Math

Let \(X\) follow normal distribution \(X \sim Normal(\mu_x, \sigma_x^2)\) with mean \(\mu_x\) and variance \(\sigma_x^2\) and moment generating function \(M_x(t) = exp(\mu_x t + \sigma^2 t^2 / 2)\).

Let \(Y = e^{X}\), then \(Y\) follows lognormal distribution with \(Y \sim Lognormal(\mu_x, \sigma_x^2)\). Then we have:

\[\mu_y = E(Y) = E(e^{X}) = M_x(1) = e^{\mu_x + \sigma_x^2/2}\] \[\sigma_y^2 = E(Y^2) - (E(Y))^2 = E(e^{2X}) - (E(e^{X}))^2 = M_x(2) - M_x(1)^2\] \[=(exp(\sigma_x^2) -1)exp(2\mu_x + \sigma_x^2)\]

In simulation, given that we know our target \(\mu_y\) and \(\sigma_y^2\) from emperical observation, solving for \(\mu_x\) and \(\sigma_x^2\), we have: \[\mu_x = \ln{\frac{\mu_y^2}{\sqrt{\mu_y^2 + \sigma_y^2}}}\] \[\sigma_x^2 = \ln{(1+\frac{\sigma_y^2}{\mu_y^2})}\]

Simulation

Assuming \(0.10\) interest rate, 0.4 annualized volatility and stock price of \(100\) in year one. In five years we have \(\mu_y = 146.41\) and \(vol_y = 0.89\). Therefore, \(\sigma_y = \mu_yvol_y = 130.30\). Therefore, we can easily simulate 10000 data points with \(Lognormal(4.69, 0.58)\).

Hovering over the boxplot, we can get 15% and 75% percentile on Q1 and Q3, respectively. We can also obtain upper fence and min corresponding to the max and min estimates with outliers removed.

Raw data output from simulation

LS0tCnRpdGxlOiAiVG95IGV4YW1wbGUgb2YgbG9nbm9ybWFsIHNpbXVsYXRpb25zIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiMjIE1hdGgKTGV0ICRYJCBmb2xsb3cgbm9ybWFsIGRpc3RyaWJ1dGlvbiAkWCBcc2ltIE5vcm1hbChcbXVfeCwgXHNpZ21hX3heMikkIHdpdGggbWVhbiAkXG11X3gkIGFuZCB2YXJpYW5jZSAkXHNpZ21hX3heMiQgYW5kIG1vbWVudCBnZW5lcmF0aW5nIGZ1bmN0aW9uICRNX3godCkgPSBleHAoXG11X3ggdCArIFxzaWdtYV4yIHReMiAvIDIpJC4KCkxldCAkWSA9IGVee1h9JCwgdGhlbiAkWSQgZm9sbG93cyBsb2dub3JtYWwgZGlzdHJpYnV0aW9uIHdpdGggJFkgXHNpbSBMb2dub3JtYWwoXG11X3gsIFxzaWdtYV94XjIpJC4gVGhlbiB3ZSBoYXZlOgoKJCRcbXVfeSA9IEUoWSkgPSBFKGVee1h9KSA9IE1feCgxKSA9IGVee1xtdV94ICsgXHNpZ21hX3heMi8yfSQkCiQkXHNpZ21hX3leMiA9IEUoWV4yKSAtIChFKFkpKV4yID0gRShlXnsyWH0pIC0gKEUoZV57WH0pKV4yID0gTV94KDIpIC0gTV94KDEpXjIkJAokJD0oZXhwKFxzaWdtYV94XjIpIC0xKWV4cCgyXG11X3ggKyBcc2lnbWFfeF4yKSQkCgoKSW4gc2ltdWxhdGlvbiwgZ2l2ZW4gdGhhdCB3ZSBrbm93IG91ciB0YXJnZXQgJFxtdV95JCBhbmQgJFxzaWdtYV95XjIkIGZyb20gZW1wZXJpY2FsIG9ic2VydmF0aW9uLCBzb2x2aW5nIGZvciAkXG11X3gkIGFuZCAkXHNpZ21hX3heMiQsIHdlIGhhdmU6CiQkXG11X3ggPSBcbG57XGZyYWN7XG11X3leMn17XHNxcnR7XG11X3leMiArIFxzaWdtYV95XjJ9fX0kJAokJFxzaWdtYV94XjIgPSBcbG57KDErXGZyYWN7XHNpZ21hX3leMn17XG11X3leMn0pfSQkCgojIyBTaW11bGF0aW9uCkFzc3VtaW5nICQwLjEwJCBpbnRlcmVzdCByYXRlLCAwLjQgYW5udWFsaXplZCB2b2xhdGlsaXR5IGFuZCBzdG9jayBwcmljZSBvZiAkMTAwJCBpbiB5ZWFyIG9uZS4gSW4gZml2ZSB5ZWFycyB3ZSBoYXZlICRcbXVfeSA9IDE0Ni40MSQgYW5kICR2b2xfeSA9IDAuODkkLiBUaGVyZWZvcmUsICRcc2lnbWFfeSA9IFxtdV95dm9sX3kgPSAxMzAuMzAkLiBUaGVyZWZvcmUsIHdlIGNhbiBlYXNpbHkgc2ltdWxhdGUgMTAwMDAgZGF0YSBwb2ludHMgd2l0aCAkTG9nbm9ybWFsKDQuNjksIDAuNTgpJC4gCmBgYHtyIGluY2x1ZGUgPSBGQUxTRX0KbGlicmFyeShEVCkKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoc2NhbGVzKQpsaWJyYXJ5KHBsb3RseSkKdm9sID0gMC44OQpmaW5hbG11ID0gMTQ2LjQxCmZpbmFsc2lnbWEgPSB2b2wgKiBmaW5hbG11CmNvdW50ID0gMTAwMDAKCmxubXUgPSBsb2coIGZpbmFsbXUgXiAyIC9zcXJ0KGZpbmFsbXUgXiAyICsgZmluYWxzaWdtYSBeIDIpKQpsbnNpZ21hID0gc3FydCggbG9nKCBmaW5hbHNpZ21hXjIgLyBmaW5hbG11XjIgKyAxKSApCgoKcmxub3JtKGNvdW50LCBtZWFubG9nID0gbG5tdSwgc2Rsb2cgPSBsbnNpZ21hKSAlPiUKICBhc190aWJibGUoKSAlPiUKICB0cmFuc211dGUoCiAgICBuYW1lID0gIlRveSBTdG9jayIsIAogICAgYFNpbXVsYXRlZCBzdG9jayBwcmljZWAgPSByb3VuZCh2YWx1ZSwgMiksCiAgICBwID0gcm91bmQocGxub3JtKGBTaW11bGF0ZWQgc3RvY2sgcHJpY2VgLCBsbm11LCBsbnNpZ21hKSwgNCkKICApIC0+IHNpbXVsYXRlZF9kYXRhIApgYGAKCkhvdmVyaW5nIG92ZXIgdGhlIGJveHBsb3QsIHdlIGNhbiBnZXQgMTUlIGFuZCA3NSUgcGVyY2VudGlsZSBvbiBRMSBhbmQgUTMsIHJlc3BlY3RpdmVseS4gV2UgY2FuIGFsc28gb2J0YWluIHVwcGVyIGZlbmNlIGFuZCBtaW4gY29ycmVzcG9uZGluZyB0byB0aGUgbWF4IGFuZCBtaW4gZXN0aW1hdGVzIHdpdGggb3V0bGllcnMgcmVtb3ZlZC4gCmBgYHtyIGVjaG8gPSBGQUxTRSwgd2FybmluZyA9IEZBTFNFfQpzaW11bGF0ZWRfZGF0YSAlPiUKICBnZ3Bsb3QoYWVzKHggPSBuYW1lLCB5ID0gYFNpbXVsYXRlZCBzdG9jayBwcmljZWAsIGxhYmVsID0gcCkpICsKICBnZW9tX2ppdHRlcihzaXplID0gMC4xLCBhbHBoYSA9IDAuNSkgKwogIGdlb21fYm94cGxvdCgpICsKICBsYWJzKCAKICAgIHRpdGxlID0gcGFzdGUwKGNvdW50LCAiIExvZ25vcm1hbCBkYXRhIHBvaW50cyB3aXRoIHN0b2NrIHByaWNlID0iLCBmaW5hbG11LCAiOyA1IHllYXIgdm9sID0iLCB2b2wpLAogICAgeSA9ICJTaW11bGF0ZWQgc3RvY2sgcHJpY2UiLAogICAgeCA9ICIiCiAgKSAtPiBwCgpwICU+JQogIGdncGxvdGx5KHdpZHRoID0gODAwLCBoZWlnaHQgPSA2MDApCmBgYAoKCgpgYGB7ciBlY2hvID0gRkFTTEV9CnNpbXVsYXRlZF9kYXRhICU+JQogIGdncGxvdChhZXMoeCA9IGBTaW11bGF0ZWQgc3RvY2sgcHJpY2VgKSkgKwogIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMSkgKwogIGxhYnMoCiAgICB0aXRsZSA9IHBhc3RlMChjb3VudCwgIiBMb2dub3JtYWwgZGF0YSBwb2ludHMgd2l0aCBzdG9jayBwcmljZSA9IiwgZmluYWxtdSwgIjsgNSB5ZWFyIHZvbCA9Iiwgdm9sKQogICkgLT4gcDIKCnAyICU+JQogIGdncGxvdGx5KHdpZHRoID0gODAwLCBoZWlnaHQgPSA2MDApCmBgYAojIyMgUmF3IGRhdGEgb3V0cHV0IGZyb20gc2ltdWxhdGlvbgpgYGB7ciBlY2hvID0gRkFMU0V9CnNpbXVsYXRlZF9kYXRhICU+JQogIHNlbGVjdCgtbmFtZSkgJT4lCiAgYXJyYW5nZSgtcCkgJT4lCiAgZGF0YXRhYmxlKCkKYGBgCgo=