Modelo EFECTOS FIJOS

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.5
df=Datos_Tarea_Abril_24 <- read_excel("D:/Users/Usuario/Desktop/Trabajos Diseno/Datos Tarea Abril 24.xlsx");df
## # A tibble: 600 x 4
##    AMBIENTE GENOTIPO REPETICIONES RENDIMIENTO
##    <chr>    <chr>    <chr>              <dbl>
##  1 A-1      G-1      R-I                 382.
##  2 A-1      G-1      R-II                239.
##  3 A-1      G-2      R-I                 334.
##  4 A-1      G-2      R-II                376.
##  5 A-1      G-3      R-I                 227.
##  6 A-1      G-3      R-II                112.
##  7 A-1      G-4      R-I                 284.
##  8 A-1      G-4      R-II                330.
##  9 A-1      G-5      R-I                 335.
## 10 A-1      G-5      R-II                251.
## # ... with 590 more rows
Amb= df$AMBIENTE; as.factor(Amb)
##   [1] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1 
##  [16] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1 
##  [31] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1 
##  [46] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1 
##  [61] A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2 
##  [76] A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2 
##  [91] A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2 
## [106] A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2  A-2 
## [121] A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3 
## [136] A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3 
## [151] A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3 
## [166] A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3 
## [181] A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4 
## [196] A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4 
## [211] A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4 
## [226] A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4 
## [241] A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5 
## [256] A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5 
## [271] A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5 
## [286] A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5  A-5 
## [301] A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6 
## [316] A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6 
## [331] A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6 
## [346] A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6 
## [361] A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7 
## [376] A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7 
## [391] A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7 
## [406] A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7 
## [421] A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8 
## [436] A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8 
## [451] A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8 
## [466] A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8  A-8 
## [481] A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9 
## [496] A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9 
## [511] A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9 
## [526] A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9 
## [541] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## [556] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## [571] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## [586] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## Levels: A-1 A-10 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9
Gen= df$GENOTIPO; as.factor(Gen)
##   [1] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
##  [16] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
##  [31] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
##  [46] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
##  [61] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
##  [76] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
##  [91] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [106] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [121] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [136] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [151] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [166] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [181] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [196] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [211] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [226] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [241] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [256] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [271] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [286] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [301] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [316] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [331] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [346] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [361] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [376] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [391] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [406] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [421] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [436] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [451] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [466] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [481] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [496] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [511] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [526] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## [541] G-1  G-1  G-2  G-2  G-3  G-3  G-4  G-4  G-5  G-5  G-6  G-6  G-7  G-7  G-8 
## [556] G-8  G-9  G-9  G-10 G-10 G-11 G-11 G-12 G-12 G-13 G-13 G-14 G-14 G-15 G-15
## [571] G-16 G-16 G-17 G-17 G-18 G-18 G-19 G-19 G-20 G-20 G-21 G-21 G-22 G-22 G-23
## [586] G-23 G-24 G-24 G-25 G-25 G-26 G-26 G-27 G-27 G-28 G-28 G-29 G-29 G-30 G-30
## 30 Levels: G-1 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19 G-2 ... G-9
Rep=df$REPETICIONES; as.factor(Rep)
##   [1] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [16] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [31] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [46] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [61] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [76] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [91] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [106] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [121] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [136] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [151] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [166] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [181] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [196] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [211] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [226] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [241] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [256] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [271] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [286] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [301] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [316] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [331] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [346] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [361] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [376] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [391] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [406] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [421] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [436] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [451] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [466] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [481] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [496] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [511] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [526] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [541] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [556] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [571] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [586] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## Levels: R-I R-II
Rend= df$RENDIMIENTO
library(collapsibleTree)
collapsibleTreeSummary(df, hierarchy=c ("AMBIENTE", "GENOTIPO", "REPETICIONES", "RENDIMIENTO"))
boxplot( Rend~Gen,las=2, df)

boxplot( Rend~Amb,las=2, df)

medias=tapply(Rend, list(Gen, Amb), mean)
desviacion=tapply(Rend, list(Gen, Amb), sd)
cv=100*desviacion/medias

#Analisis de Varianza

mod_EF=aov(Rend~Gen*Amb,df)
summary(mod_EF)
##              Df  Sum Sq Mean Sq F value Pr(>F)  
## Gen          29  301157   10385   1.479 0.0579 .
## Amb           9  116404   12934   1.842 0.0605 .
## Gen:Amb     261 2064697    7911   1.126 0.1593  
## Residuals   300 2106909    7023                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Revisión de Supuestos

#Comparacion de las medias
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.0.5
HSD_test = with(df, HSD.test (Rend, Gen, DFerror = 300,MSerror = 7023));HSD_test
## $statistics
##   MSerror  Df     Mean       CV      MSD
##      7023 300 255.8198 32.75874 100.3317
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    Gen  30         5.354168  0.05
## 
## $means
##          Rend       std  r      Min      Max      Q25      Q50      Q75
## G-1  252.3530  88.36506 20 109.7232 398.7274 186.2293 241.1374 334.5241
## G-10 230.4625  70.49721 20 115.9032 377.3492 179.7311 224.3873 263.1520
## G-11 243.8173  77.34631 20 129.2062 366.9118 180.3537 248.7594 312.2486
## G-12 247.7825  77.56010 20 123.6854 395.7793 175.6409 241.9431 303.9079
## G-13 258.9541  76.26803 20 109.2837 370.5741 222.7210 278.7118 322.9629
## G-14 258.6905  59.14638 20 119.1900 350.5966 226.4519 267.6428 298.7968
## G-15 262.0002 105.79515 20 104.2024 393.7101 153.6218 280.3827 359.4638
## G-16 263.9343  86.35256 20 100.5310 399.0844 174.4736 284.5164 327.4697
## G-17 264.8086  85.75643 20 105.4750 388.1619 215.3783 271.4789 330.5345
## G-18 236.0538  87.47470 20 117.9998 368.4408 150.5112 235.7219 297.3228
## G-19 238.1230  99.56912 20 106.4547 390.1944 149.3713 231.0251 330.0012
## G-2  249.2863 103.60580 20 110.7028 398.8922 142.6260 266.2465 331.5027
## G-20 267.9293  94.70728 20 104.7426 391.5036 202.0180 295.6496 337.8842
## G-21 248.5919  85.31584 20 102.7192 390.3958 197.9209 238.5418 295.1987
## G-22 260.9130  88.93772 20 103.1953 374.4560 206.0190 258.8260 336.4467
## G-23 276.9201  77.75550 20 111.9480 383.0988 220.2742 292.4680 321.7177
## G-24 238.1463 103.96577 20 108.4323 383.5383 122.4631 245.6145 328.0831
## G-25 262.7670  87.09145 20 101.2543 396.2828 198.0743 264.4887 334.9818
## G-26 283.7204  81.14577 20 132.4747 396.3836 231.3066 313.0360 346.6872
## G-27 217.0423  91.08048 20 104.7609 383.2728 154.8853 178.8385 296.9703
## G-28 233.2366  73.88042 20 128.8491 375.9392 170.8686 239.9838 278.4074
## G-29 242.1940  95.61551 20 122.0923 386.0836 160.9325 203.4669 340.3493
## G-3  243.9679  98.50812 20 110.2084 390.7987 181.6652 232.0231 342.3452
## G-30 276.4925  92.72791 20 109.2929 398.6084 202.8352 305.3133 334.5676
## G-4  295.0925  79.50112 20 135.8074 397.2167 237.7453 299.3301 363.4602
## G-5  207.6771  73.00571 20 116.0497 368.4774 153.7751 191.5143 252.4079
## G-6  298.1664 104.47512 20 101.2818 399.2676 193.4118 355.6139 373.6938
## G-7  305.1856  70.94373 20 140.8887 396.7681 272.2091 310.5365 366.6349
## G-8  238.1532  79.46704 20 103.0213 345.2681 161.5871 249.0387 311.5825
## G-9  272.1308  83.63831 20 121.9001 393.6552 202.6406 290.1105 330.1866
## 
## $comparison
## NULL
## 
## $groups
##          Rend groups
## G-7  305.1856      a
## G-6  298.1664      a
## G-4  295.0925      a
## G-26 283.7204      a
## G-23 276.9201      a
## G-30 276.4925      a
## G-9  272.1308      a
## G-20 267.9293      a
## G-17 264.8086      a
## G-16 263.9343      a
## G-25 262.7670      a
## G-15 262.0002      a
## G-22 260.9130      a
## G-13 258.9541      a
## G-14 258.6905      a
## G-1  252.3530      a
## G-2  249.2863      a
## G-21 248.5919      a
## G-12 247.7825      a
## G-3  243.9679      a
## G-11 243.8173      a
## G-29 242.1940      a
## G-8  238.1532      a
## G-24 238.1463      a
## G-19 238.1230      a
## G-18 236.0538      a
## G-28 233.2366      a
## G-10 230.4625      a
## G-27 217.0423      a
## G-5  207.6771      a
## 
## attr(,"class")
## [1] "group"
#Normalidad de los Resultados
res=mod_EF$residuals
shapiro.test(res)
## 
##  Shapiro-Wilk normality test
## 
## data:  res
## W = 0.99429, p-value = 0.02373
plot(mod_EF,1)

plot(mod_EF,2)

Modelo EFECTOS ALEATORIOS

library(readxl)
df_2 = Datos_Tarea_Abril_24 <- read_excel("D:/Users/Usuario/Desktop/Trabajos Diseno/Datos Tarea Abril 24.xlsx", 
    sheet = "M. Efectos Aleatorios");df_2
## # A tibble: 40 x 4
##    AMBIENTE GENOTIPO REPETICIONES RENDIMIENTO
##    <chr>    <chr>    <chr>              <dbl>
##  1 A-1      G-1      R-I                 382.
##  2 A-1      G-1      R-II                239.
##  3 A-1      G-8      R-I                 327.
##  4 A-1      G-8      R-II                309.
##  5 A-1      G-15     R-I                 377.
##  6 A-1      G-15     R-II                371.
##  7 A-1      G-22     R-I                 231.
##  8 A-1      G-22     R-II                217.
##  9 A-1      G-29     R-I                 182.
## 10 A-1      G-29     R-II                243.
## # ... with 30 more rows
Amb_2= df_2$AMBIENTE; as.factor(Amb_2)
##  [1] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-4  A-4  A-4  A-4  A-4 
## [16] A-4  A-4  A-4  A-4  A-4  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7 
## [31] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## Levels: A-1 A-10 A-4 A-7
Gen_2= df_2$GENOTIPO; as.factor(Gen_2)
##  [1] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15
## [16] G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
## [31] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
## Levels: G-1 G-15 G-22 G-29 G-8
Rep_2=df_2$REPETICIONES; as.factor(Rep_2)
##  [1] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
## [16] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## [31] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## Levels: R-I R-II
Rend_2= df_2$RENDIMIENTO
library(collapsibleTree)
collapsibleTreeSummary(df_2, hierarchy=c ("AMBIENTE", "GENOTIPO", "REPETICIONES", "RENDIMIENTO"))
library(lattice)
boxplot( Rend_2~Gen_2,las=3, df_2)

boxplot( Rend_2~Amb_2,las=3, df_2)

library(lattice)
bwplot(Rend_2~Gen_2|Amb_2,las=2, df_2)

library(lme4)
## Warning: package 'lme4' was built under R version 4.0.5
## Loading required package: Matrix
mod_2 = lmer(Rend_2 ~ (1 | Gen_2) + (1 | Amb_2) + (1 | Amb_2:Gen_2), data = df_2);mod_2
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: Rend_2 ~ (1 | Gen_2) + (1 | Amb_2) + (1 | Amb_2:Gen_2)
##    Data: df_2
## REML criterion at convergence: 468.4289
## Random effects:
##  Groups      Name        Std.Dev.
##  Amb_2:Gen_2 (Intercept) 41.24144
##  Gen_2       (Intercept)  0.01912
##  Amb_2       (Intercept)  0.00000
##  Residual                85.26540
## Number of obs: 40, groups:  Amb_2:Gen_2, 20; Gen_2, 5; Amb_2, 4
## Fixed Effects:
## (Intercept)  
##       254.1  
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
summary(mod_2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Rend_2 ~ (1 | Gen_2) + (1 | Amb_2) + (1 | Amb_2:Gen_2)
##    Data: df_2
## 
## REML criterion at convergence: 468.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3023 -0.9192 -0.1079  0.8820  1.3677 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev.
##  Amb_2:Gen_2 (Intercept) 1.701e+03 41.24144
##  Gen_2       (Intercept) 3.657e-04  0.01912
##  Amb_2       (Intercept) 0.000e+00  0.00000
##  Residual                7.270e+03 85.26540
## Number of obs: 40, groups:  Amb_2:Gen_2, 20; Gen_2, 5; Amb_2, 4
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   254.07      16.33   15.55
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
var_Amb_Gen_2 = 41.24144**2
var_Amb_2 = 0.01912**2
var_Gen_2 = 0.00**2
var_Res_2 = 85.26540**2

var_tot_2 = var_Amb_Gen_2 + var_Amb_2 + var_Gen_2 + var_Res_2; var_tot_2
## [1] 8971.045
100 * var_Amb_2/var_tot_2
## [1] 4.075048e-06
100 * var_Gen_2/var_tot_2
## [1] 0
mod_EA=aov(Rend_2~Gen_2*Amb_2,df_2)
summary(mod_EA)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Gen_2        4  42027   10507   1.445  0.256
## Amb_2        3  16479    5493   0.756  0.532
## Gen_2:Amb_2 12 144261   12022   1.654  0.155
## Residuals   20 145404    7270
library(agricolae)
HSD_test = with(df_2, HSD.test (Rend_2, Gen_2, DFerror = 20,MSerror = 7270))
HSD_test
## $statistics
##   MSerror Df     Mean       CV      MSD
##      7270 20 254.0749 33.55872 127.5714
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey  Gen_2   5         4.231857  0.05
## 
## $means
##        Rend_2       std r      Min      Max      Q25      Q50      Q75
## G-1  294.5498  85.60984 8 181.1548 381.5332 228.2853 303.0015 375.3739
## G-15 207.7013 114.82511 8 104.2024 377.2576 123.9189 146.9268 295.6244
## G-22 278.8572  75.56017 8 159.7125 374.4560 227.4430 283.2026 338.3168
## G-29 262.9654  96.09835 8 147.0595 372.5150 174.4369 264.9968 354.4282
## G-8  226.3009  90.97627 8 109.9704 327.3507 133.8183 237.9284 312.4638
## 
## $comparison
## NULL
## 
## $groups
##        Rend_2 groups
## G-1  294.5498      a
## G-22 278.8572      a
## G-29 262.9654      a
## G-8  226.3009      a
## G-15 207.7013      a
## 
## attr(,"class")
## [1] "group"
with(df_2, interaction.plot(x.factor = Gen_2, trace.factor = Amb_2, response = Rend_2))

#Modelo EFECTOS MIXTOS

library(readxl)
df_3 = Datos_Tarea_Abril_24 <- read_excel("D:/Users/Usuario/Desktop/Trabajos Diseno/Datos Tarea Abril 24.xlsx", 
    sheet = "M. Efecto Mixto");df_3
## # A tibble: 100 x 4
##    AMBIENTE GENOTIPO REPETICIONES RENDIMIENTO
##    <chr>    <chr>    <chr>              <dbl>
##  1 A-1      G-1      R-I                 382.
##  2 A-1      G-1      R-II                239.
##  3 A-1      G-8      R-I                 327.
##  4 A-1      G-8      R-II                309.
##  5 A-1      G-15     R-I                 377.
##  6 A-1      G-15     R-II                371.
##  7 A-1      G-22     R-I                 231.
##  8 A-1      G-22     R-II                217.
##  9 A-1      G-29     R-I                 182.
## 10 A-1      G-29     R-II                243.
## # ... with 90 more rows
Amb_3= df_3$AMBIENTE; as.factor(Amb_3)
##   [1] A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-1  A-2  A-2  A-2  A-2  A-2 
##  [16] A-2  A-2  A-2  A-2  A-2  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3  A-3 
##  [31] A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-4  A-5  A-5  A-5  A-5  A-5 
##  [46] A-5  A-5  A-5  A-5  A-5  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6  A-6 
##  [61] A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-7  A-8  A-8  A-8  A-8  A-8 
##  [76] A-8  A-8  A-8  A-8  A-8  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9  A-9 
##  [91] A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10 A-10
## Levels: A-1 A-10 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9
Gen_3= df_3$GENOTIPO; as.factor(Gen_3)
##   [1] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15
##  [16] G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
##  [31] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15
##  [46] G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
##  [61] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15
##  [76] G-15 G-22 G-22 G-29 G-29 G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
##  [91] G-1  G-1  G-8  G-8  G-15 G-15 G-22 G-22 G-29 G-29
## Levels: G-1 G-15 G-22 G-29 G-8
Rep_3=df_3$REPETICIONES; as.factor(Rep_3)
##   [1] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [16] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [31] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [46] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [61] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I 
##  [76] R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
##  [91] R-I  R-II R-I  R-II R-I  R-II R-I  R-II R-I  R-II
## Levels: R-I R-II
Rend_3= df_3$RENDIMIENTO
library(collapsibleTree)
collapsibleTreeSummary(df_3, hierarchy=c ("AMBIENTE", "GENOTIPO", "REPETICIONES", "RENDIMIENTO"))
boxplot( Rend_3~Gen_3,las= 3, df_3)

boxplot( Rend_3~Amb_3,las= 3, df_3)

bwplot(Rend_3~Gen_3|Amb_3,las=3, df_3)

mod_3 = lmer(Rend_3 ~ Amb_3 + (1 | Gen_3) + (1 | Gen_3:Amb_3), data = df_3)
## boundary (singular) fit: see ?isSingular
summary(mod_3)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Rend_3 ~ Amb_3 + (1 | Gen_3) + (1 | Gen_3:Amb_3)
##    Data: df_3
## 
## REML criterion at convergence: 1086.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.74771 -0.81875  0.01101  0.74386  1.79158 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. 
##  Gen_3:Amb_3 (Intercept) 1.535e+03 3.917e+01
##  Gen_3       (Intercept) 1.951e-11 4.417e-06
##  Residual                6.704e+03 8.188e+01
## Number of obs: 100, groups:  Gen_3:Amb_3, 50; Gen_3, 5
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  287.779     31.262   9.205
## Amb_3A-10    -48.361     44.211  -1.094
## Amb_3A-2     -10.112     44.211  -0.229
## Amb_3A-3     -42.076     44.211  -0.952
## Amb_3A-4     -50.834     44.211  -1.150
## Amb_3A-5     -20.280     44.211  -0.459
## Amb_3A-6    -107.719     44.211  -2.436
## Amb_3A-7     -35.620     44.211  -0.806
## Amb_3A-8     -46.317     44.211  -1.048
## Amb_3A-9      -5.241     44.211  -0.119
## 
## Correlation of Fixed Effects:
##           (Intr) A_3A-1 A_3A-2 A_3A-3 A_3A-4 A_3A-5 A_3A-6 A_3A-7 A_3A-8
## Amb_3A-10 -0.707                                                        
## Amb_3A-2  -0.707  0.500                                                 
## Amb_3A-3  -0.707  0.500  0.500                                          
## Amb_3A-4  -0.707  0.500  0.500  0.500                                   
## Amb_3A-5  -0.707  0.500  0.500  0.500  0.500                            
## Amb_3A-6  -0.707  0.500  0.500  0.500  0.500  0.500                     
## Amb_3A-7  -0.707  0.500  0.500  0.500  0.500  0.500  0.500              
## Amb_3A-8  -0.707  0.500  0.500  0.500  0.500  0.500  0.500  0.500       
## Amb_3A-9  -0.707  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
var_Amb_Gen_3 = 3.917e+01**2
var_Amb_3 = 0.000**2
var_Gen_3 = 4.417e-06**2
var_Res_3 = 8.188e+01**2

var_tot_3 = var_Amb_Gen_3 + var_Amb_3 + var_Gen_3 + var_Res_3; var_tot_3
## [1] 8238.623
100 * var_Amb_3/var_tot_3
## [1] 0
100 * var_Gen_3/var_tot_3
## [1] 2.368101e-13