiquimula","Jutiapa","Santa Rosa","Suchitepeque","Totonicapán","Zacapa") ,
Frecuencia = c(31,9,7,5,4,3,3,3,3,2,2,1,1,1,1,1,1,1))
knitr::kable(df)
| Guatemala |
31 |
| Sololá |
9 |
| Quiché |
7 |
| Huehuetenango |
5 |
| Chimaltenango |
4 |
| Alta Verapaz33 |
3 |
| Escuintla |
3 |
| Quetzaltenango |
3 |
| Sacatepéquez33 |
3 |
| Izabal |
2 |
| San Marcos |
2 |
| Baja Verapaz |
1 |
| Chiquimula |
1 |
| Jutiapa |
1 |
| Santa Rosa |
1 |
| Suchitepeque |
1 |
| Totonicapán |
1 |
| Zacapa |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Guatemala 31.000000 31.000000 39.240506 39.240506
## Sololá 9.000000 40.000000 11.392405 50.632911
## Quiché 7.000000 47.000000 8.860759 59.493671
## Huehuetenango 5.000000 52.000000 6.329114 65.822785
## Chimaltenango 4.000000 56.000000 5.063291 70.886076
## Alta Verapaz33 3.000000 59.000000 3.797468 74.683544
## Escuintla 3.000000 62.000000 3.797468 78.481013
## Quetzaltenango 3.000000 65.000000 3.797468 82.278481
## Sacatepéquez33 3.000000 68.000000 3.797468 86.075949
## Izabal 2.000000 70.000000 2.531646 88.607595
## San Marcos 2.000000 72.000000 2.531646 91.139241
## Baja Verapaz 1.000000 73.000000 1.265823 92.405063
## Chiquimula 1.000000 74.000000 1.265823 93.670886
## Jutiapa 1.000000 75.000000 1.265823 94.936709
## Santa Rosa 1.000000 76.000000 1.265823 96.202532
## Suchitepeque 1.000000 77.000000 1.265823 97.468354
## Totonicapán 1.000000 78.000000 1.265823 98.734177
## Zacapa 1.000000 79.000000 1.265823 100.000000
Haití
Para Haití solo se ven 5 estados en los que se presentaron 10 deslizamientos para Quest, 4 en Nord, 3 en Artibonite, 2 en Sud-Est y solo 1 en Centre.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Haiti")
table(pais$state.province)
##
## Artibonite Centre Nord Ouest Sud-Est
## 3 1 4 10 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Ouest |
10 |
50 |
50 |
50 |
50 |
| Nord |
4 |
20 |
20 |
70 |
70 |
| Artibonite |
3 |
15 |
15 |
85 |
85 |
| Sud-Est |
2 |
10 |
10 |
95 |
95 |
| Centre |
1 |
5 |
5 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Haiti") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Ouest","Nord","Artibonite","Sud-Est","Centre"),
value = c(50, 20, 15, 10, 5))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
HAI <- subset (df, Country == "Haití")
knitr::kable(head(HAI))
HAI %>%
select(Country, State, City, Distance)
## [1] Country State City Distance
## <0 rows> (or 0-length row.names)
ggplot(data= HAI, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
### Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Haiti")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 2.000000e+01 0.000000e+00 0.000000e+00 3.951000e+03 1.234742e+06 1.230791e+06
## sum median mean SE.mean CI.mean.0.95 var
## 6.625032e+06 1.363905e+05 3.312516e+05 9.247531e+04 1.935530e+05 1.710337e+11
## std.dev coef.var
## 4.135622e+05 1.248483e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 20.000000 0.000000 0.000000 0.034710 17.298360 17.263650
## sum median mean SE.mean CI.mean.0.95 var
## 84.071730 2.678665 4.203587 1.019568 2.133979 20.790360
## std.dev coef.var
## 4.559645 1.084703
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')

Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Ouest","Nord","Artibonite","Sud-Est","Centre") ,
Frecuencia = c(10,4,3,2,1))
knitr::kable(df)
| Ouest |
10 |
| Nord |
4 |
| Artibonite |
3 |
| Sud-Est |
2 |
| Centre |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Ouest 10 10 50 50
## Nord 4 14 20 70
## Artibonite 3 17 15 85
## Sud-Est 2 19 10 95
## Centre 1 20 5 100
Honduras
En Honduras se reportaron 11 estados con deslizamientos, siendo el de mayor frecuencia de estos sucesos, el estado de Francisco Morazán, y los de meor frecuencia: Colón, El Paraíso y La Paz.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Honduras")
table(pais$state.province)
##
## Choluteca Colón Comayagua Copán
## 3 1 4 5
## Cortés El Paraíso Francisco Morazán La Paz
## 2 1 15 1
## Ocotepeque Santa Bárbara Yoro
## 2 2 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Francisco Morazán |
15 |
39.5 |
39.5 |
39.5 |
39.5 |
| Copán |
5 |
13.2 |
13.2 |
52.6 |
52.6 |
| Comayagua |
4 |
10.5 |
10.5 |
63.2 |
63.2 |
| Choluteca |
3 |
7.9 |
7.9 |
71.1 |
71.1 |
| Cortés |
2 |
5.3 |
5.3 |
76.3 |
76.3 |
| Ocotepeque |
2 |
5.3 |
5.3 |
81.6 |
81.6 |
| Santa Bárbara |
2 |
5.3 |
5.3 |
86.8 |
86.8 |
| Yoro |
2 |
5.3 |
5.3 |
92.1 |
92.1 |
| Colón |
1 |
2.6 |
2.6 |
94.7 |
94.7 |
| El Paraíso |
1 |
2.6 |
2.6 |
97.4 |
97.4 |
| La Paz |
1 |
2.6 |
2.6 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Honduras") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Francisco Morazán","Copán","Comayagua","Choluteca","Cortés","Ocotepeque","Santa Bárbara","Yoro","Colón","El Paraíso","La Paz"),
value = c(39.5, 13.2, 10.5, 7.9, 5.3, 5.3, 5.3, 5.3, 2.6, 2.6, 2.6))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=5) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","brown4","burlywood1","burlywood3"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
HON <- subset (df, Country == "Honduras")
knitr::kable(head(HON))
HON %>%
select(Country, State, City, Distance)
## Country State City Distance
## 159 Honduras Copán Corquín 0.43391
## 160 Honduras Francisco Morazán Tegucigalpa 2.99239
## 376 Honduras Francisco Morazán Tegucigalpa 0.98377
## 381 Honduras Francisco Morazán Tegucigalpa 1.24404
## 406 Honduras Francisco Morazán Tegucigalpa 2.21442
## 435 Honduras Francisco Morazán Santa Lucía 4.75791
## 474 Honduras Comayagua El Rancho 4.53362
## 485 Honduras Colón Cusuna 36.37629
## 820 Honduras Francisco Morazán Tegucigalpa 1.23639
## 1100 Honduras Cortés Los Caminos 3.53737
## 1279 Honduras Choluteca Ciudad Choluteca 3.69596
## 1288 Honduras Yoro Yoro 0.31238
## 1363 Honduras Ocotepeque Sinuapa 2.00805
## 1377 Honduras Cortés Agua Azul Rancho 0.97057
## 1379 Honduras Santa Bárbara Agualote 2.91594
## 1599 Honduras El Paraíso 1.90052
## 1602 Honduras Francisco Morazán El Lolo 1.85897
## 1603 Honduras Francisco Morazán Tegucigalpa 3.25281
## 1604 Honduras Choluteca Duyure 11.67237
## 1605 Honduras Choluteca Corpus 0.36987
## 1610 Honduras Comayagua El Sauce 7.28575
## 1611 Honduras Comayagua La Libertad 17.28613
## 1612 Honduras Comayagua Concepción de Guasistagua 8.52584
## 1613 Honduras Copán Santa Rosa de Copán 0.74414
## 1614 Honduras Copán Santa Rosa de Copán 0.28887
## 1615 Honduras Copán Ojos de Agua 1.39095
## 1616 Honduras La Paz San José 4.69133
## 1617 Honduras Copán Lucerna 5.89721
## 1618 Honduras Ocotepeque La Labor 5.79867
## 1619 Honduras Francisco Morazán Villa Nueva 2.00830
## 1620 Honduras Santa Bárbara Ilama 2.87349
## 1622 Honduras Francisco Morazán El Guapinol 3.54399
## 1623 Honduras Yoro La Sarrosa 6.66574
## 1624 Honduras Francisco Morazán El Tablón 3.12986
## 1638 Honduras Francisco Morazán Tegucigalpa 0.91552
## 1639 Honduras Francisco Morazán Yaguacire 1.30583
## 1640 Honduras Francisco Morazán Río Abajo 3.63962
## 1641 Honduras Francisco Morazán Tegucigalpa 2.91326
ggplot(data= HON, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Diagrama de caja
library(dplyr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Honduras")
Medidas de tendencia y variabilidad de la población en zonas de deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$population)
## nbr.val nbr.null nbr.na min max range
## 3.800000e+01 0.000000e+00 0.000000e+00 1.043000e+03 8.508480e+05 8.498050e+05
## sum median mean SE.mean CI.mean.0.95 var
## 7.001138e+06 1.936000e+03 1.842405e+05 5.663200e+04 1.147473e+05 1.218729e+11
## std.dev coef.var
## 3.491031e+05 1.894823e+00
Medidas de tendencia y variabilidad de la longitud de los deslizamientos
library(dplyr)
library(pastecs)
stat.desc(pais$distance)
## nbr.val nbr.null nbr.na min max range
## 38.000000 0.000000 0.000000 0.288870 36.376290 36.087420
## sum median mean SE.mean CI.mean.0.95 var
## 166.172050 2.914600 4.372949 1.023393 2.073592 39.798695
## std.dev coef.var
## 6.308621 1.442647
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
data <- c(pais$distance)
boxplot(data, horizontal=TRUE, col='steelblue')

Diagrama de Pareto
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df <- data.frame(Error = c("Francisco Morazán","Copán","Comayagua","Choluteca","Cortés","Ocotepeque","Santa Bárbara","Yoro","Colón","El ParaÃso","La Paz") ,
Frecuencia = c(15,5,4,3,2,2,2,2,1,1,1))
knitr::kable(df)
| Francisco Morazán |
15 |
| Copán |
5 |
| Comayagua |
4 |
| Choluteca |
3 |
| Cortés |
2 |
| Ocotepeque |
2 |
| Santa Bárbara |
2 |
| Yoro |
2 |
| Colón |
1 |
| El ParaÃso |
1 |
| La Paz |
1 |
library(qcc)
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Error
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores")

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Francisco Morazán 15.000000 15.000000 39.473684 39.473684
## Copán 5.000000 20.000000 13.157895 52.631579
## Comayagua 4.000000 24.000000 10.526316 63.157895
## Choluteca 3.000000 27.000000 7.894737 71.052632
## Cortés 2.000000 29.000000 5.263158 76.315789
## Ocotepeque 2.000000 31.000000 5.263158 81.578947
## Santa Bárbara 2.000000 33.000000 5.263158 86.842105
## Yoro 2.000000 35.000000 5.263158 92.105263
## Colón 1.000000 36.000000 2.631579 94.736842
## El ParaÃso 1.000000 37.000000 2.631579 97.368421
## La Paz 1.000000 38.000000 2.631579 100.000000
Jamaica
Para el caso de jamaica se reportaron 8 estados con deslizamientos, siendo Portland donde más se presentaron (8), y St. Elizabeth donde menos se presentaron (1).
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Jamaica")
table(pais$state.province)
##
## Clarendon Portland Saint Andrew Saint Ann Saint Catherine
## 2 12 5 3 3
## Saint Mary Saint Thomas St. Elizabeth
## 3 4 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Portland |
12 |
36.4 |
36.4 |
36.4 |
36.4 |
| Saint Andrew |
5 |
15.2 |
15.2 |
51.5 |
51.5 |
| Saint Thomas |
4 |
12.1 |
12.1 |
63.6 |
63.6 |
| Saint Ann |
3 |
9.1 |
9.1 |
72.7 |
72.7 |
| Saint Catherine |
3 |
9.1 |
9.1 |
81.8 |
81.8 |
| Saint Mary |
3 |
9.1 |
9.1 |
90.9 |
90.9 |
| Clarendon |
2 |
6.1 |
6.1 |
97.0 |
97.0 |
| St. Elizabeth |
1 |
3.0 |
3.0 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Jamaica") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Portland","Saint Andrew","Saint Thomas","Saint Ann","Saint Catherine","Saint Mary","Clarendon","St. Elizabeth"),
value = c(36.4, 15.2, 12.1, 9.1, 9.1, 9.1, 6.1, 3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
JAM <- subset (df, Country == "Jamaica")
knitr::kable(head(JAM))
JAM %>%
select(Country, State, City, Distance)
## Country State City Distance
## 18 Jamaica Portland Port Antonio 7.79027
## 48 Jamaica St. Elizabeth Maggotty 4.57363
## 50 Jamaica Saint Thomas Bath 0.21825
## 54 Jamaica Saint Thomas Easington 6.51940
## 55 Jamaica Saint Catherine Riversdale 5.46381
## 56 Jamaica Saint Andrew Gordon Town 0.96514
## 60 Jamaica Saint Ann Saint Annнўд‰ед‹ўs Bay 3.96533
## 93 Jamaica Saint Ann Ocho Rios 0.53886
## 143 Jamaica Saint Andrew Mavis Bank 9.83051
## 146 Jamaica Saint Thomas Bath 1.71217
## 237 Jamaica Portland Moore Town 5.02351
## 305 Jamaica Saint Thomas Easington 4.53632
## 306 Jamaica Clarendon Chapelton 9.53953
## 307 Jamaica Clarendon May Pen 0.56186
## 308 Jamaica Portland Buff Bay 2.78885
## 309 Jamaica Portland Port Antonio 4.46942
## 408 Jamaica Saint Andrew Stony Hill 5.98731
## 444 Jamaica Portland Moore Town 0.59599
## 456 Jamaica Portland Moore Town 7.81269
## 460 Jamaica Saint Mary Richmond 1.24727
## 461 Jamaica Saint Andrew Stony Hill 10.84467
## 462 Jamaica Saint Catherine Bog Walk 5.86530
## 466 Jamaica Saint Andrew Stony Hill 2.13878
## 486 Jamaica Saint Mary Richmond 8.74635
## 522 Jamaica Portland Manchioneal 0.71773
## 588 Jamaica Saint Mary Richmond 3.77580
## 589 Jamaica Portland Buff Bay 7.52317
## 900 Jamaica Portland Manchioneal 4.13454
## 920 Jamaica Portland Moore Town 3.17930
## 1310 Jamaica Portland Port Antonio 3.60799
## 1628 Jamaica Saint Catherine Bog Walk 6.71269
## 1629 Jamaica Saint Ann Saint Annнўд‰ед‹ўs Bay 1.08196
## 1630 Jamaica Portland Port Antonio 4.68732
ggplot(data= JAM, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
La longitud mínina de un deslizamiento de tierra en Jamaica ha sido 0.21 kilometros; y la menor cantidad de personas afectadas por un deslizamiento es 1088 personas.
Diagrama de caja y bigotes respecto a la distancia de los deslizamientos
El cuarto percentil con base en la distancia de los deslizamientos, tiene valores dispersos acorde a los demás percentiles; además, no han habído valores atípicos de los deslizamientos en Jamaica.
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble 3.1.3 ✓ stringr 1.4.0
## ✓ tidyr 1.1.3 ✓ forcats 0.5.1
## ✓ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x readr::col_factor() masks scales::col_factor()
## x purrr::discard() masks scales::discard()
## x tidyr::extract() masks pastecs::extract()
## x dplyr::filter() masks stats::filter()
## x pastecs::first() masks dplyr::first()
## x dplyr::lag() masks stats::lag()
## x pastecs::last() masks dplyr::last()
library(hrbrthemes)
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(viridis)
## Loading required package: viridisLite
##
## Attaching package: 'viridis'
## The following object is masked from 'package:scales':
##
## viridis_pal
data<-pais$distance
caja <- data.frame(data)
caja %>% ggplot(aes(x = "", y = data)) +
geom_boxplot(color="black", fill="blue", alpha=0.5) +
theme_ipsum() +
theme(legend.position="none", plot.title = element_text(size=11)) +
ggtitle("Basic boxplot") +
coord_flip() +
xlab("") +
ylab("")

Mexico
En México, 19 estados tuvieron deslizamientos según los datos reportados, siendo Chiapas el de mayor número con 10, y Colima el de menor con solo 1 al igual que otros como Sinaloa o Nuevo León.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Mexico")
table(pais$state.province)
##
## Baja California Baja California Sur Chiapas
## 4 1 10
## Chihuahua Colima Guerrero
## 1 1 8
## Hidalgo Jalisco México
## 2 1 4
## Michoacán Nayarit Nuevo León
## 4 2 1
## Oaxaca Puebla Sinaloa
## 9 4 1
## Tabasco The Federal District Veracruz
## 6 3 2
## Veracruz-Llave
## 9
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Chiapas |
10 |
13.7 |
13.7 |
13.7 |
13.7 |
| Oaxaca |
9 |
12.3 |
12.3 |
26.0 |
26.0 |
| Veracruz-Llave |
9 |
12.3 |
12.3 |
38.4 |
38.4 |
| Guerrero |
8 |
11.0 |
11.0 |
49.3 |
49.3 |
| Tabasco |
6 |
8.2 |
8.2 |
57.5 |
57.5 |
| Baja California |
4 |
5.5 |
5.5 |
63.0 |
63.0 |
| México |
4 |
5.5 |
5.5 |
68.5 |
68.5 |
| Michoacán |
4 |
5.5 |
5.5 |
74.0 |
74.0 |
| Puebla |
4 |
5.5 |
5.5 |
79.5 |
79.5 |
| The Federal District |
3 |
4.1 |
4.1 |
83.6 |
83.6 |
| Hidalgo |
2 |
2.7 |
2.7 |
86.3 |
86.3 |
| Nayarit |
2 |
2.7 |
2.7 |
89.0 |
89.0 |
| Veracruz |
2 |
2.7 |
2.7 |
91.8 |
91.8 |
| Baja California Sur |
1 |
1.4 |
1.4 |
93.2 |
93.2 |
| Chihuahua |
1 |
1.4 |
1.4 |
94.5 |
94.5 |
| Colima |
1 |
1.4 |
1.4 |
95.9 |
95.9 |
| Jalisco |
1 |
1.4 |
1.4 |
97.3 |
97.3 |
| Nuevo León |
1 |
1.4 |
1.4 |
98.6 |
98.6 |
| Sinaloa |
1 |
1.4 |
1.4 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Mexico") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Chiapas","Oaxaca","Veracruz-Llave","Guerrero","Tabasco","Baja California","México","Michoacán","Puebla","The Federal District","Hidalgo","Hidalgo","Veracruz","Baja California Sur","Chihuahua","Chihuahua","Jalisco","Nuevo León","Sinaloa"),
value = c(13.7, 12.3, 12.3, 11, 8.2, 5.5, 5.5, 5.5, 5.5, 4.1, 2.7, 2.7, 2.7, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=4) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","brown4","burlywood1","burlywood3","blue1","blue4","blueviolet","chartreuse","springgreen","yellow"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
MEX <- subset (df, Country == "México")
knitr::kable(head(MEX))
MEX %>%
select(Country, State, City, Distance)
## [1] Country State City Distance
## <0 rows> (or 0-length row.names)
ggplot(data= MEX, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Nicaragua
En Nicaragua hubo 9 estados donde se obtuvieron datos de deslizamientos, de los cuales el que mayor tuvo fue Chontales con 14 y los que menos tuvieron fueron Atlántico Norte y Río San Juan con 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Nicaragua")
table(pais$state.province)
##
## Atlántico Norte Chontales Jinotega Madriz Managua
## 1 14 3 2 3
## Masaya Ogun State Río San Juan Rivas
## 2 3 1 2
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Chontales |
14 |
45.2 |
45.2 |
45.2 |
45.2 |
| Jinotega |
3 |
9.7 |
9.7 |
54.8 |
54.8 |
| Managua |
3 |
9.7 |
9.7 |
64.5 |
64.5 |
| Ogun State |
3 |
9.7 |
9.7 |
74.2 |
74.2 |
| Madriz |
2 |
6.5 |
6.5 |
80.6 |
80.6 |
| Masaya |
2 |
6.5 |
6.5 |
87.1 |
87.1 |
| Rivas |
2 |
6.5 |
6.5 |
93.5 |
93.5 |
| Atlántico Norte |
1 |
3.2 |
3.2 |
96.8 |
96.8 |
| Río San Juan |
1 |
3.2 |
3.2 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Nicaragua") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Chontales","Jinotega","Managua","Ogun State","Madriz","Masaya","Rivas","Atlántico Norte","Río San Juan"),
value = c(45.2, 9.7, 9.7, 9.7, 6.5, 6.5, 6.5, 3.2, 3.2))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=5) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
NIC <- subset (df, Country == "Nicaragua")
knitr::kable(head(NIC))
| 33 |
229 |
9/4/07 |
|
NA |
Nicaragua |
NI |
Atlántico Norte |
6315 |
Bonanza |
54.90196 |
|
13.6670 |
-84.2435 |
(13.667, -84.243499999999997) |
Landslide |
Complex |
Medium |
Tropical cyclone |
Hurricane Felix |
NA |
NA |
United Nations Development Programme - Relief Web |
http://www.reliefweb.int/ |
| 151 |
826 |
10/3/08 |
|
NA |
Nicaragua |
NI |
Masaya |
5182 |
Tisma |
14.49301 |
|
12.1200 |
-85.8900 |
(12.12, -85.89) |
Landslide |
Landslide |
Medium |
Downpour |
|
NA |
9 |
CBC |
http://www.cbc.ca/world/story/2008/10/04/nicaragua-flooding.html |
| 420 |
2289 |
8/20/10 |
|
NA |
Nicaragua |
NI |
Managua |
16469 |
El Crucero |
5.84054 |
|
12.0420 |
-86.2998 |
(12.042, -86.299800000000005) |
Landslide |
Mudslide |
Medium |
Downpour |
|
NA |
3 |
|
|
| 424 |
2330 |
8/25/10 |
|
NA |
Nicaragua |
NI |
Jinotega |
2367 |
San José de Bocay |
1.36745 |
|
13.5317 |
-85.5325 |
(13.531700000000001, -85.532499999999999) |
Landslide |
Landslide |
Medium |
Downpour |
|
NA |
NA |
|
|
| 1261 |
6089 |
6/23/14 |
|
NA |
Nicaragua |
NI |
Chontales |
5827 |
Santo Domingo |
31.14242 |
Unknown |
12.3535 |
-84.8095 |
(12.3535, -84.8095) |
Landslide |
Landslide |
Small |
Continuous rain |
|
0 |
0 |
Wilfried Strauch |
|
| 1262 |
6090 |
6/23/14 |
|
NA |
Nicaragua |
NI |
Chontales |
5827 |
Santo Domingo |
31.24511 |
Unknown |
12.3521 |
-84.8080 |
(12.3521, -84.808000000000007) |
Landslide |
Landslide |
Medium |
Continuous rain |
|
0 |
0 |
Wilfried Strauch |
|
NIC %>%
select(Country, State, City, Distance)
## Country State City Distance
## 33 Nicaragua Atlántico Norte Bonanza 54.90196
## 151 Nicaragua Masaya Tisma 14.49301
## 420 Nicaragua Managua El Crucero 5.84054
## 424 Nicaragua Jinotega San José de Bocay 1.36745
## 1261 Nicaragua Chontales Santo Domingo 31.14242
## 1262 Nicaragua Chontales Santo Domingo 31.24511
## 1263 Nicaragua Chontales Santo Domingo 31.37360
## 1264 Nicaragua Chontales Santo Domingo 31.10125
## 1265 Nicaragua Chontales Santo Domingo 30.99704
## 1266 Nicaragua Chontales Santo Domingo 30.77070
## 1267 Nicaragua Chontales Santo Domingo 30.27546
## 1268 Nicaragua Chontales Santo Domingo 29.95253
## 1269 Nicaragua Chontales Santo Domingo 29.92927
## 1270 Nicaragua Chontales Santo Domingo 28.90294
## 1271 Nicaragua Chontales Santo Domingo 32.69694
## 1272 Nicaragua Chontales Santo Domingo 32.96402
## 1273 Nicaragua Chontales Santo Domingo 32.77401
## 1274 Nicaragua Chontales Santo Domingo 29.94574
## 1299 Nicaragua Managua Ciudad Sandino 5.59574
## 1321 Nicaragua Ogun State Bonanza 0.37593
## 1380 Nicaragua Rivas Altagracia 1.97784
## 1381 Nicaragua Rivas Altagracia 5.77119
## 1382 Nicaragua Río San Juan San Carlos 0.67752
## 1626 Nicaragua Jinotega Wiwilí 25.81514
## 1627 Nicaragua Jinotega Jinotega 2.44880
## 1631 Nicaragua Madriz Las Sabanas 7.21108
## 1632 Nicaragua Madriz Las Sabanas 4.86364
## 1633 Nicaragua Managua Terrabona 18.92056
## 1634 Nicaragua Ogun State Bonanza 10.61568
## 1636 Nicaragua Ogun State Siuna 1.68056
## 1637 Nicaragua Masaya San Juan de Oriente 1.56730
ggplot(data= NIC, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Puerto Rico
Para Puerto rico hubo 6 estados con deslizamientos, estando Ponce con 2 y el resto como Agua, Orocovis, etc. con solamente 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Puerto Rico")
table(pais$state.province)
##
## Aguada Orocovis Ponce San Juan Vega Alta Villalba
## 1 1 2 1 1 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Ponce |
2 |
28.6 |
28.6 |
28.6 |
28.6 |
| Aguada |
1 |
14.3 |
14.3 |
42.9 |
42.9 |
| Orocovis |
1 |
14.3 |
14.3 |
57.1 |
57.1 |
| San Juan |
1 |
14.3 |
14.3 |
71.4 |
71.4 |
| Vega Alta |
1 |
14.3 |
14.3 |
85.7 |
85.7 |
| Villalba |
1 |
14.3 |
14.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Puerto Rico") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Ponce","Aguada","Orocovis","San Juan","Vega Alta","Villalba"),
value = c(28.6, 14.3, 14.3, 14.3, 14.3, 14.3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
PUE <- subset (df, Country == "Puerto Rico")
knitr::kable(head(PUE))
PUE %>%
select(Country, State, City, Distance)
## Country State City Distance
## 68 Puerto Rico San Juan San Juan 6.91777
## 477 Puerto Rico Orocovis Orocovis 6.85760
## 1396 Puerto Rico Vega Alta Vega Alta 3.49090
## 1397 Puerto Rico Aguada Aguada 1.40257
## 1398 Puerto Rico Ponce Adjuntas 5.78872
## 1399 Puerto Rico Ponce Adjuntas 6.89036
## 1400 Puerto Rico Villalba Villalba 3.65535
ggplot(data= PUE, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Peru
Para Perú hubo 4 estados con deslizamientos reportados, Ancash con 5, Huanuco con 4, San Martín con 3 y La Libertad con 2.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Peru")
table(pais$state.province)
##
## Ancash Huanuco La Libertad San Martín
## 5 4 2 3
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Ancash |
5 |
35.7 |
35.7 |
35.7 |
35.7 |
| Huanuco |
4 |
28.6 |
28.6 |
64.3 |
64.3 |
| San Martín |
3 |
21.4 |
21.4 |
85.7 |
85.7 |
| La Libertad |
2 |
14.3 |
14.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Peru") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Ancash","Huanuco","San Martín","La Libertad"),
value = c(35.7, 28.6, 21.4, 14.3))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
PER <- subset (df, Country == "Perú")
knitr::kable(head(PER))
PER %>%
select(Country, State, City, Distance)
## [1] Country State City Distance
## <0 rows> (or 0-length row.names)
ggplot(data= PER, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Panama
En panamá donde se presentaron más deslizamientos fue en el estado de Colón (11) y donde menos hubo fue en Los Santos (1).
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Panama")
table(pais$state.province)
##
## Bocas del Toro Chiriquí Coclé Colón Los Santos
## 7 9 1 11 1
## Panamá
## 11
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Colón |
11 |
27.5 |
27.5 |
27.5 |
27.5 |
| Panamá |
11 |
27.5 |
27.5 |
55.0 |
55.0 |
| Chiriquí |
9 |
22.5 |
22.5 |
77.5 |
77.5 |
| Bocas del Toro |
7 |
17.5 |
17.5 |
95.0 |
95.0 |
| Coclé |
1 |
2.5 |
2.5 |
97.5 |
97.5 |
| Los Santos |
1 |
2.5 |
2.5 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Panama") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Colón","Panamá","Chiriquí","Bocas del Toro","Coclé","Los Santos"),
value = c(27.5, 27.5, 22.5, 17.5, 2.5, 2.5))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
PAN <- subset (df, Country == "Panama")
knitr::kable(head(PAN))
PAN %>%
select(Country, State, City, Distance)
## Country State City Distance
## 141 Panama Panamá Cerro Azul 1.84596
## 167 Panama Chiriquí Boquete 9.83700
## 557 Panama Colón El Giral 1.80330
## 558 Panama Colón Portobelo 0.09491
## 591 Panama Los Santos La Palma 13.40535
## 592 Panama Bocas del Toro Almirante 8.41491
## 919 Panama Colón Colón 0.16894
## 979 Panama Colón Portobelo 2.67409
## 980 Panama Colón Margarita 0.74760
## 981 Panama Colón Colón 0.20365
## 1080 Panama Colón Margarita 0.76740
## 1166 Panama Panamá Las Cumbres 2.81479
## 1387 Panama Chiriquí Volcán 0.35187
## 1388 Panama Chiriquí Río Sereno 0.64491
## 1389 Panama Panamá Alcaldedíaz 1.41526
## 1390 Panama Colón Nuevo San Juan 4.74914
## 1391 Panama Panamá San Miguelito 4.18074
## 1392 Panama Chiriquí Cerro Punta 3.33873
## 1393 Panama Panamá Ancón 2.24069
## 1606 Panama Colón Nueva Providencia 0.18619
## 1607 Panama Colón María Chiquita 2.28589
## 1608 Panama Colón Cativá 0.63948
## 1609 Panama Panamá Las Margaritas 0.48725
## 1645 Panama Bocas del Toro Punta Peña 0.29869
## 1653 Panama Bocas del Toro Changuinola 5.97977
## 1654 Panama Bocas del Toro Valle del Risco 6.65185
## 1655 Panama Bocas del Toro Pueblo Nuevo 3.92621
## 1656 Panama Bocas del Toro Valle del Risco 5.13913
## 1657 Panama Bocas del Toro Cauchero 4.45630
## 1658 Panama Chiriquí Boca de Balsa 2.44254
## 1659 Panama Chiriquí Río Sereno 3.66775
## 1660 Panama Chiriquí Palmira Centro 0.90169
## 1661 Panama Chiriquí Breñón 0.37999
## 1662 Panama Panamá San Miguelito 2.57852
## 1663 Panama Chiriquí Monte Lirio 6.74338
## 1664 Panama Coclé Caballero 0.21605
## 1665 Panama Panamá San Miguelito 2.59449
## 1666 Panama Panamá San Miguelito 3.30848
## 1667 Panama Panamá San Miguelito 3.54386
## 1668 Panama Panamá Arraiján 1.80341
ggplot(data= PAN, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Saint Vincent and the Grenadines
En Saint Vincent and the Grenadines también se reportó un deslizamiento solo en un estado: Charlotte.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Saint Vincent and the Grenadines")
table(pais$state.province)
##
## Charlotte
## 4
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Charlotte |
4 |
100 |
100 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow", width=0.5) +
xlab("Saint Vincent and the Grenadines") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Saint Lucia
En Santa Lucía se portaron 5 estados con 8 deslizamientos en total: Soufriére (4), Dennery (1), Laborie (1), Praslin (1) y Vieux-Fort (1).
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Saint Lucia")
table(pais$state.province)
##
## Dennery Laborie Praslin Soufrière Vieux-Fort
## 1 1 1 4 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Soufrière |
4 |
50.0 |
50.0 |
50.0 |
50.0 |
| Dennery |
1 |
12.5 |
12.5 |
62.5 |
62.5 |
| Laborie |
1 |
12.5 |
12.5 |
75.0 |
75.0 |
| Praslin |
1 |
12.5 |
12.5 |
87.5 |
87.5 |
| Vieux-Fort |
1 |
12.5 |
12.5 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Saint Lucia") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Soufrière","Dennery","Laborie","Praslin","Vieux-Fort"),
value = c(50, 12.5, 12.5, 12.5, 12.5))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
SAIN <- subset (df, Country == "Saint Lucia")
knitr::kable(head(SAIN))
SAIN %>%
select(Country, State, City, Distance)
## Country State City Distance
## 155 Saint Lucia Vieux-Fort Vieux Fort 2.61752
## 488 Saint Lucia Laborie Laborie 2.74715
## 489 Saint Lucia Soufrière Soufrière 1.56516
## 490 Saint Lucia Soufrière Soufrière 1.24758
## 491 Saint Lucia Dennery Dennery 6.13309
## 492 Saint Lucia Soufrière Soufrière 2.60663
## 493 Saint Lucia Soufrière Soufrière 0.96933
## 1191 Saint Lucia Praslin Praslin 3.81469
ggplot(data= SAIN, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

Trinidad and Tobago
Para Trinidad y Tobago hubo 15 estados donde se reportaron deslizamientos, siendo Diego Martín donde más se presentaron (16).
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Trinidad and Tobago")
table(pais$state.province)
##
## Borough of Arima City of Port of Spain
## 1 1 5
## City of San Fernando Couva-Tabaquite-Talparo Diego Martin
## 2 3 16
## Eastern Tobago Penal/Debe Point Fortin
## 10 2 1
## Princes Town San Juan/Laventille Sangre Grande
## 1 2 7
## Siparia Tobago Tunapuna/Piarco
## 1 7 4
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Diego Martin |
16 |
25.4 |
25.4 |
25.4 |
25.4 |
| Eastern Tobago |
10 |
15.9 |
15.9 |
41.3 |
41.3 |
| Sangre Grande |
7 |
11.1 |
11.1 |
52.4 |
52.4 |
| Tobago |
7 |
11.1 |
11.1 |
63.5 |
63.5 |
| City of Port of Spain |
5 |
7.9 |
7.9 |
71.4 |
71.4 |
| Tunapuna/Piarco |
4 |
6.3 |
6.3 |
77.8 |
77.8 |
| Couva-Tabaquite-Talparo |
3 |
4.8 |
4.8 |
82.5 |
82.5 |
| City of San Fernando |
2 |
3.2 |
3.2 |
85.7 |
85.7 |
| Penal/Debe |
2 |
3.2 |
3.2 |
88.9 |
88.9 |
| San Juan/Laventille |
2 |
3.2 |
3.2 |
92.1 |
92.1 |
|
1 |
1.6 |
1.6 |
93.7 |
93.7 |
| Borough of Arima |
1 |
1.6 |
1.6 |
95.2 |
95.2 |
| Point Fortin |
1 |
1.6 |
1.6 |
96.8 |
96.8 |
| Princes Town |
1 |
1.6 |
1.6 |
98.4 |
98.4 |
| Siparia |
1 |
1.6 |
1.6 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("Trinidad and Tobago") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Diego Martin","Eastern Tobago","Sangre Grande","Tobago","City of Port of Spain","Tunapuna/Piarco","Couva-Tabaquite-Talparo","City of San Fernando","Penal/Debe","San Juan/Laventille","Borough of Arima","Point Fortin","Princes Town","Siparia"),
value = c(25.4, 15.9, 11.1, 11.1, 7.9, 6.3, 4.8, 3.2, 3.2, 3.2, 1.6, 1.6, 1.6, 1.6))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=4) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","darkgoldenrod4","brown4","burlywood1","burlywood3","blue1","blue4","blueviolet"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
TRI <- subset (df, Country == "Trinidad and Tobago")
knitr::kable(head(TRI))
| 30 |
224 |
9/1/07 |
|
NA |
Trinidad and Tobago |
TT |
Tobago |
17000 |
Scarborough |
9.11607 |
|
11.2415 |
-60.6742 |
(11.2415, -60.674199999999999) |
Landslide |
Landslide |
Medium |
Tropical cyclone |
Hurricane Felix |
NA |
NA |
Trinadad Express |
http://www.trinidadexpress.com/index.pl/article_news?id=161197580 |
| 61 |
357 |
11/17/07 |
|
NA |
Trinidad and Tobago |
TT |
Eastern Tobago |
0 |
Roxborough |
7.33295 |
|
11.2965 |
-60.6312 |
(11.2965, -60.6312) |
Landslide |
Landslide |
Medium |
Rain |
|
NA |
NA |
Trinadad Express |
http://www.trinidadexpress.com/index.pl/article_news?id=161237574 |
| 65 |
390 |
12/11/07 |
|
NA |
Trinidad and Tobago |
TT |
Sangre Grande |
15968 |
Sangre Grande |
29.28864 |
|
10.8410 |
-61.0550 |
(10.840999999999999, -61.055) |
Landslide |
Landslide |
Medium |
Tropical cyclone |
Tropical Storm Olga |
NA |
3 |
Trinidad and Tobago’s Newsday |
http://www.newsday.co.tt/news/0,69681.html |
| 66 |
391 |
12/11/07 |
|
NA |
Trinidad and Tobago |
TT |
Eastern Tobago |
0 |
Roxborough |
8.62938 |
|
11.3000 |
-60.6440 |
(11.3, -60.643999999999998) |
Landslide |
Landslide |
Medium |
Tropical cyclone |
Tropical Storm Olga |
NA |
NA |
Trinidad and Tobago’s Newsday |
http://www.newsday.co.tt/news/0,69681.html |
| 67 |
392 |
12/11/07 |
|
NA |
Trinidad and Tobago |
TT |
Eastern Tobago |
0 |
Roxborough |
2.66802 |
|
11.2670 |
-60.5660 |
(11.266999999999999, -60.566000000000003) |
Landslide |
Landslide |
Small |
Tropical cyclone |
Tropical Storm Olga |
NA |
NA |
Trinidad and Tobago’s Newsday |
http://www.newsday.co.tt/news/0,69681.html |
| 149 |
780 |
9/7/08 |
|
NA |
Trinidad and Tobago |
TT |
Diego Martin |
8140 |
Petit Valley |
10.61854 |
|
10.7603 |
-61.4578 |
(10.760300000000001, -61.457799999999999) |
Landslide |
Landslide |
Medium |
Downpour |
|
NA |
NA |
|
http://www.newsday.co.tt/news/0,85847.html |
TRI %>%
select(Country, State, City, Distance)
## Country State City Distance
## 30 Trinidad and Tobago Tobago Scarborough 9.11607
## 61 Trinidad and Tobago Eastern Tobago Roxborough 7.33295
## 65 Trinidad and Tobago Sangre Grande Sangre Grande 29.28864
## 66 Trinidad and Tobago Eastern Tobago Roxborough 8.62938
## 67 Trinidad and Tobago Eastern Tobago Roxborough 2.66802
## 149 Trinidad and Tobago Diego Martin Petit Valley 10.61854
## 164 Trinidad and Tobago City of Port of Spain Port-of-Spain 1.07831
## 171 Trinidad and Tobago Diego Martin Petit Valley 5.91101
## 172 Trinidad and Tobago Diego Martin Petit Valley 2.24772
## 173 Trinidad and Tobago Penal/Debe Peñal, 2.57071
## 206 Trinidad and Tobago City of San Fernando Marabella 9.42494
## 392 Trinidad and Tobago Diego Martin Petit Valley 4.00979
## 393 Trinidad and Tobago City of Port of Spain Mucurapo 7.43310
## 394 Trinidad and Tobago City of Port of Spain Port-of-Spain 2.15046
## 400 Trinidad and Tobago Diego Martin Petit Valley 4.33904
## 402 Trinidad and Tobago Diego Martin Petit Valley 6.95807
## 404 Trinidad and Tobago City of Port of Spain Mucurapo 7.24469
## 405 Trinidad and Tobago San Juan/Laventille Laventille 7.37181
## 421 Trinidad and Tobago City of San Fernando San Fernando 0.92162
## 446 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite 6.91642
## 494 Trinidad and Tobago Sangre Grande Sangre Grande 33.51924
## 495 Trinidad and Tobago Eastern Tobago Roxborough 8.44112
## 496 Trinidad and Tobago Eastern Tobago Roxborough 3.36240
## 497 Trinidad and Tobago Tunapuna/Piarco Paradise 2.64003
## 498 Trinidad and Tobago Eastern Tobago Roxborough 0.91163
## 499 Trinidad and Tobago Tobago Scarborough 4.68038
## 500 Trinidad and Tobago Tobago Scarborough 6.81393
## 532 Trinidad and Tobago Diego Martin Petit Valley 3.33629
## 533 Trinidad and Tobago Diego Martin Petit Valley 3.08955
## 534 Trinidad and Tobago Diego Martin Petit Valley 4.66234
## 535 Trinidad and Tobago Diego Martin Petit Valley 4.50278
## 536 Trinidad and Tobago Diego Martin Petit Valley 6.58396
## 537 Trinidad and Tobago Diego Martin Petit Valley 1.83626
## 554 Trinidad and Tobago Princes Town Princes Town 8.41931
## 555 Trinidad and Tobago Sangre Grande Sangre Grande 33.10893
## 556 Trinidad and Tobago Sangre Grande Sangre Grande 33.10893
## 827 Trinidad and Tobago San Juan/Laventille Laventille 0.38521
## 829 Trinidad and Tobago Diego Martin Petit Valley 11.75674
## 839 Trinidad and Tobago Penal/Debe Peñal, 4.21321
## 840 Trinidad and Tobago Point Fortin Point Fortin 22.47289
## 841 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite 8.55164
## 842 Trinidad and Tobago Diego Martin Petit Valley 5.73985
## 843 Trinidad and Tobago Sangre Grande Sangre Grande 2.00931
## 844 Trinidad and Tobago Couva-Tabaquite-Talparo Tabaquite 0.61975
## 845 Trinidad and Tobago Borough of Arima Arima 13.34116
## 846 Trinidad and Tobago Sangre Grande Sangre Grande 30.29383
## 858 Trinidad and Tobago Tunapuna/Piarco Paradise 16.73194
## 877 Trinidad and Tobago Eastern Tobago Roxborough 5.62092
## 878 Trinidad and Tobago Tobago Scarborough 3.48176
## 887 Trinidad and Tobago Tunapuna/Piarco Paradise 13.75900
## 897 Trinidad and Tobago Diego Martin Petit Valley 6.39375
## 898 Trinidad and Tobago Diego Martin Petit Valley 4.64073
## 906 Trinidad and Tobago Petit Valley 1.84331
## 907 Trinidad and Tobago City of Port of Spain Port-of-Spain 2.54016
## 925 Trinidad and Tobago Eastern Tobago Roxborough 7.87263
## 926 Trinidad and Tobago Eastern Tobago Roxborough 7.47816
## 927 Trinidad and Tobago Eastern Tobago Roxborough 8.24676
## 958 Trinidad and Tobago Tobago Scarborough 6.35974
## 990 Trinidad and Tobago Tunapuna/Piarco Tunapuna 2.63186
## 1174 Trinidad and Tobago Tobago Scarborough 3.22335
## 1175 Trinidad and Tobago Tobago Scarborough 3.88123
## 1183 Trinidad and Tobago Sangre Grande Sangre Grande 26.68822
## 1302 Trinidad and Tobago Siparia Siparia 3.75200
ggplot(data= TRI, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

U.S. Virgin Islands
En U.S Virgin Islands solo se reportaron dos estados con deslizamientos: Saint Croix Island y Saint John Island ambos con 1.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "U.S. Virgin Islands")
table(pais$state.province)
##
## Saint Croix Island Saint John Island
## 1 1
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Saint Croix Island |
1 |
50 |
50 |
50 |
50 |
| Saint John Island |
1 |
50 |
50 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("U.S. Virgin Islands") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Saint Croix Island","Saint John Island"),
value = c(50, 50))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
VIRG <- subset (df, Country == "U.S Virgin Islands")
knitr::kable(head(VIRG))
VIRG %>%
select(Country, State, City, Distance)
## [1] Country State City Distance
## <0 rows> (or 0-length row.names)
ggplot(data= VIRG, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)

United States
Para el caso de Estados Unidos, que fue el país con más estados (42) con deslizamientos, hubo 124 de ellos en kentucky y 108 en colorado siendo los de mayor número, y Michigan, Montana y Oregon con solo 1, los de menor número.
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "United States")
table(pais$state.province)
##
## Alabama Arizona Arkansas California Colorado
## 9 16 6 57 108
## Connecticut Florida Georgia Idaho Illinois
## 6 2 11 37 9
## Indiana Iowa Kansas Kentucky Maine
## 5 11 2 124 2
## Maryland Massachusetts Michigan Minnesota Mississippi
## 8 10 1 23 2
## Missouri Montana Nevada New Hampshire New Jersey
## 9 1 7 7 11
## New Mexico New York North Carolina Ohio Oklahoma
## 11 31 52 61 4
## Oregon Pennsylvania South Carolina South Dakota Tennessee
## 1 97 2 2 39
## Texas Utah Vermont Virginia West Virginia
## 4 65 7 16 80
## Wisconsin Wyoming
## 13 17
Capital <- c(pais$state.province)
library(questionr)
table <- questionr::freq(Capital, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Kentucky |
124 |
12.6 |
12.6 |
12.6 |
12.6 |
| Colorado |
108 |
11.0 |
11.0 |
23.5 |
23.5 |
| Pennsylvania |
97 |
9.8 |
9.8 |
33.4 |
33.4 |
| West Virginia |
80 |
8.1 |
8.1 |
41.5 |
41.5 |
| Utah |
65 |
6.6 |
6.6 |
48.1 |
48.1 |
| Ohio |
61 |
6.2 |
6.2 |
54.3 |
54.3 |
| California |
57 |
5.8 |
5.8 |
60.0 |
60.0 |
| North Carolina |
52 |
5.3 |
5.3 |
65.3 |
65.3 |
| Tennessee |
39 |
4.0 |
4.0 |
69.3 |
69.3 |
| Idaho |
37 |
3.8 |
3.8 |
73.0 |
73.0 |
| New York |
31 |
3.1 |
3.1 |
76.2 |
76.2 |
| Minnesota |
23 |
2.3 |
2.3 |
78.5 |
78.5 |
| Wyoming |
17 |
1.7 |
1.7 |
80.2 |
80.2 |
| Arizona |
16 |
1.6 |
1.6 |
81.8 |
81.8 |
| Virginia |
16 |
1.6 |
1.6 |
83.5 |
83.5 |
| Wisconsin |
13 |
1.3 |
1.3 |
84.8 |
84.8 |
| Georgia |
11 |
1.1 |
1.1 |
85.9 |
85.9 |
| Iowa |
11 |
1.1 |
1.1 |
87.0 |
87.0 |
| New Jersey |
11 |
1.1 |
1.1 |
88.1 |
88.1 |
| New Mexico |
11 |
1.1 |
1.1 |
89.2 |
89.2 |
| Massachusetts |
10 |
1.0 |
1.0 |
90.3 |
90.3 |
| Alabama |
9 |
0.9 |
0.9 |
91.2 |
91.2 |
| Illinois |
9 |
0.9 |
0.9 |
92.1 |
92.1 |
| Missouri |
9 |
0.9 |
0.9 |
93.0 |
93.0 |
| Maryland |
8 |
0.8 |
0.8 |
93.8 |
93.8 |
| Nevada |
7 |
0.7 |
0.7 |
94.5 |
94.5 |
| New Hampshire |
7 |
0.7 |
0.7 |
95.2 |
95.2 |
| Vermont |
7 |
0.7 |
0.7 |
95.9 |
95.9 |
| Arkansas |
6 |
0.6 |
0.6 |
96.6 |
96.6 |
| Connecticut |
6 |
0.6 |
0.6 |
97.2 |
97.2 |
| Indiana |
5 |
0.5 |
0.5 |
97.7 |
97.7 |
| Oklahoma |
4 |
0.4 |
0.4 |
98.1 |
98.1 |
| Texas |
4 |
0.4 |
0.4 |
98.5 |
98.5 |
| Florida |
2 |
0.2 |
0.2 |
98.7 |
98.7 |
| Kansas |
2 |
0.2 |
0.2 |
98.9 |
98.9 |
| Maine |
2 |
0.2 |
0.2 |
99.1 |
99.1 |
| Mississippi |
2 |
0.2 |
0.2 |
99.3 |
99.3 |
| South Carolina |
2 |
0.2 |
0.2 |
99.5 |
99.5 |
| South Dakota |
2 |
0.2 |
0.2 |
99.7 |
99.7 |
| Michigan |
1 |
0.1 |
0.1 |
99.8 |
99.8 |
| Montana |
1 |
0.1 |
0.1 |
99.9 |
99.9 |
| Oregon |
1 |
0.1 |
0.1 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="blue", fill="yellow") +
xlab("United States") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
library(dplyr)
data <- data.frame(group =
c("Kentucky","Colorado","Pennsylvania","West Virginia","Utah","Ohio","California","North Carolina","Tennessee","Idaho","New York","Minnesota","Wyoming","Arizona","Virginia","Wisconsin","Georgia","Iowa","New Jersey","New Mexico","Massachusetts","Alabama","Illinois","Missouri","Maryland","Nevada","New Hampshire","Vermont","Arkansas","Connecticut","Indiana","Oklahoma","Texas","Florida","Kansas","Maine","Mississippi","South Carolina","South Dakota","Michigan","Montana","Oregon"),
value = c(12.6, 11, 9.8, 8.1, 6.6, 6.2, 5.8, 5.3, 4, 3.8, 3.1, 2.3, 1.7, 1.6, 1.6, 1.3, 1.1, 1.1, 1.1, 1.1, 1, 0.9, 0.9, 0.9, 0.8, 0.7, 0.7, 0.7, 0.6, 0.6, 0.5, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1))
library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(group)) %>%
mutate(prop = value / sum(data$value) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
ggplot(data, aes(x="", y = prop, fill=group)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(value/100)), color = "white", size=3,) +
scale_fill_manual(values = c("darkseagreen2","darkred","darkorchid1","gainsboro","gray2","cyan","cyan4","darkgoldenrod1","darkgoldenrod4","brown4","burlywood1","burlywood3","blue1","blue4","blueviolet","chartreuse","cornflowerblue","aliceblue","springgreen","yellow","red","rosybrown1","rosybrown2","rosybrown4","salmon","sandybrown","seagreen1","plum","pink","plum1","slateblue4","turquoise","turquoise4","violet","violetred2","violetred4","yellowgreen","steelblue1","snow2","skyblue3","palegoldenrod","mintcream"))

ggplot(data, aes(x = "", y = value, fill=group)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
USA <- subset (df, Country == "United States")
knitr::kable(head(USA))
USA %>%
select(Country, State, City, Distance)
## Country State City Distance
## 1 United States Virginia Cherry Hill 3.40765
## 2 United States Ohio New Philadelphia 3.33522
## 3 United States Pennsylvania Wilkinsburg 2.91977
## 5 United States Kentucky Pikeville 5.66542
## 6 United States Kentucky Pikeville 0.23715
## 7 United States South Dakota Dakota Dunes 2.48033
## 12 United States Texas Haltom City 0.03668
## 16 United States Texas Grand Prairie 5.66936
## 19 United States Colorado Meeker 10.87949
## 21 United States Minnesota Caledonia 22.31062
## 22 United States Wyoming Cody 64.74594
## 23 United States Minnesota Rochester 0.99990
## 24 United States Wisconsin La Crosse 13.62525
## 25 United States Wisconsin La Crosse 12.91337
## 26 United States West Virginia Glendale 3.49200
## 32 United States New Mexico Jemez Pueblo 12.89915
## 35 United States Wyoming Hoback 9.42463
## 36 United States Idaho Ketchum 4.51471
## 37 United States Colorado Steamboat Springs 2.63588
## 40 United States Colorado New Castle 4.25758
## 62 United States California Rancho Santa Fe 6.48824
## 63 United States Indiana Lawrenceburg 2.66572
## 69 United States Pennsylvania Trafford 0.27058
## 71 United States Pennsylvania Level Green 0.03251
## 72 United States California La Jolla 8.13382
## 74 United States California Encinitas 3.23702
## 75 United States California La Jolla 1.15586
## 76 United States Pennsylvania Wickerham Manor-Fisher 1.09139
## 77 United States Pennsylvania Etna 1.23232
## 79 United States Pennsylvania Homestead 2.97055
## 81 United States New York Green Island 4.36125
## 82 United States Pennsylvania Pitcairn 0.36435
## 83 United States Ohio Toronto 1.02992
## 84 United States Ohio Mount Carmel 1.17753
## 85 United States Ohio Wellsville 7.05134
## 86 United States Kentucky Ludlow 2.26622
## 88 United States Illinois Jerseyville 18.72748
## 89 United States Pennsylvania Franklin Park 3.60364
## 91 United States Wisconsin Westby 0.62955
## 92 United States Colorado Avon 3.03321
## 95 United States Minnesota Winona 1.72940
## 96 United States New Hampshire Newbury 0.08548
## 97 United States New Hampshire Whitefield 8.19938
## 98 United States Virginia Chatmoss 8.27691
## 99 United States West Virginia Montgomery 7.85746
## 100 United States Kentucky Fort Wright 0.90111
## 101 United States Colorado Aspen 20.14967
## 106 United States Indiana Martinsville 0.63962
## 107 United States New York Hancock 4.46079
## 109 United States Arkansas Jasper 30.98796
## 111 United States New Jersey Orange 3.31974
## 112 United States New Mexico Las Vegas 15.17455
## 113 United States West Virginia Williamson 2.20331
## 114 United States West Virginia Charleston 3.05313
## 115 United States Iowa Guttenberg 2.88694
## 116 United States Colorado Durango 2.94432
## 118 United States Wisconsin Brice Prairie 6.28666
## 121 United States Colorado Snowmass Village 10.78549
## 122 United States Idaho McCall 29.97781
## 123 United States Idaho Salmon 25.30277
## 124 United States Colorado Walsenburg 32.15868
## 125 United States New Mexico Jemez Pueblo 12.68493
## 126 United States Colorado Walsenburg 41.47439
## 127 United States New Hampshire Woodsville 5.61303
## 128 United States California Ramona 3.32897
## 129 United States Colorado Carbondale 22.50782
## 130 United States Utah Mapleton 5.66291
## 131 United States Utah East Carbon City 67.58127
## 135 United States Colorado Salida 8.16325
## 136 United States Colorado Perry Park 17.16659
## 142 United States North Carolina Lake Lure 0.85349
## 144 United States North Carolina Lake Lure 5.17876
## 148 United States Massachusetts Holyoke 2.84100
## 150 United States Idaho Sun Valley 1.58679
## 168 United States California Valley Center 14.43770
## 170 United States California Fairbanks Ranch 8.33509
## 174 United States California Harbison Canyon 1.91206
## 175 United States Tennessee Kingston 2.61361
## 176 United States North Carolina Maggie Valley 2.71542
## 179 United States Pennsylvania Crafton 2.84144
## 181 United States Tennessee Sale Creek 11.51020
## 182 United States Utah Provo 3.35726
## 183 United States Virginia East Lexington 10.60458
## 186 United States Utah Cottonwood Heights 1.90486
## 187 United States Utah East Millcreek 1.68712
## 188 United States Utah Canyon Rim 8.13917
## 189 United States Virginia East Lexington 13.41471
## 190 United States Colorado Boulder 15.14802
## 192 United States Missouri Hannibal 1.93676
## 195 United States Kentucky Hindman 15.41975
## 196 United States Kentucky Jackson 9.34774
## 197 United States Kentucky Pikeville 11.07489
## 198 United States North Carolina Lenoir 9.72793
## 199 United States West Virginia Hamlin 11.50494
## 200 United States Utah Draper 0.79003
## 201 United States North Carolina Hudson 10.33560
## 202 United States Idaho Ketchum 1.27144
## 203 United States Kentucky Dayton 2.30977
## 204 United States Kentucky Hopkinsville 15.49105
## 205 United States Wisconsin Prairie du Chien 3.41664
## 209 United States Texas Sparks 1.34835
## 213 United States Georgia Cleveland 15.92157
## 214 United States Alabama Livingston 26.97874
## 215 United States Georgia Stone Mountain 2.07317
## 216 United States Georgia Lookout Mountain 0.80279
## 217 United States North Carolina Brevard 3.61918
## 219 United States Georgia Trenton 1.12077
## 220 United States Tennessee Gatlinburg 4.11813
## 221 United States Texas Cedar Hill 6.20618
## 222 United States Kentucky Hyden 10.07650
## 228 United States Tennessee East Ridge 2.60684
## 230 United States Illinois Alton 1.54044
## 231 United States Tennessee Chattanooga 5.97545
## 232 United States Tennessee Signal Mountain 2.05274
## 233 United States Tennessee Signal Mountain 2.47169
## 234 United States Missouri Louisiana 7.60154
## 235 United States California Running Springs 8.91845
## 236 United States Mississippi Purvis 17.40130
## 239 United States California Valley Center 5.71250
## 240 United States Arizona Tonto Basin 16.48124
## 241 United States California Morongo Valley 1.35292
## 242 United States California Aguanga 12.95887
## 243 United States Arizona Cordes Lakes 12.98377
## 244 United States North Carolina Rural Hall 7.54867
## 245 United States Tennessee Madisonville 8.55137
## 246 United States Tennessee Signal Mountain 2.56584
## 247 United States Tennessee Soddy-Daisy 3.20504
## 248 United States Pennsylvania Pittsburgh 1.49656
## 249 United States Connecticut Canaan 10.75115
## 250 United States North Carolina Tobaccoville 2.39331
## 251 United States Kentucky Manchester 5.79962
## 254 United States South Carolina Clemson 4.34093
## 259 United States North Carolina Maggie Valley 0.91282
## 261 United States Kentucky Williamsburg 5.29680
## 262 United States Kentucky Jenkins 19.17000
## 263 United States Tennessee Livingston 14.90347
## 265 United States California Banning 2.18534
## 266 United States California San Bernardino 1.18379
## 268 United States Pennsylvania Pittsburgh 1.29986
## 269 United States Pennsylvania Crafton 2.37904
## 270 United States Wisconsin Saint Croix Falls 3.90084
## 271 United States West Virginia Belle 0.02907
## 272 United States West Virginia Princeton 7.04356
## 273 United States New Jersey Lake Mohawk 4.41013
## 274 United States West Virginia Summersville 6.25122
## 275 United States Ohio Jackson 13.05284
## 276 United States Massachusetts Topsfield 1.03712
## 277 United States New Jersey Ogdensburg 0.77081
## 278 United States North Carolina Robbinsville 23.26062
## 279 United States Massachusetts Clinton 1.25138
## 280 United States Massachusetts Walpole 2.73316
## 281 United States Pennsylvania New Hope 6.71244
## 282 United States Tennessee Gatlinburg 11.83863
## 283 United States Ohio Salineville 10.58008
## 284 United States Alabama Good Hope 22.45613
## 285 United States New York Worcester 7.59235
## 286 United States Tennessee Gatlinburg 14.56419
## 287 United States Connecticut Middletown 1.40994
## 288 United States New York Sound Beach 0.94386
## 289 United States New York Yonkers 3.28687
## 290 United States Iowa Fort Madison 2.69877
## 291 United States Iowa Fort Madison 2.69877
## 292 United States Maine Winslow 0.76489
## 293 United States New Hampshire Greenville 0.29408
## 296 United States Iowa Burlington 3.37828
## 310 United States Tennessee Clifton 10.07129
## 312 United States Kentucky Morehead 10.11538
## 313 United States Kentucky Salyersville 9.51647
## 314 United States Tennessee Belle Meade 4.06928
## 315 United States Tennessee Forest Hills 5.92638
## 316 United States Tennessee Fairview 11.67837
## 317 United States Tennessee Brentwood Estates 6.61569
## 318 United States Tennessee Columbia 15.51031
## 319 United States Kentucky Hindman 7.91631
## 320 United States Kentucky Hyden 0.00435
## 321 United States Kentucky Cumberland 18.27072
## 322 United States Kentucky Pineville 5.84944
## 323 United States Kentucky Paintsville 13.47073
## 324 United States Kentucky Inez 7.32052
## 325 United States West Virginia Williamson 15.29574
## 326 United States Kentucky Inez 9.90252
## 327 United States Kentucky Hazard 12.34170
## 328 United States Kentucky Hindman 10.50499
## 329 United States Kentucky Hindman 21.31051
## 330 United States Kentucky Cumberland 1.09107
## 331 United States Kentucky Cumberland 16.31604
## 332 United States West Virginia Gilbert Creek 18.71035
## 333 United States Virginia Clintwood 21.45604
## 334 United States Kentucky Jenkins 10.20803
## 335 United States Kentucky Pikeville 8.90602
## 336 United States Ohio Ironton 17.02627
## 337 United States Ohio Ironton 6.42411
## 338 United States Ohio Coal Grove 18.88870
## 342 United States Tennessee Belle Meade 0.01307
## 343 United States Ohio Ironton 10.40449
## 344 United States Missouri North Kansas City 5.24463
## 345 United States Kentucky Salyersville 7.52656
## 346 United States West Virginia Charleston 1.68022
## 348 United States North Carolina Marshall 16.47911
## 350 United States Utah Canyon Rim 0.75491
## 364 United States Pennsylvania Pittsburgh 1.93338
## 365 United States Pennsylvania Green Tree 1.46465
## 366 United States North Carolina Brevard 5.80525
## 367 United States Nevada Spring Creek 16.13996
## 368 United States West Virginia Mallory 5.45758
## 369 United States Indiana Lafayette 6.08613
## 370 United States Minnesota Caledonia 18.20633
## 371 United States Wisconsin Richland Center 16.88781
## 373 United States Colorado Buena Vista 13.11084
## 374 United States New York Canandaigua 8.27871
## 377 United States New York Naples 14.77042
## 378 United States West Virginia Saint Marys 0.76491
## 380 United States Georgia Jefferson 7.58207
## 382 United States Arizona Flagstaff 11.50738
## 384 United States West Virginia Huntington 2.97869
## 387 United States Colorado Durango 4.89100
## 388 United States New Mexico Socorro 25.68212
## 389 United States Colorado Mountain Village 17.96218
## 390 United States Colorado Mountain Village 27.47506
## 391 United States Kentucky Bellevue 0.99029
## 397 United States Colorado Carbondale 23.83031
## 398 United States Colorado Leadville 20.97634
## 399 United States Utah Woodland Hills 13.47828
## 407 United States Iowa Ottumwa 0.92861
## 409 United States Tennessee Banner Hill 1.77572
## 410 United States Utah Draper 3.22031
## 411 United States Colorado Carbondale 24.13440
## 412 United States Colorado Carbondale 22.55763
## 413 United States Colorado Carbondale 23.56048
## 414 United States Colorado Carbondale 21.37674
## 415 United States Colorado Snowmass Village 4.60739
## 416 United States Colorado Snowmass Village 3.84400
## 417 United States Colorado Carbondale 4.51715
## 418 United States Colorado Glenwood Springs 3.60875
## 419 United States Utah Moab 38.50248
## 426 United States California Yucaipa 11.06641
## 436 United States Pennsylvania Smethport 6.19784
## 443 United States Tennessee Knoxville 5.00430
## 447 United States Virginia Madison Heights 1.20498
## 450 United States Arizona Tonto Basin 1.86032
## 452 United States Wisconsin Lake Hallie 2.43595
## 458 United States Pennsylvania Mount Oliver 2.03608
## 465 United States Pennsylvania Heidelberg 1.22035
## 468 United States New York McGraw 6.65468
## 472 United States New Hampshire Woodsville 5.48538
## 473 United States Maryland Chesapeake Ranch Estates 2.52659
## 484 United States California Thousand Palms 7.04978
## 521 United States Pennsylvania Manchester 5.03527
## 550 United States New York Little Falls 2.73513
## 551 United States Tennessee Knoxville 4.92279
## 552 United States North Carolina Flat Rock 5.16572
## 559 United States California Running Springs 7.63522
## 560 United States Nevada Summerlin South 19.35795
## 561 United States California Encinitas 4.45005
## 562 United States California Muscoy 4.51520
## 563 United States California Encinitas 3.31222
## 564 United States California Highland 1.85916
## 565 United States California San Jacinto 2.92944
## 566 United States California Running Springs 6.40077
## 567 United States California Highland 1.95744
## 568 United States California Running Springs 3.35384
## 569 United States California Carlsbad 5.86771
## 570 United States California Loma Linda 3.23578
## 571 United States California La Jolla 2.01316
## 572 United States California La Jolla 2.24058
## 573 United States California Loma Linda 0.87634
## 575 United States California La Mesa 6.02579
## 576 United States California Moreno Valley 9.07891
## 577 United States Ohio Mingo Junction 2.81727
## 580 United States Idaho Idaho City 34.46887
## 581 United States Idaho Boise 14.32586
## 582 United States Idaho Boise 14.99911
## 583 United States Idaho Idaho City 38.27504
## 584 United States West Virginia Chesapeake 6.15192
## 585 United States North Carolina Maggie Valley 1.20337
## 590 United States California Descanso 9.82301
## 593 United States Pennsylvania Glen Lyon 8.31157
## 595 United States North Carolina Blowing Rock 13.11943
## 596 United States Connecticut Bethel 2.63291
## 597 United States Connecticut New Milford NA
## 598 United States Massachusetts Greenfield 0.81961
## 600 United States Pennsylvania Heidelberg 1.54687
## 601 United States Missouri Wildwood 2.41198
## 602 United States Kentucky Hazard 0.70654
## 603 United States New York Lewiston 3.95434
## 604 United States West Virginia Bethany 2.52454
## 605 United States West Virginia Bethany 1.92763
## 606 United States Pennsylvania Tunkhannock 13.66120
## 607 United States Virginia Arlington 3.23558
## 608 United States Virginia Hillsville 13.60254
## 609 United States Ohio Bellaire 3.66747
## 610 United States Ohio Brilliant 4.85999
## 611 United States Pennsylvania Tunkhannock 4.84701
## 612 United States Ohio Wellsville 0.79841
## 613 United States Ohio Brilliant 4.85999
## 614 United States Alabama Jacksonville 1.79927
## 615 United States Pennsylvania Bradford Woods 4.62567
## 616 United States Ohio Powhatan Point 1.01208
## 617 United States Ohio Wellsville 3.09494
## 618 United States New York Hadley 6.60211
## 620 United States Utah Summit Park 5.09388
## 622 United States California Valley Center 5.13929
## 624 United States Tennessee Sevierville 2.43605
## 625 United States West Virginia Bethlehem 1.94038
## 626 United States Pennsylvania Coraopolis 2.47173
## 627 United States Ohio Rocky River 1.57593
## 628 United States West Virginia Chesapeake 25.09618
## 630 United States Pennsylvania Millvale 2.94131
## 636 United States Kentucky Bellevue 1.26817
## 639 United States Pennsylvania Pittsburgh 1.29731
## 641 United States Pennsylvania West Homestead 1.91993
## 642 United States Pennsylvania Bradford Woods 2.06885
## 645 United States New Jersey Hoboken 0.84845
## 646 United States Ohio Tiltonsville 3.77028
## 647 United States West Virginia Elizabeth 15.03444
## 648 United States Ohio Brilliant 1.76001
## 649 United States Pennsylvania Bala Cynwyd 3.74706
## 650 United States Maryland Thurmont 3.50924
## 651 United States Kentucky Independence 2.19418
## 652 United States Kentucky Cold Spring 1.22389
## 653 United States Kentucky Williamstown 12.53751
## 654 United States Kentucky Villa Hills 2.03469
## 655 United States Ohio Delhi Hills 3.45556
## 656 United States Kentucky Wilder 1.24385
## 657 United States Kentucky Alexandria 4.61879
## 661 United States West Virginia Sissonville 3.90856
## 662 United States Ohio West Portsmouth 6.43139
## 663 United States Ohio Waverly 12.99718
## 664 United States Missouri Hollister 8.78605
## 665 United States Ohio Cleves 4.50908
## 666 United States Kentucky Ludlow 1.26285
## 667 United States Kentucky Bellevue 1.42927
## 668 United States Kentucky Eddyville 7.88518
## 669 United States Ohio Cincinnati 2.59168
## 670 United States Kentucky Newport 1.73096
## 671 United States Ohio Cincinnati 2.68376
## 672 United States Ohio Wolfhurst 7.12905
## 673 United States Arkansas Midway 6.74198
## 674 United States Ohio Dry Ridge 2.92400
## 675 United States West Virginia Barrackville 1.60330
## 676 United States Ohio Amelia 4.45788
## 677 United States Tennessee Bolivar 9.34376
## 678 United States Tennessee Dickson 8.14549
## 679 United States Kentucky Ludlow 2.08830
## 680 United States Tennessee McEwen 12.81745
## 681 United States Kentucky Dawson Springs 8.74503
## 682 United States Kentucky Harlan 15.76570
## 683 United States Missouri Willow Springs 13.48426
## 684 United States Kentucky Cumberland 8.68702
## 685 United States Ohio Turpin Hills 2.88328
## 686 United States Ohio Bridgetown 4.26162
## 687 United States Ohio Mack 2.95385
## 688 United States Ohio New Burlington 1.81969
## 689 United States Kentucky Ludlow 1.27755
## 691 United States Kentucky Augusta 8.35471
## 692 United States Kentucky Frankfort 2.05395
## 693 United States Kentucky Frankfort 3.61757
## 694 United States Kentucky Frankfort 3.19663
## 695 United States Kentucky Maysville 2.33611
## 696 United States Ohio Aberdeen 5.88319
## 698 United States Vermont Swanton 5.80477
## 699 United States Vermont Swanton 5.93705
## 700 United States Vermont Barre 6.58098
## 703 United States Idaho Victor 14.40898
## 704 United States West Virginia Charleston 6.02220
## 705 United States Ohio Burlington 4.35442
## 706 United States Ohio Ironton 19.76853
## 707 United States Ohio Coal Grove 9.74624
## 708 United States Ohio Ironton 20.40835
## 709 United States Ohio Brooklyn Heights 0.81717
## 710 United States Pennsylvania Masontown 5.82547
## 711 United States Pennsylvania Washington 18.14779
## 712 United States Pennsylvania Maple Glen 1.49457
## 713 United States New York Whitehall 16.90533
## 717 United States Pennsylvania Curtisville 2.01507
## 719 United States West Virginia Huntington 1.71788
## 720 United States West Virginia Huntington 2.13503
## 721 United States West Virginia Huntington 2.94557
## 722 United States West Virginia Huntington 2.76021
## 723 United States West Virginia Huntington 0.01392
## 724 United States West Virginia West Liberty 11.01130
## 725 United States Pennsylvania Coraopolis 2.45126
## 726 United States Pennsylvania Russellton 4.06157
## 727 United States Pennsylvania Plum 1.09370
## 728 United States Pennsylvania Youngwood 3.51907
## 729 United States Utah Wolf Creek 8.65312
## 730 United States Pennsylvania Ingram 0.71260
## 731 United States Pennsylvania Pittsburgh 0.26199
## 732 United States Utah Santaquin 7.91495
## 733 United States Pennsylvania Leetsdale 1.11499
## 734 United States Pennsylvania Leetsdale 1.11499
## 735 United States Utah Farmington 3.12368
## 736 United States Utah Beaver 14.71664
## 737 United States Utah Grantsville 30.28399
## 738 United States Utah Centerville 4.54095
## 739 United States Pennsylvania Arnold 3.02440
## 740 United States Iowa Sioux City 4.38210
## 741 United States Michigan Ann Arbor 1.89658
## 742 United States New York Lake Placid 11.70793
## 743 United States Illinois Alton 1.71596
## 744 United States Vermont Barre 0.65528
## 745 United States Utah Wolf Creek 8.65312
## 746 United States Wyoming Sundance 7.07507
## 747 United States Vermont Barre 1.15359
## 752 United States Colorado Keystone 5.82093
## 755 United States Kentucky Dayton 1.06742
## 756 United States Iowa Keokuk 2.92601
## 757 United States Pennsylvania Windsor 7.93844
## 758 United States Wisconsin Eau Claire 4.98787
## 759 United States Indiana Southport 2.61312
## 760 United States Tennessee Harrogate 3.07236
## 762 United States Kentucky Stanton 5.95618
## 763 United States Colorado Georgetown 11.46832
## 765 United States Kentucky Burlington 3.77076
## 766 United States Ohio Batavia 1.91217
## 767 United States Kentucky Newport 1.90865
## 770 United States Pennsylvania Homestead 2.97852
## 771 United States Colorado Aspen 0.21641
## 772 United States Pennsylvania Plum 7.45648
## 773 United States Utah Highland 9.18061
## 775 United States Colorado Silverthorne 2.66276
## 776 United States Wyoming Sheridan 6.32702
## 777 United States Wyoming Sheridan 0.00178
## 778 United States Arizona Sierra Vista 12.28777
## 779 United States Arizona Sierra Vista 9.92245
## 781 United States Colorado Paonia 7.50275
## 782 United States Colorado Paonia 0.01994
## 783 United States Arizona Eagar 52.11489
## 784 United States Colorado Boulder 9.47622
## 785 United States Colorado Boulder 10.42230
## 786 United States Arizona Sierra Vista Southeast 12.52763
## 790 United States Colorado Mountain Village 1.82803
## 791 United States Colorado Glenwood Springs 5.78301
## 792 United States Pennsylvania Homestead 2.96418
## 793 United States Ohio New California 5.63505
## 794 United States Kentucky Campton 12.29943
## 795 United States Colorado Avon 2.35855
## 796 United States Florida Williston 3.75018
## 797 United States Kentucky Hazard 8.30475
## 803 United States Colorado San Luis 25.38161
## 804 United States New Mexico Hurley 17.95414
## 805 United States Colorado El Jebel 4.90954
## 806 United States Colorado Glenwood Springs 10.57117
## 807 United States Colorado Rifle 1.11647
## 808 United States Pennsylvania Wellsboro 0.17013
## 809 United States Colorado Silverton 0.01766
## 810 United States Tennessee Gatlinburg 1.01331
## 811 United States Tennessee Columbia 0.72461
## 812 United States Pennsylvania Imperial 7.26376
## 813 United States New Jersey Highland Lake 5.27337
## 815 United States New York Inwood 1.91324
## 816 United States New Jersey Belvidere 0.07578
## 817 United States New Jersey Warren Township 3.64818
## 823 United States Utah Cedar City 7.52240
## 834 United States Pennsylvania Kutztown 0.74333
## 837 United States Alabama Scottsboro 0.64281
## 856 United States Pennsylvania Emsworth 0.79265
## 857 United States Kentucky Dayton 1.43697
## 860 United States Kentucky Dayton 1.52592
## 861 United States Pennsylvania Pittsburgh 1.87265
## 862 United States Kentucky Ludlow 1.31411
## 863 United States Pennsylvania Homestead 2.19916
## 865 United States West Virginia Chapmanville 13.52866
## 866 United States Kentucky Richmond 9.87331
## 867 United States Tennessee Jacksboro 13.15700
## 869 United States Ohio Cheviot 4.21790
## 870 United States Kentucky Loyall 10.22349
## 871 United States Kansas Roeland Park 2.32126
## 874 United States New York Boonville 9.95180
## 880 United States Kentucky Dayton 2.40444
## 881 United States West Virginia Fayetteville 8.06254
## 882 United States Kentucky Bellevue 1.30932
## 883 United States Ohio Youngstown 2.51579
## 886 United States Minnesota Arden Hills 0.13052
## 891 United States Colorado Laporte 15.65712
## 892 United States Colorado Leadville North 13.02782
## 893 United States Colorado Cascade-Chipita Park 5.78163
## 894 United States Wyoming Cody 72.64680
## 895 United States Arkansas Jasper 5.06464
## 896 United States California Yucaipa 12.93443
## 899 United States Arizona Phoenix 3.36522
## 901 United States Utah Saratoga Springs 2.02291
## 902 United States Utah Fairview 21.80213
## 903 United States Utah Fairview 22.92807
## 904 United States Utah Fairview 23.82853
## 905 United States Utah Mount Pleasant 24.64059
## 908 United States Tennessee East Ridge 1.24635
## 909 United States Colorado Laporte 18.34452
## 910 United States Colorado Estes Park 37.11379
## 914 United States New Hampshire Woodstock 14.34429
## 915 United States Pennsylvania West Mifflin 0.14473
## 916 United States Pennsylvania Brackenridge 2.08818
## 917 United States Pennsylvania Pittsburgh 3.07837
## 918 United States North Carolina Lake Lure 4.23278
## 922 United States Idaho McCall 41.54001
## 924 United States Pennsylvania Pittsburgh 1.33115
## 930 United States Kentucky Mount Vernon 1.23577
## 931 United States Kentucky Lexington 2.41140
## 932 United States North Carolina Mars Hill 0.04550
## 933 United States North Carolina Maggie Valley 5.63904
## 934 United States Tennessee Knoxville 5.53703
## 935 United States North Carolina Cherokee 13.86023
## 936 United States New Jersey Monmouth Beach 0.09035
## 937 United States North Carolina Woodfin 4.29814
## 938 United States Tennessee Jellico 13.77073
## 939 United States North Carolina Robbinsville 20.45203
## 940 United States Pennsylvania Pittsburgh 2.64611
## 941 United States North Carolina Maggie Valley 1.07913
## 943 United States Kentucky Hindman 1.63625
## 944 United States Arizona LeChee 31.61210
## 945 United States Pennsylvania West Easton 1.78114
## 946 United States Kentucky Nicholasville 11.48269
## 948 United States Utah Herriman 9.55190
## 949 United States Pennsylvania Murrysville 4.82123
## 950 United States Kentucky Pikeville 3.38725
## 951 United States Iowa Iowa City 1.40658
## 952 United States Kentucky Loyall 1.40599
## 953 United States Kentucky Harlan 0.94084
## 954 United States Illinois Granville 2.12940
## 955 United States Illinois East Peoria 2.39991
## 957 United States North Carolina Marshall 6.68251
## 959 United States Ohio Glouster 2.06907
## 960 United States North Carolina Cove Creek 2.06558
## 961 United States Florida Clermont 0.39179
## 962 United States North Carolina Black Mountain 0.17766
## 963 United States North Carolina Lenoir 12.88531
## 964 United States North Carolina Canton 4.10329
## 965 United States North Carolina Fruitland 5.76576
## 966 United States Kentucky Ludlow 4.02153
## 967 United States Kentucky Pineville 12.36833
## 968 United States North Carolina Canton 4.10329
## 969 United States North Carolina Lake Lure 0.23032
## 970 United States North Carolina Bryson City 6.61994
## 972 United States Tennessee Jellico 15.98301
## 973 United States North Carolina Black Mountain 7.32191
## 974 United States Georgia Dawsonville 12.44051
## 975 United States South Carolina Tigerville 7.92482
## 976 United States Minnesota West Saint Paul 1.89742
## 978 United States Missouri Hannibal 1.97078
## 982 United States Illinois Quincy 2.38934
## 983 United States New York Camillus 2.54860
## 985 United States South Dakota Lead 1.39751
## 986 United States New York Camillus 2.54860
## 987 United States Connecticut Old Mystic 0.78631
## 988 United States Pennsylvania Philadelphia 1.27824
## 989 United States Kentucky Loyall 2.36880
## 991 United States New York Middleburgh 1.41843
## 992 United States New York Camillus 2.54860
## 993 United States Vermont Williamstown 8.90467
## 994 United States Iowa Waukon 23.47684
## 995 United States New York Frankfort 17.52573
## 996 United States Wisconsin Boscobel 2.89624
## 997 United States Wisconsin Prairie du Chien 12.86889
## 998 United States Minnesota Caledonia 24.86266
## 999 United States New York Camillus 2.54860
## 1000 United States Wisconsin Seymour 2.68314
## 1001 United States Pennsylvania Pottsville 0.10261
## 1002 United States New York Binghamton 2.11425
## 1003 United States Colorado Laporte 25.57232
## 1004 United States Pennsylvania Duquesne 0.89493
## 1005 United States Colorado Manitou Springs 0.40970
## 1006 United States Kentucky Dayton 1.11204
## 1007 United States North Carolina Hazelwood 11.16865
## 1008 United States North Carolina Sylva 4.59472
## 1009 United States Pennsylvania Carnot-Moon 1.51482
## 1010 United States Virginia Cave Spring 5.42545
## 1011 United States North Carolina Asheville 2.03173
## 1012 United States Wyoming Cody 1.13439
## 1013 United States North Carolina Woodfin 5.02716
## 1014 United States North Carolina Asheville 4.34897
## 1015 United States North Carolina Woodfin 5.14161
## 1016 United States North Carolina Asheville 1.27543
## 1017 United States North Carolina Woodfin 4.03738
## 1018 United States North Carolina Blowing Rock 11.48809
## 1019 United States North Carolina Brevard 18.50736
## 1020 United States Utah Granite 9.12556
## 1021 United States Utah Granite 10.78115
## 1022 United States Utah Cedar Hills 2.64441
## 1023 United States Utah Highland 5.32884
## 1024 United States Utah Cedar Hills 7.08894
## 1025 United States New York Ilion 0.85072
## 1026 United States Kentucky Jackson 7.39282
## 1027 United States North Carolina Blowing Rock 1.05589
## 1028 United States New Mexico Questa 21.76837
## 1029 United States New York Morrisville 5.55677
## 1030 United States Kentucky Jackson 7.44703
## 1032 United States Colorado Colorado City 13.17259
## 1033 United States Colorado Manitou Springs 2.43897
## 1034 United States Colorado Manitou Springs 0.40970
## 1035 United States West Virginia Logan 7.51462
## 1036 United States Colorado Laporte 14.72352
## 1037 United States Colorado Laporte 20.26585
## 1038 United States Nevada Summerlin South 30.37462
## 1039 United States Colorado Laporte 4.00974
## 1040 United States West Virginia Charleston 5.79774
## 1041 United States North Carolina Gamewell 9.34488
## 1042 United States North Carolina Newland 1.41898
## 1043 United States Colorado Mountain Village 10.80667
## 1044 United States Colorado Mountain Village 15.04331
## 1045 United States Utah Alpine 1.82493
## 1046 United States Utah Lehi 1.75260
## 1047 United States Utah Highland 5.27973
## 1048 United States Utah Ferron 21.43097
## 1049 United States Utah Highland 3.86093
## 1050 United States Colorado Snowmass Village 27.54476
## 1051 United States Montana West Yellowstone 51.55941
## 1052 United States Arizona Page 28.51122
## 1053 United States Colorado Estes Park 13.74294
## 1055 United States Colorado Palisade 0.73594
## 1056 United States Colorado Minturn 3.19723
## 1057 United States Colorado Snowmass Village 27.05169
## 1058 United States Colorado Carbondale 24.70278
## 1059 United States Arizona Eagar 39.22402
## 1060 United States New Mexico Questa 4.75219
## 1061 United States California Idyllwild 7.79933
## 1062 United States Pennsylvania Monroeville 1.19691
## 1063 United States Pennsylvania Monroeville 1.67287
## 1064 United States Pennsylvania White Oak 1.50672
## 1065 United States Pennsylvania White Oak 1.80010
## 1066 United States Ohio Powhatan Point 21.79988
## 1067 United States West Virginia Logan 5.91065
## 1068 United States Ohio Powhatan Point 7.63247
## 1069 United States West Virginia Chesapeake 7.84336
## 1070 United States Colorado Laporte 13.16549
## 1072 United States North Carolina Hickory 0.97570
## 1073 United States North Carolina Millers Creek 17.74135
## 1074 United States Colorado Laporte 19.55437
## 1075 United States Colorado Laporte 12.14412
## 1076 United States Colorado Paonia 2.33014
## 1077 United States Georgia Jasper 5.05140
## 1078 United States Georgia Jasper 4.33442
## 1079 United States Alabama Fairhope 0.73828
## 1081 United States Utah Mount Pleasant 26.06760
## 1082 United States Utah Mount Pleasant 25.75090
## 1083 United States Colorado Manitou Springs 1.60621
## 1084 United States Kentucky Coal Run Village 10.79203
## 1085 United States West Virginia New Martinsville 24.21776
## 1086 United States Alabama Andalusia 1.69766
## 1087 United States Nevada Summerlin South 23.60286
## 1088 United States Nevada Pahrump 31.00660
## 1089 United States Utah Alpine 1.96154
## 1090 United States Pennsylvania Bear Rocks 3.06650
## 1091 United States Idaho Pocatello 0.57038
## 1092 United States Utah Huntington 22.93764
## 1093 United States Tennessee Soddy-Daisy 5.71688
## 1094 United States California Morongo Valley 1.82682
## 1099 United States Colorado Telluride 9.89859
## 1101 United States Idaho Salmon 26.56626
## 1102 United States California Banning 9.26566
## 1103 United States Nevada Pahrump 18.54588
## 1104 United States Utah Mapleton 33.45684
## 1105 United States Utah Mapleton 34.35735
## 1106 United States Utah Mapleton 34.82356
## 1107 United States Utah Huntington 13.94274
## 1108 United States Utah Manti 1.65946
## 1109 United States Idaho Hailey 2.19542
## 1110 United States Idaho Idaho City 38.48521
## 1111 United States California Julian 10.67044
## 1113 United States Utah Cedar Hills 2.37130
## 1114 United States Utah Highland 5.49158
## 1115 United States Utah Highland 3.06220
## 1116 United States Utah Provo 2.97871
## 1117 United States Idaho Preston 19.50083
## 1119 United States Arizona Flagstaff 7.39122
## 1120 United States Utah Mount Pleasant 24.76989
## 1121 United States Utah Cottonwood Heights 5.23498
## 1122 United States Utah Orangeville 12.95090
## 1123 United States Colorado Boulder 15.39663
## 1124 United States Utah Duchesne 7.44914
## 1125 United States Colorado Fort Carson 5.13887
## 1126 United States Idaho Mountain Home 22.84271
## 1127 United States Wyoming Marbleton 30.39279
## 1128 United States Wyoming Marbleton 41.69882
## 1129 United States Colorado Boulder 2.37394
## 1130 United States Colorado Coal Creek 3.76200
## 1131 United States Colorado Coal Creek 6.81843
## 1132 United States Idaho Mountain Home 28.84649
## 1133 United States Idaho Mountain Home 27.81611
## 1134 United States Idaho Mountain Home 30.71907
## 1135 United States Idaho Mountain Home 31.78115
## 1136 United States Idaho Mountain Home 27.87603
## 1137 United States Idaho Mountain Home 32.71570
## 1138 United States Colorado Boulder 9.54612
## 1139 United States Idaho Idaho City 13.92607
## 1140 United States Idaho Idaho City 13.92607
## 1141 United States Idaho Mountain Home 39.14705
## 1142 United States Idaho Mountain Home 40.70609
## 1143 United States Idaho Mountain Home 32.66456
## 1144 United States Utah Herriman 10.80925
## 1145 United States New Mexico Albuquerque 2.54139
## 1146 United States Idaho Eagle 8.21552
## 1150 United States Colorado Estes Park 9.31567
## 1160 United States Utah Herriman 9.55190
## 1161 United States Colorado Durango 7.53236
## 1162 United States Colorado Durango 5.78799
## 1163 United States Colorado Durango 8.65408
## 1164 United States Idaho Idaho City 39.35619
## 1165 United States Idaho Idaho City 44.26251
## 1167 United States Colorado Buena Vista 16.21071
## 1168 United States Massachusetts Southbridge 2.82925
## 1170 United States Minnesota Winona 4.83306
## 1171 United States Wisconsin Trempealeau 5.10967
## 1172 United States Wyoming Jackson 70.82902
## 1176 United States West Virginia Montgomery 13.31637
## 1177 United States New Jersey Hoboken 0.90146
## 1178 United States West Virginia Logan 8.76650
## 1179 United States West Virginia Alum Creek 2.09924
## 1180 United States West Virginia Logan 8.76650
## 1181 United States West Virginia Gilbert Creek 14.11991
## 1182 United States West Virginia Logan 9.11798
## 1184 United States Utah Hildale 19.18959
## 1186 United States California Ramona 3.30093
## 1187 United States Pennsylvania Cheswick 1.60422
## 1188 United States Pennsylvania Lower Burrell 3.06925
## 1189 United States Kentucky Hindman 9.94567
## 1195 United States West Virginia Oceana 22.89616
## 1197 United States New Hampshire Gorham 17.23167
## 1198 United States West Virginia Welch 12.79020
## 1199 United States Ohio Newcomerstown 7.31418
## 1200 United States North Carolina Bryson City 13.70206
## 1202 United States Pennsylvania Pittsburgh 1.31322
## 1203 United States Pennsylvania Brentwood 1.87113
## 1204 United States Kentucky Morehead 10.34977
## 1205 United States Kentucky Prestonsburg 13.34216
## 1206 United States Oregon Joseph 22.16606
## 1209 United States Kentucky Ludlow 1.22118
## 1210 United States Kentucky Prestonsburg 11.74439
## 1211 United States Kentucky Newport 1.39322
## 1212 United States Utah South Weber 0.87758
## 1213 United States Kentucky Pikeville 7.48881
## 1214 United States Kentucky Booneville 22.52336
## 1215 United States Pennsylvania Aspinwall 1.01041
## 1216 United States Kentucky Park Hills 1.35697
## 1217 United States Ohio Saint Bernard 3.98882
## 1218 United States Pennsylvania Manor 1.72576
## 1219 United States Pennsylvania Mount Oliver 3.52327
## 1223 United States Pennsylvania Pittsburgh 1.91563
## 1224 United States Connecticut Stratford 0.76857
## 1225 United States Kentucky Fort Thomas 0.84033
## 1226 United States New York Nedrow 7.01558
## 1227 United States Kentucky Carrollton 5.24704
## 1228 United States Kentucky Carrollton 5.11169
## 1229 United States Alabama Vestavia Hills 0.90573
## 1230 United States Pennsylvania Pittsburgh 1.55600
## 1231 United States Ohio The Village of Indian Hill 2.22788
## 1232 United States New York Warrensburg 2.17558
## 1233 United States West Virginia Wayne 8.50992
## 1234 United States New York Sea Cliff 0.69230
## 1235 United States Maryland Baltimore 5.94285
## 1236 United States Kentucky Prestonsburg 13.32465
## 1237 United States Maryland Charlestown 4.24402
## 1238 United States New Jersey Alpine 1.62138
## 1239 United States Pennsylvania Pittsburgh 1.27111
## 1240 United States New York Shokan 26.62969
## 1241 United States Virginia Lexington 20.62473
## 1242 United States Colorado Cedaredge 16.89741
## 1243 United States Colorado Keystone 8.62122
## 1245 United States Minnesota Mendota Heights 1.73479
## 1246 United States Minnesota Eden Prairie 0.15271
## 1247 United States Georgia Canton 9.42335
## 1248 United States Minnesota Mendota Heights 1.93378
## 1249 United States Maine Wiscasset 9.00019
## 1250 United States Minnesota North Mankato 5.90746
## 1251 United States Minnesota Mankato 1.73178
## 1252 United States Minnesota Le Sueur 6.99107
## 1253 United States Minnesota Belle Plaine 3.37657
## 1254 United States Minnesota Minneapolis 0.25471
## 1255 United States Minnesota Saint Paul 2.31638
## 1256 United States Minnesota Minneapolis 2.50336
## 1257 United States Minnesota Le Sueur 7.07406
## 1258 United States Minnesota Saint Paul 2.99793
## 1259 United States Minnesota Belle Plaine 7.97257
## 1260 United States Minnesota Belle Plaine 7.02197
## 1275 United States Pennsylvania Boalsburg 2.14720
## 1276 United States Minnesota Preston 14.33305
## 1277 United States Iowa Cedar Rapids 4.98458
## 1280 United States Arizona Sedona 5.43356
## 1281 United States Colorado Colorado Springs 3.60998
## 1282 United States Wyoming Cody 66.07162
## 1283 United States Colorado Salida 7.69870
## 1284 United States Colorado Cascade-Chipita Park 1.37598
## 1285 United States California Borrego Springs 20.08692
## 1286 United States Utah Nephi 5.80331
## 1287 United States California Cherry Valley 8.96214
## 1291 United States Iowa Woodbine 5.71009
## 1292 United States Wyoming Jackson 1.70313
## 1293 United States Tennessee Lookout Mountain 0.58260
## 1295 United States Colorado Granby 5.53226
## 1296 United States Pennsylvania Versailles 1.57546
## 1297 United States Utah North Salt Lake 2.55023
## 1300 United States Maryland Fort Washington 2.15609
## 1303 United States Utah Logan 1.79637
## 1306 United States Utah Washington 1.34549
## 1307 United States California Valle Vista 7.42146
## 1309 United States Pennsylvania Wilmerding 0.35963
## 1311 United States Massachusetts Valley Falls 3.45417
## 1312 United States Georgia Columbus 6.88634
## 1313 United States Idaho Idaho City 26.67215
## 1314 United States Wyoming Cody 59.36537
## 1315 United States Ohio Huntington 3.37218
## 1316 United States Alabama Hoover 3.51822
## 1317 United States California San Jacinto 4.90583
## 1318 United States Illinois East Peoria 2.36449
## 1319 United States Illinois East Peoria 2.33139
## 1322 United States California Escondido 5.53682
## 1323 United States California San Jacinto 5.62939
## 1324 United States California Crest 2.75389
## 1325 United States California Yucaipa 13.02571
## 1326 United States Colorado Salida 14.50415
## 1327 United States Massachusetts Topsfield 1.82352
## 1328 United States New Mexico Corrales 0.35759
## 1329 United States Colorado Salida 3.89595
## 1330 United States Colorado Salida 7.04118
## 1331 United States Colorado San Luis 25.29753
## 1334 United States Ohio Huntington 7.32387
## 1336 United States Idaho Idaho City 9.77449
## 1337 United States Nevada Boulder City 2.66000
## 1338 United States Wyoming Hoback 17.26708
## 1339 United States Colorado Telluride 0.63448
## 1340 United States Kentucky Hindman 1.90244
## 1341 United States New York Canajoharie 10.30458
## 1343 United States Kentucky Coal Run Village 10.17779
## 1345 United States Pennsylvania Waynesburg 2.22576
## 1346 United States Maryland Camp Springs 1.87540
## 1350 United States Colorado Minturn 4.47152
## 1351 United States Idaho Challis 0.36084
## 1355 United States Illinois Highwood 2.92584
## 1403 United States Idaho Joseph 44.08725
## 1405 United States California Alpine 1.38372
## 1407 United States Pennsylvania Beaver Falls 7.52989
## 1408 United States Virginia Clifton Forge 2.30910
## 1409 United States Kentucky Prestonsburg 5.08152
## 1410 United States Kentucky Stearns 6.35327
## 1411 United States Kentucky Coal Run Village 16.40897
## 1412 United States Kentucky Morehead 1.53883
## 1413 United States West Virginia Gilbert Creek 5.06344
## 1414 United States West Virginia Gilbert Creek 9.35294
## 1415 United States West Virginia Sissonville 8.93549
## 1416 United States West Virginia Inez 12.32235
## 1417 United States West Virginia Williamson 16.94705
## 1418 United States Kentucky Harlan 12.77232
## 1419 United States West Virginia Rand 5.77112
## 1420 United States West Virginia Charleston 6.40459
## 1421 United States West Virginia Montgomery 3.66745
## 1422 United States West Virginia Logan 2.59792
## 1423 United States West Virginia Welch 18.30387
## 1426 United States Kentucky Cumberland 7.52192
## 1427 United States West Virginia Williamson 9.26151
## 1428 United States West Virginia Gilbert Creek 7.28713
## 1429 United States Kentucky Whitesburg 1.49011
## 1430 United States Kentucky Hazard 11.13295
## 1431 United States West Virginia Sophia 2.71773
## 1432 United States West Virginia Moundsville 16.23811
## 1433 United States Virginia Wise 2.94501
## 1434 United States Kentucky West Liberty 5.64478
## 1435 United States Kentucky Hindman 9.63545
## 1436 United States Virginia Big Stone Gap 4.51597
## 1437 United States Virginia Grundy 17.52647
## 1438 United States West Virginia Fairlea 2.82396
## 1439 United States Kentucky Hartford 3.14055
## 1440 United States New York Yonkers 1.05895
## 1441 United States Ohio Bellevue 1.19499
## 1442 United States Georgia Chattanooga Valley 3.71673
## 1443 United States West Virginia Charleston 3.35071
## 1444 United States West Virginia Williamson 0.84799
## 1445 United States West Virginia Williamson 0.51702
## 1446 United States Ohio Youngstown 1.20691
## 1447 United States Pennsylvania Aspinwall 0.87791
## 1448 United States Kentucky Pikeville 0.29989
## 1449 United States Kentucky Fort Thomas 0.78550
## 1450 United States Ohio Wintersville 7.93943
## 1455 United States Kentucky Inez 7.14177
## 1458 United States Arkansas Harrison 10.15474
## 1459 United States Ohio Day Heights 2.40349
## 1460 United States Colorado Stratmoor 6.75748
## 1462 United States Maryland Saint James 4.05258
## 1463 United States Oklahoma Longtown 19.40495
## 1464 United States Pennsylvania Blawnox 2.15077
## 1465 United States Oklahoma Davis 7.00621
## 1466 United States Wyoming Cody 74.46097
## 1467 United States Arkansas Ozark 25.20737
## 1468 United States Pennsylvania Johnstown 0.59899
## 1469 United States Pennsylvania Milford 6.74021
## 1470 United States Alabama Northport 7.27361
## 1472 United States Pennsylvania Oakland 2.35897
## 1473 United States Arizona Page 3.58700
## 1474 United States Colorado Steamboat Springs 0.83297
## 1476 United States New Mexico Cimarron 10.23698
## 1477 United States Pennsylvania West Conshohocken 0.98504
## 1478 United States New Jersey Paterson 0.67691
## 1479 United States Utah Provo 2.90388
## 1480 United States Pennsylvania New Brighton 1.00035
## 1481 United States Oklahoma Muskogee 12.21464
## 1482 United States Wyoming Thermopolis 16.58878
## 1483 United States Kansas Oregon 14.54524
## 1484 United States Oklahoma Talihina 33.62663
## 1485 United States Colorado Golden 2.66154
## 1486 United States Colorado Colorado Springs 2.19300
## 1487 United States Wyoming West Yellowstone 48.56269
## 1488 United States Colorado Lincoln Park 15.35824
## 1489 United States Colorado Penrose 15.46134
## 1490 United States Colorado Penrose 15.49683
## 1491 United States Kentucky Whitesburg 2.84945
## 1494 United States Colorado Air Force Academy 8.38116
## 1495 United States Arkansas Coal Hill 7.09417
## 1496 United States Pennsylvania Millvale 2.96684
## 1497 United States Colorado Buena Vista 15.55972
## 1498 United States Ohio Chagrin Falls 0.71363
## 1499 United States Colorado Silverton 3.25081
## 1500 United States Kentucky Rising Sun 1.04697
## 1501 United States Colorado Loma 7.43165
## 1502 United States West Virginia Burlington 2.92655
## 1503 United States Kentucky Hazard 2.49307
## 1504 United States Kentucky Whitesburg 0.05520
## 1505 United States New York Delmar 2.22929
## 1506 United States Kentucky Prestonsburg 11.00729
## 1507 United States Mississippi D'Iberville 0.98037
## 1508 United States Pennsylvania West Newton 6.55886
## 1509 United States Maryland Keyser 3.89837
## 1510 United States West Virginia South Charleston 3.94457
## 1511 United States Pennsylvania Cheswick 0.91573
## 1513 United States Colorado Telluride 9.99621
## 1514 United States Kentucky Pikeville 8.67856
## 1515 United States Kentucky Prestonsburg 9.99553
## 1516 United States Kentucky Richmond 11.13705
## 1517 United States Kentucky Williamsburg 9.77108
## 1518 United States Kentucky Frenchburg 14.80972
## 1519 United States Kentucky Prestonsburg 12.65382
## 1520 United States Kentucky Hazard 4.39348
## 1521 United States West Virginia Saint Marys 7.15698
## 1522 United States Ohio Glendale 3.55282
## 1523 United States West Virginia Brilliant 4.71099
## 1524 United States West Virginia Teays Valley 3.37673
## 1525 United States Pennsylvania Oakmont 1.28701
## 1526 United States New Mexico Questa 14.70736
## 1527 United States Indiana Rockport 8.43158
## 1530 United States Kentucky Pikeville 6.27087
## 1531 United States West Virginia Lesage 0.02568
## 1532 United States Kentucky Prestonsburg 3.12273
## 1533 United States Ohio Peninsula 4.27554
## 1534 United States West Virginia Sutton 18.39748
## 1535 United States West Virginia Bethany 1.55911
## 1536 United States Ohio Oak Hill 10.37446
## 1537 United States Tennessee Erwin 7.88881
## 1538 United States West Virginia Clendenin 0.17162
## 1539 United States West Virginia Webster Springs 9.96486
## 1540 United States West Virginia Webster Springs 0.16161
## 1541 United States Missouri Hannibal 2.42844
## 1542 United States Kentucky Pikeville 10.52676
## 1543 United States California La Mesa 4.97056
## 1544 United States California Ramona 4.85697
## 1545 United States California Julian 4.69959
## 1546 United States California San Diego Country Estates 7.62002
## 1547 United States California Ramona 3.13754
## 1548 United States California Niland 53.76298
## 1549 United States Ohio Dayton 1.56996
## 1550 United States Missouri Fulton 16.39489
## 1551 United States California Yucaipa 10.37615
## 1552 United States West Virginia Montgomery 1.33142
## 1553 United States Massachusetts Hatfield 3.49144
## 1554 United States Massachusetts Chesterfield 6.53153
## 1555 United States Utah Woodland Hills 0.75074
## 1556 United States Colorado Colorado Springs 3.81487
## 1558 United States North Carolina Black Mountain 7.96582
## 1562 United States California Moreno Valley 5.33395
## 1563 United States Arizona LeChee 43.57781
## 1564 United States Pennsylvania Homestead 3.74490
## 1567 United States Utah Mapleton 21.52246
## 1675 United States Virginia Springville 8.58443
## 1676 United States Pennsylvania Crafton 1.45894
## 1677 United States Colorado Glenwood Springs 13.85194
## 1678 United States Virginia Pembroke 3.21144
## 1679 United States West Virginia Charleston 6.43349
## 1681 United States North Carolina Blowing Rock 4.20387
## 1682 United States Ohio New Haven 6.83465
## 1683 United States Idaho Cascade 22.78728
## 1684 United States Idaho Idaho City 24.16064
## 1685 United States Colorado Durango 22.57467
## 1686 United States Tennessee Jacksboro 8.43321
## 1687 United States West Virginia Bluewell 5.07093
## 1688 United States North Carolina Tryon 7.69666
## 1689 United States North Carolina Tryon 7.80866
## 1690 United States West Virginia Charleston 6.84721
## 1691 United States West Virginia Welch 14.19735
## 1692 United States West Virginia Athens 12.00678
## 1693 United States Vermont Windsor 1.78429
ggplot(data= USA, aes(x=State, y=Distance)) + geom_bar(stat="identity", color="black", fill="blue", size=0.5)
## Warning: Removed 1 rows containing missing values (position_stack).
En las zonas donde se han registrado los deslizamientos, el valor promedio de la población es 2509 habitantes. Mientras que los deslizamientos de tierra tienen una longitud de 8,46 kilometros promedio.