Introducción
La realización del siguiente informe tiene como objetivo la aplicación de los conceptos estadísticos tales como tablas de frecuencias simple y agrupada, gráficos de series temporales, diagramas de tallo y hojas, gráfico circular, gráfico de barras clásico, agrupado y apilado, medidas de tendencia central, diagramas de caja y bigote, entre otros; en el software RStudio, utilizando el lenguaje Markdown. Los datos para su elaboración fueron tomados del Catálogo Global de Deslizamiento de Tierra, siendo el área de estudio los países suramericanos.
Datos
library(readr)
library(knitr)
df <- read_csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
## Rows: 1693 Columns: 23
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (16): date, time, continent_code, country_name, country_code, state/prov...
## dbl (7): id, population, distance, latitude, longitude, injuries, fatalities
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Países de Sudamérica
Los países sudamericanos han sido afectados por el desprendimientos de tierra debido a la alta precipitación. Tales países son: Colombia, Perú, Venezuela, Ecuador y Brazil. En el siguiente apartado se presentarán distintas gráficas capaces de ayudar a sintetizar una serie de datos tomados del GLC para una mejor comprensión.
Tabla de Frecuencia Simple (Colombia)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Colombia")
library(questionr)
## Warning: package 'questionr' was built under R version 4.1.1
table <- questionr::freq(pais$state.province, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Antioquia |
19 |
19.8 |
19.8 |
19.8 |
19.8 |
| Santander |
11 |
11.5 |
11.5 |
31.2 |
31.2 |
| Caldas |
10 |
10.4 |
10.4 |
41.7 |
41.7 |
| Cundinamarca |
7 |
7.3 |
7.3 |
49.0 |
49.0 |
| Huila |
6 |
6.2 |
6.2 |
55.2 |
55.2 |
| Cauca |
5 |
5.2 |
5.2 |
60.4 |
60.4 |
| Nariño |
5 |
5.2 |
5.2 |
65.6 |
65.6 |
| Norte de Santander |
5 |
5.2 |
5.2 |
70.8 |
70.8 |
| Risaralda |
4 |
4.2 |
4.2 |
75.0 |
75.0 |
| Tolima |
4 |
4.2 |
4.2 |
79.2 |
79.2 |
| Valle del Cauca |
4 |
4.2 |
4.2 |
83.3 |
83.3 |
| Boyacá |
3 |
3.1 |
3.1 |
86.5 |
86.5 |
| Córdoba |
3 |
3.1 |
3.1 |
89.6 |
89.6 |
| Magdalena |
3 |
3.1 |
3.1 |
92.7 |
92.7 |
| Caquetá |
2 |
2.1 |
2.1 |
94.8 |
94.8 |
| BolÃvar |
1 |
1.0 |
1.0 |
95.8 |
95.8 |
| Meta |
1 |
1.0 |
1.0 |
96.9 |
96.9 |
| Putumayo |
1 |
1.0 |
1.0 |
97.9 |
97.9 |
| QuindÃo |
1 |
1.0 |
1.0 |
99.0 |
99.0 |
| Sucre |
1 |
1.0 |
1.0 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="Orange", fill="Green") +
xlab("Colombia") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Tabla de Frecuencia Simple (Peru)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Peru")
library(questionr)
table <- questionr::freq(pais$state.province, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Ancash |
5 |
35.7 |
35.7 |
35.7 |
35.7 |
| Huanuco |
4 |
28.6 |
28.6 |
64.3 |
64.3 |
| San MartÃn |
3 |
21.4 |
21.4 |
85.7 |
85.7 |
| La Libertad |
2 |
14.3 |
14.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="Orange", fill="Green") +
xlab("Peru") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Tabla de Frecuencia Simple (Venezuela)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Venezuela")
library(questionr)
table <- questionr::freq(pais$state.province, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Distrito Federal |
12 |
60 |
60 |
60 |
60 |
| Miranda |
4 |
20 |
20 |
80 |
80 |
| Vargas |
2 |
10 |
10 |
90 |
90 |
| Aragua |
1 |
5 |
5 |
95 |
95 |
| Falcón |
1 |
5 |
5 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="Orange", fill="Green") +
xlab("Venezuela") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Tabla de Frecuencia Simple (Ecuador)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Ecuador")
library(questionr)
table <- questionr::freq(pais$state.province, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Pichincha |
9 |
30.0 |
30.0 |
30.0 |
30.0 |
| Loja |
4 |
13.3 |
13.3 |
43.3 |
43.3 |
| Azuay |
2 |
6.7 |
6.7 |
50.0 |
50.0 |
| Carchi |
2 |
6.7 |
6.7 |
56.7 |
56.7 |
| Esmeraldas |
2 |
6.7 |
6.7 |
63.3 |
63.3 |
| Manabi |
2 |
6.7 |
6.7 |
70.0 |
70.0 |
| Zamora-Chinchipe |
2 |
6.7 |
6.7 |
76.7 |
76.7 |
| Cotopaxi |
1 |
3.3 |
3.3 |
80.0 |
80.0 |
| Guayas |
1 |
3.3 |
3.3 |
83.3 |
83.3 |
| Morona-Santiago |
1 |
3.3 |
3.3 |
86.7 |
86.7 |
| Napo |
1 |
3.3 |
3.3 |
90.0 |
90.0 |
| Santo Domingo de los Tsáchilas |
1 |
3.3 |
3.3 |
93.3 |
93.3 |
| Sucumbios |
1 |
3.3 |
3.3 |
96.7 |
96.7 |
| Tungurahua |
1 |
3.3 |
3.3 |
100.0 |
100.0 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="Orange", fill="Green") +
xlab("Ecuador") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Tabla de Frecuencia Simple (Brazil)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Brazil")
library(questionr)
table <- questionr::freq(pais$state.province, cum = TRUE, sort = "dec", total = FALSE)
knitr::kable(table)
| Pará |
2 |
50 |
50 |
50 |
50 |
| Amapá |
1 |
25 |
25 |
75 |
75 |
| Maranhão |
1 |
25 |
25 |
100 |
100 |
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df <- data.frame(x = table, y = table$n)
library(ggplot2)
ggplot(data=df, aes(x=x, y=y)) +
geom_bar(stat="identity", color="Orange", fill="Green") +
xlab("Venezuela") +
ylab("Frecuencia") +
theme(axis.text.x = element_text(angle = 90))

Tabla de Frecuencia Agrupada (Todos los paises de Sudamerica)
distance <- c(0.00003, 0.00442, 0.11421, 0.13147, 0.14776, 0.1702, 0.30587, 0.35649, 0.37809, 0.38844, 0.44753, 0.47714, 0.55865, 0.60599, 0.62022, 0.64094, 0.64469, 0.68544, 0.70558, 0.7283, 0.74201, 0.79694, 0.80432, 0.85976, 0.93184, 1.01848, 1.01932, 1.04062, 1.04263, 1.07765, 1.08964, 1.16036, 1.23724, 1.27637, 1.33829, 1.35196, 1.4794, 1.53032, 1.56942, 1.7085, 1.73101, 1.82885, 1.84941, 2.04898, 2.07081, 2.18776, 2.28425, 2.36822, 2.43089, 2.53047, 2.55282, 2.55507, 2.69644, 2.81891, 2.89809, 2.92493, 2.95706, 2.99929, 3.06383, 3.09014, 3.1406, 3.14201, 3.26788, 3.4989, 3.6052, 3.65044, 3.70678, 3.72195, 3.81445, 3.87793, 4.09028, 4.19867, 4.25486, 4.29197, 4.39517, 4.58994, 4.95353, 5.0696, 5.1217, 5.1765, 5.6405, 5.74106, 6.04235, 6.08628, 6.16385, 6.44532, 6.65506, 6.77672, 6.84683, 6.9613, 7.28959, 7.67919, 7.70237, 7.78677, 7.85369, 7.87303, 7.89319, 7.90754, 7.98838, 8.11953, 8.18229, 8.30406, 8.45736, 8.46579, 8.56086, 8.58891, 8.81287, 8.89799, 9.21217, 9.23778, 9.64894, 9.65157, 10.16196, 10.1804, 10.36239, 10.47204, 10.55986, 11.11685, 11.19714, 11.55916, 11.91442, 12.61362, 12.70296, 13.21139, 14.28266, 14.62503, 15.04256, 15.16116, 15.42607, 15.82404, 15.84114, 16.34404, 16.94642, 16.97776, 17.31514, 17.34318, 17.48659, 17.57187, 18.88784, 18.91189, 19.81345, 19.85816, 20.25692, 20.31227, 21.26652, 22.53724, 23.49217, 23.97854, 24.48479, 25.51411, 25.82923, 26.18676, 26.72137, 26.89879, 28.29459, 28.50569, 30.81169, 33.94603, 45.69792, 46.77007, 50.21741, 51.84125, 61.75306)
n_sturges = 1 + log(length(distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)
n_clases = 0
if (n_sturgesc%%2 == 0) {
n_clases = n_sturgesf
} else {
n_clases = n_sturgesc
}
R = max(distance) - min(distance)
w = ceiling(R/n_clases)
bins <- seq(min(distance), max(distance) + w, by = w)
bins
## [1] 0.00003 7.00003 14.00003 21.00003 28.00003 35.00003 42.00003 49.00003
## [9] 56.00003 63.00003
distance <- cut(distance, bins)
Freq_table <- transform(table(distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
| (3e-05,7] |
89 |
0.5493827 |
89 |
| (7,14] |
34 |
0.2098765 |
123 |
| (14,21] |
20 |
0.1234568 |
143 |
| (21,28] |
10 |
0.0617284 |
153 |
| (28,35] |
4 |
0.0246914 |
157 |
| (35,42] |
0 |
0.0000000 |
157 |
| (42,49] |
2 |
0.0123457 |
159 |
| (49,56] |
2 |
0.0123457 |
161 |
| (56,63] |
1 |
0.0061728 |
162 |
df <- data.frame(x = Freq_table$distance, y = Freq_table$Freq)
knitr::kable(df)
| (3e-05,7] |
89 |
| (7,14] |
34 |
| (14,21] |
20 |
| (21,28] |
10 |
| (28,35] |
4 |
| (35,42] |
0 |
| (42,49] |
2 |
| (49,56] |
2 |
| (56,63] |
1 |
Gráfico de Series Temporales (Colombia)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Colombia")
write.csv(x = pais, file = "pais.csv")
data2 <- read.csv("pais.csv")
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
ggplot(data2, aes(x = date, y = distance )) +
geom_line(color="#69b3a2", size = 1)+
geom_point()+
theme(axis.text.x = element_text(angle = 90)) +
xlab("Fecha")

Gráfico de Series Temporales (Ecuador)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Ecuador")
write.csv(x = pais, file = "pais.csv")
data2 <- read.csv("pais.csv")
library(ggplot2)
library(dplyr)
ggplot(data2, aes(x = date, y = distance )) +
geom_line(color="#69b3a2", size = 1)+
geom_point()+
theme(axis.text.x = element_text(angle = 90)) +
xlab("Fecha")

Gráfico de Series Temporales (Peru)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Peru")
write.csv(x = pais, file = "pais.csv")
data2 <- read.csv("pais.csv")
library(ggplot2)
library(dplyr)
ggplot(data2, aes(x = date, y = distance )) +
geom_line(color="#69b3a2", size = 1)+
geom_point()+
theme(axis.text.x = element_text(angle = 90)) +
xlab("Fecha")

Gráfico de Series Temporales (Venezuela)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Venezuela")
write.csv(x = pais, file = "pais.csv")
data2 <- read.csv("pais.csv")
library(ggplot2)
library(dplyr)
ggplot(data2, aes(x = date, y = distance )) +
geom_line(color="#69b3a2", size = 1)+
geom_point()+
theme(axis.text.x = element_text(angle = 90)) +
xlab("Fecha")

Gráfico de Series Temporales (Brazil)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
pais <- subset(df, country_name == "Brazil")
write.csv(x = pais, file = "pais.csv")
data2 <- read.csv("pais.csv")
library(ggplot2)
library(dplyr)
ggplot(data2, aes(x = date, y = distance )) +
geom_line(color="#69b3a2", size = 1)+
geom_point()+
theme(axis.text.x = element_text(angle = 90)) +
xlab("Fecha")

Diagrama de Tallo y Hojas
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df_C <- subset(df, continent_code == "SA")
df <- data.frame(distance= c(0.00003, 0.00442, 0.11421, 0.13147, 0.14776, 0.1702, 0.30587, 0.35649, 0.37809, 0.38844, 0.44753, 0.47714, 0.55865, 0.60599, 0.62022, 0.64094, 0.64469, 0.68544, 0.70558, 0.7283, 0.74201, 0.79694, 0.80432, 0.85976, 0.93184, 1.01848, 1.01932, 1.04062, 1.04263, 1.07765, 1.08964, 1.16036, 1.23724, 1.27637, 1.33829, 1.35196, 1.4794, 1.53032, 1.56942, 1.7085, 1.73101, 1.82885, 1.84941, 2.04898, 2.07081, 2.18776, 2.28425, 2.36822, 2.43089, 2.53047, 2.55282, 2.55507, 2.69644, 2.81891, 2.89809, 2.92493, 2.95706, 2.99929, 3.06383, 3.09014, 3.1406, 3.14201, 3.26788, 3.4989, 3.6052, 3.65044, 3.70678, 3.72195, 3.81445, 3.87793, 4.09028, 4.19867, 4.25486, 4.29197, 4.39517, 4.58994, 4.95353, 5.0696, 5.1217, 5.1765, 5.6405, 5.74106, 6.04235, 6.08628, 6.16385, 6.44532, 6.65506, 6.77672, 6.84683, 6.9613, 7.28959, 7.67919, 7.70237, 7.78677, 7.85369, 7.87303, 7.89319, 7.90754, 7.98838, 8.11953, 8.18229, 8.30406, 8.45736, 8.46579, 8.56086, 8.58891, 8.81287, 8.89799, 9.21217, 9.23778, 9.64894, 9.65157, 10.16196, 10.1804, 10.36239, 10.47204, 10.55986, 11.11685, 11.19714, 11.55916, 11.91442, 12.61362, 12.70296, 13.21139, 14.28266, 14.62503, 15.04256, 15.16116, 15.42607, 15.82404, 15.84114, 16.34404, 16.94642, 16.97776, 17.31514, 17.34318, 17.48659, 17.57187, 18.88784, 18.91189, 19.81345, 19.85816, 20.25692, 20.31227, 21.26652, 22.53724, 23.49217, 23.97854, 24.48479, 25.51411, 25.82923, 26.18676, 26.72137, 26.89879, 28.29459, 28.50569, 30.81169, 33.94603, 45.69792, 46.77007, 50.21741, 51.84125, 61.75306))
stem(df_C$distance)
##
## The decimal point is 1 digit(s) to the right of the |
##
## 0 | 00000000000011111111111111111111111112222222222223333333333333333444
## 0 | 55555666666777778888888888888999999
## 1 | 000000111223334
## 1 | 555566677777899
## 2 | 000013344
## 2 | 6667789
## 3 | 14
## 3 |
## 4 |
## 4 | 67
## 5 | 02
## 5 |
## 6 | 2
Diagrama de Pareto
df <- data.frame(Pais =
c("Colombia", "Ecuador", "Peru", "Venezuela", "Brazil"),
Frecuencia = c(96, 30, 14, 20, 4))
knitr::kable(df)
| Colombia |
96 |
| Ecuador |
30 |
| Peru |
14 |
| Venezuela |
20 |
| Brazil |
4 |
library(qcc)
## Warning: package 'qcc' was built under R version 4.1.1
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
Frecuencia <- df$Frecuencia
names(Frecuencia) <- df$Pais
pareto.chart(Frecuencia,
ylab="Frecuencia",
col = heat.colors(length(Frecuencia)),
cumperc = seq(0, 100, by = 10),
ylab2 = "Porcentaje acumulado",
main = "Grafico de Pareto para Errores"
)

##
## Pareto chart analysis for Frecuencia
## Frequency Cum.Freq. Percentage Cum.Percent.
## Colombia 96.000000 96.000000 58.536585 58.536585
## Ecuador 30.000000 126.000000 18.292683 76.829268
## Venezuela 20.000000 146.000000 12.195122 89.024390
## Peru 14.000000 160.000000 8.536585 97.560976
## Brazil 4.000000 164.000000 2.439024 100.000000
Gráfico Circular
library(ggplot2)
library(dplyr)
data <- data.frame(Pais =
c("Colombia",
"Ecuador",
"Peru",
"Venezuela",
"Brazil"),
Numeros_de_desplazamiento = c(96, 30, 14, 20, 4))
knitr::kable(data)
| Colombia |
96 |
| Ecuador |
30 |
| Peru |
14 |
| Venezuela |
20 |
| Brazil |
4 |
ggplot(data, aes(x = "", y = Numeros_de_desplazamiento, fill=Pais)) +
geom_bar(stat = "identity", width = 1) +
coord_polar("y", start = 0)

library(ggplot2)
library(dplyr)
data <- data %>%
arrange(desc(Pais)) %>%
mutate(prop = Numeros_de_desplazamiento / sum(data$Numeros_de_desplazamiento) *100) %>%
mutate(ypos = cumsum(prop)- 0.5*prop )
require(scales)
## Loading required package: scales
##
## Attaching package: 'scales'
## The following object is masked from 'package:readr':
##
## col_factor
ggplot(data, aes(x="", y = prop, fill=Pais)) +
geom_bar(stat="identity", width=1, color="white") +
coord_polar("y", start=0) +
theme_void() +
theme(legend.position="none") +
geom_text(aes(y = ypos, label = percent(Numeros_de_desplazamiento/100)), color = "white", size=6) +
scale_fill_brewer(palette="Set1")

Medidas de tendencia central, Medidas de variabilidad, mMdidas de posicion
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
df_J <- subset(df, continent_code == "SA")
summary(df_J$distance)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00003 1.80439 5.69078 9.25696 12.63595 61.75306
Diagramas de caja y bigotes para sudamerica
boxplot(df_J$distance, horizontal=TRUE, col='steelblue')

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble 3.1.3 v stringr 1.4.0
## v tidyr 1.1.3 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x scales::col_factor() masks readr::col_factor()
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(hrbrthemes)
## Warning: package 'hrbrthemes' was built under R version 4.1.1
## NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
## Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
## if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
library(viridis)
## Warning: package 'viridis' was built under R version 4.1.1
## Loading required package: viridisLite
##
## Attaching package: 'viridis'
## The following object is masked from 'package:scales':
##
## viridis_pal
df <- data.frame(df_J$distance)
df %>% ggplot(aes(x = "", y = df_J$distance)) +
geom_boxplot(color="red", fill="orange", alpha=0.5) +
theme_ipsum() +
theme(legend.position="none", plot.title = element_text(size=11)) +
ggtitle("Basic boxplot") +
coord_flip() +
xlab("") +
ylab("")
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
