y=25-.5x. If x=7, then:
25-.5*7
## [1] 21.5
y=21.5 if x=7.
The point is below the line. If x=3, then y=23.5, which is below 30. 6.5 residual.
25-.5*3
## [1] 23.5
25-.5*6
## [1] 22
25-.5*9
## [1] 20.5
For every increase by 3 units, y decreases by 1.5.
No, the test score wouldn't necessarily be 22 because y hat is a prediction variable and the output is the best estimate for a given data point.
Finding variance given SSE = 7, n=16.
7/16
## [1] 0.4375
The variance is .4375.
Finding mean and variance of 7-day and 28-day treatments.
sevenday <- c(2300, 3390, 2430, 2890, 3330, 2480, 3380, 2660, 2620, 3340)
month <- c(4070, 5220, 4640, 4620, 4850, 4120, 5020, 4890, 4190, 4630)
mean(sevenday)
## [1] 2882
mean(month)
## [1] 4625
var(sevenday)
## [1] 193240
var(month)
## [1] 153716.7
As we can see from the code, the mean of the 7-day treatment is 2,882 and the mean for the 28-day treatment is 4,625. The variance for the 7-day treatment is 193240 and the variance for the 28-day is 153,716.67.
Finding the correlation coefficient of the two variables.
cor(sevenday, month)
## [1] 0.7584091
From the code, we can see the coefficient of correlation is .7584091.
Plotting 7-day strength against 28-day strength via scatterplot.
plot(sevenday, month, main="Plotting 7-day against 28-day strength",
xlab="7-day strength ", ylab="28-day strength ", pch=19)
Creating the line of best fit
Finding the intercept and slope.
lm2 <- lm(formula = month~sevenday)
From this code we can determine that the intercept is 2675.5619 and the slope of the 7-day treatment is .6764.
For every 1 unit of increase in strength by the 7-day treatment, the 28-day treatment increases by 1.6764
Finding standard deviation.
sigma(lm2)
## [1] 271.0423
The standard deviation of this model is 271.0423.
Making a historam and superimposing a density plot.
Computing the mean and variance.
righthumerus <- c(24.8, 24.59, 24.59, 24.29, 23.81, 24.87, 25.9, 26.11, 26.63, 26.31, 26.84)
righttibia <- c(36.05, 35.57, 35.57, 34.58, 34.2, 34.73, 37.38, 37.96, 37.46, 37.75, 38.5)
mean(righthumerus) #this is 25.34
## [1] 25.34
mean(righttibia) #this is 36.34091
## [1] 36.34091
var(righthumerus) #this is 1.08424
## [1] 1.08424
var(righttibia) #this is 2.315329
## [1] 2.315329
The mean of the right humerus is 25.34 and the variance is 1.08424. The mean of the right tibia is 36.34091 and the variance is 2.315329.
Computing the correlation coefficient
cor(righthumerus, righttibia)
## [1] 0.9513161
The correlation is .9513161. This is a strong, positive relationship, very close to 1.
Fitting a simple linear regression on the data.
plot(righthumerus, righttibia, main="Plotting right tibia length against right humerus length",
xlab="Right Humerus length ", ylab="Right Tibia length ", pch=19)
abline(lm(righttibia~righthumerus), col="red")
lm1 <- lm(formula = righttibia~righthumerus)
The intercept of the data is 1.114 and the slope is 1.390.
For every increase by 1 unit of the right humerus, the length of the right tibia is expected to increase by 2.504 units.
The standard deviation around the linear regression is .4943579.
sigma(lm1)
## [1] 0.4943579
Histogram of residuals with density curve
library(ggplot2)
ggplot(data = lm1, aes(x = lm1$residuals)) +
geom_histogram(fill = 'steelblue', color = 'black') + geom_density() +
labs(title = 'Tristan Tucker Histogram of Residuals', x = 'Residuals', y = 'Frequency')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Plotting the data with a scatterplot
HW1.ST430.119 <- read.table("~/HW1 ST430/HW1 ST430 119.txt", quote="\"", comment.char="")
plot(HW1.ST430.119, main="Tristan Tucker - Plotting GPA Data",
xlab="V1 ", ylab="V2 ", pch=19)
Plotting data with linear regression line on plot.
Running a linear regression model.
lm3 <- lm(formula = HW1.ST430.119$V2~HW1.ST430.119$V1)
The intercept is 18.98 and the slope is 1.87. y=1.87x+18.98.
When increased by one unit (from 1 to 2) the point estimate increases by 1.87 units. When increased by four units (from 1 to 5) the point estimate increases by 7.48 units.
1.87*1+18.98
## [1] 20.85
1.87*2+18.98
## [1] 22.72
1.87*5+18.98
## [1] 28.33
The GPA of a student that scores a 20 on the ACT is estimated to be .545.
E1 is -5.26420719, E2 is -12.24176295, E3 is 1.95836484.
resid(lm3)
## 1 2 3 4 5 6
## -5.26420719 -12.24176295 1.95836484 -1.72613786 -3.63887023 4.79564411
## 7 8 9 10 11 12
## 7.48457308 0.61609020 9.08938274 1.08057678 -1.16630985 4.40724962
## 13 14 15 16 17 18
## -0.74173966 -0.61081494 7.95526312 2.48270273 -0.56282473 6.38918506
## 19 20 21 22 23 24
## 0.51262838 -2.93684879 0.23084402 -4.25421645 2.04627144 0.68342292
## 25 26 27 28 29 30
## 2.37358326 1.22459398 4.49830453 -1.79908163 -0.21557801 -3.69872154
## 31 32 33 34 35 36
## -1.32031779 -7.41752957 3.54629474 0.71211719 -2.31903983 -0.72116578
## 37 38 39 40 41 42
## -4.29910492 4.87109722 1.38667573 0.20525147 1.45464743 6.06064188
## 43 44 45 46 47 48
## 0.27386214 2.81626458 6.15479852 0.12984494 7.94157825 -7.71614711
## 49 50 51 52 53 54
## -5.49672339 -8.09400505 2.65477522 -9.24486468 1.84304192 1.50327661
## 55 56 57 58 59 60
## -1.60958356 4.12108557 -3.88575686 -3.07899564 4.80937556 2.66284903
## 61 62 63 64 65 66
## 0.55938721 -1.05532003 -0.27853104 -2.71993440 6.08308611 -2.56154677
## 67 68 69 70 71 72
## 0.05877152 6.07806745 -4.35329858 -2.55160261 -4.65944412 -1.52290833
## 73 74 75 76 77 78
## -5.61765737 -6.02539437 2.69277468 -4.27602171 -2.00171876 1.25638999
## 79 80 81 82 83 84
## 1.54314642 8.45774916 -5.19062444 -4.72116578 3.13609498 5.77694058
## 85 86 87 88 89 90
## 0.02446618 2.56312792 1.76822779 2.62544197 -7.09774575 -2.66254585
## 91 92 93 94 95 96
## -2.24363331 3.94157825 -0.38888188 -6.63138882 3.01073473 -2.14450459
## 97 98 99 100 101 102
## 2.20214974 -3.35270619 -5.11330098 -5.29782697 2.58123905 -3.93620981
## 103 104 105 106 107 108
## -4.36018760 6.30812090 -0.42564997 9.07432674 0.78757030 2.25201030
## 109 110 111 112 113 114
## 1.93217990 0.66225664 -3.37017835 4.29128772 -3.45306628 -3.25106814
## 115 116 117 118 119 120
## 9.24521445 -6.24176295 2.91721707 1.70399680 -6.45429766 3.51075802
Using the X bar of 3.07405, that student would be predicted to have a 24.7284735 ACT score.
X bar is 3.07405, Y bar is 24.725
mean(HW1.ST430.119$V1)
## [1] 3.07405
mean(HW1.ST430.119$V2)
## [1] 24.725
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.