qol <- read_csv("C:/Users/burga/Downloads/QOLProgramDatabase-EquityExplorationCur_DATA_2021-08-30_0103.csv") #file
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_double(),
## gender_other = col_character(),
## language_other = col_character(),
## other_related = col_logical(),
## guard_gender_other = col_logical(),
## race = col_number(),
## childrace = col_number(),
## other_related_sp = col_logical(),
## guard_gender_other_sp = col_logical(),
## childrace_sp = col_number(),
## fs2r_4_bl = col_logical(),
## pq_gen_18plus_104_bl = col_logical(),
## pq_gen_18plus_83_bl = col_logical(),
## pq_gen_18plus_106_bl = col_logical(),
## pq_gen_18plus_85_bl = col_logical(),
## pq_gen_18plus_108_bl = col_logical(),
## pq_gen_18plus_132_bl = col_logical(),
## pq_gen_18plus_3_bl = col_logical(),
## pq_gen_18plus_1_bl = col_logical(),
## pq_gen_18plus_17_bl = col_logical(),
## pq_gen_18plus_91_bl = col_logical()
## # ... with 187 more columns
## )
## i Use `spec()` for the full column specifications.
fs2r <-read_excel("C:/Users/burga/Downloads/FS2R Scoring email.xlsx", sheet = "Calculations")
#clean the demographic data
# childgender
qol$childgender <- as.factor(qol$childgender)
levels (qol$childgender) <-gsub("0","Male",levels(qol$childgender))
levels (qol$childgender) <-gsub("1","Female",levels(qol$childgender))
levels (qol$childgender) <-gsub("2","Other",levels(qol$childgender))
levels (qol$childgender) <-gsub("3","Prefer not to answer",levels(qol$childgender))
#interviewlang_requested
qol$interviewlang <-qol$interviewlang
qol$interviewlang[qol$interviewlang > 3] <- 3
qol$interviewlang <- as.factor(qol$interviewlang)
levels (qol$interviewlang) <-gsub("1","English",levels(qol$interviewlang))
levels (qol$interviewlang) <-gsub("2","Spanish",levels(qol$interviewlang))
levels (qol$interviewlang) <-gsub("3","Other",levels(qol$interviewlang))
#interviewlang
#qol$interviewlang <- as.factor(qol$interviewlang)
#levels (qol$interviewlang) <-gsub("1","English",levels(qol$interviewlang))
#levels (qol$interviewlang) <-gsub("2","Spanish",levels(qol$interviewlang))
#levels (qol$interviewlang) <-gsub("3","Vietnamese",levels(qol$interviewlang))
#levels (qol$interviewlang) <-gsub("4","Russian",levels(qol$interviewlang))
#levels (qol$interviewlang) <-gsub("5","Chinese",levels(qol$interviewlang))
#levels (qol$interviewlang) <-gsub("6","Somali",levels(qol$interviewlang))
#interp_needed
qol$interp_needed<- as.factor(qol$interp_needed)
levels (qol$interp_needed) <-gsub("0","No",levels(qol$interp_needed))
levels (qol$interp_needed) <-gsub("1","Yes",levels(qol$interp_needed))
#related
qol$related <- ifelse(is.na(qol$related), qol$related_sp, qol$related)
qol$related<- as.factor(qol$related)
levels (qol$related) <-gsub("1","Mother",levels(qol$related))
levels (qol$related) <-gsub("2","Father",levels(qol$related))
levels (qol$related) <-gsub("3","Stepmother",levels(qol$related))
levels (qol$related) <-gsub("4","Stepfather",levels(qol$related))
levels (qol$related) <-gsub("5","Grandmother",levels(qol$related))
levels (qol$related) <-gsub("6","Grandfather",levels(qol$related))
levels (qol$related) <-gsub("8","Aunt or Uncle",levels(qol$related))
levels (qol$related) <-gsub("9","Older brother or sister",levels(qol$related))
levels (qol$related) <-gsub("10","Other relative",levels(qol$related))
levels (qol$related) <-gsub("7","Other relative",levels(qol$related))
levels (qol$related) <-gsub("Mother0","Mother",levels(qol$related))
#other_related
#guard_gender
qol$guard_gender <- ifelse(is.na(qol$guard_gender), qol$guard_gender_sp, qol$guard_gender)
qol$guard_gender<- as.factor(qol$guard_gender)
levels (qol$guard_gender) <-gsub("0","Male",levels(qol$guard_gender))
levels (qol$guard_gender) <-gsub("1","Female",levels(qol$guard_gender))
levels (qol$guard_gender) <-gsub("2","Other",levels(qol$guard_gender))
levels (qol$guard_gender) <-gsub("3","Prefer not to answer",levels(qol$guard_gender))
#parentage
#qol$parentage <- ifelse(is.na(qol$parentage), qol$parentage_sp, qol$parentage)
#qol$parentage<- as.factor(qol$parentage)
#levels (qol$parentage) <-gsub("1","18to24",levels(qol$parentage))
#levels (qol$parentage) <-gsub("2","25to34",levels(qol$parentage))
#levels (qol$parentage) <-gsub("3","35to44",levels(qol$parentage))
#levels (qol$parentage) <-gsub("4","45to54",levels(qol$parentage))
#levels (qol$parentage) <-gsub("5","55to64",levels(qol$parentage))
#levels (qol$parentage) <-gsub("6","65to74",levels(qol$parentage))
#levels (qol$parentage) <-gsub("7","75+",levels(qol$parentage))
#education
qol$education <- ifelse(is.na(qol$education), qol$education_sp, qol$education)
qol$education<- as.factor(qol$education)
levels (qol$education) <-gsub("1","8th grade or less",levels(qol$education))
levels (qol$education) <-gsub("2","Some high school, but did not graduate",levels(qol$education))
levels (qol$education) <-gsub("3","high school grad or GED",levels(qol$education))
levels (qol$education) <-gsub("4","Some college or 2 year degree (or trade or technical school)",levels(qol$education))
levels (qol$education) <-gsub("5","4-year college graduate",levels(qol$education))
levels (qol$education) <-gsub("6","More than 4-year college degree",levels(qol$education))
#race___1 race___2 race___3 race___4 race___5 race___6 race___7
qol$race <- ifelse(is.na(qol$race), qol$race_sp, qol$race)
qol$race[qol$race > 7] <- 7
qol$race<- as.factor(qol$race)
levels (qol$race) <-gsub("1","White",levels(qol$race))
levels (qol$race) <-gsub("2","Black or African American",levels(qol$race))
levels (qol$race) <-gsub("3","Latino or Hispanic",levels(qol$race))
levels (qol$race) <-gsub("4","Asian",levels(qol$race))
levels (qol$race) <-gsub("5","Native Hawaiian or other Pacific Islander",levels(qol$race))
levels (qol$race) <-gsub("6","Indigenous",levels(qol$race))
levels (qol$race) <-gsub("7","Other or multiracial",levels(qol$race))
qol$childrace <- ifelse(is.na(qol$childrace), qol$childrace_sp, qol$childrace)
qol$childrace[qol$childrace > 7] <- 7
qol$childrace<- as.factor(qol$childrace)
levels (qol$childrace) <-gsub("1","White",levels(qol$childrace))
levels (qol$childrace) <-gsub("2","Black or African American",levels(qol$childrace))
levels (qol$childrace) <-gsub("3","Latino or Hispanic",levels(qol$childrace))
levels (qol$childrace) <-gsub("4","Asian",levels(qol$childrace))
levels (qol$childrace) <-gsub("5","Native Hawaiian or other Pacific Islander",levels(qol$childrace))
levels (qol$childrace) <-gsub("6","Indigenous",levels(qol$childrace))
levels (qol$childrace) <-gsub("7","Other or multiracial",levels(qol$childrace))
qol_dem <-qol[ -c(5,8,13,18:25,26:1519) ]
fs2r.clean <- fs2r[-c(2:10,12)]
fs2r.final <- fs2r.clean %>%
mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>%
na.omit()
#pedsql.final <- pedsql.clean %>%
#mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>%
#na.omit()
#join1 <- rbind(pedsql.final,fs2r.final) #join the scores of both data sets
join2 <- inner_join(fs2r.final,qol_dem, by= "record_id") #join the scores and demographic data
QOL.Equity.Exploraton <- select(join2,-c()) #deleate any possible doubles
qol_final <- QOL.Equity.Exploraton
Tables as instructed
Language
table.lan <-qol_final %>%
tabyl(interviewlang, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.lan,col.names = c("Language","No return to baseline","Return to baseline","Totals"), caption = " Table 1:Language and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Language | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| English | 31% (11) | 69% (24) | 100% (35) |
| Spanish | 0% (0) | 100% (2) | 100% (2) |
| Other | 0% (0) | 100% (3) | 100% (3) |
| Total | 28% (11) | 73% (29) | 100% (40) |
Interpretor used
table.int <-qol_final %>%
tabyl(interp_needed, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.int,col.names = c("Interpreter","No return to baseline","Return to baseline","Totals"), caption = " Table 2:Interpreter need and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Interpreter | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| No | 30% (11) | 70% (26) | 100% (37) |
| Yes | 0% (0) | 100% (3) | 100% (3) |
| Total | 28% (11) | 73% (29) | 100% (40) |
Parent Education
table.edu <-qol_final %>%
tabyl(education, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.edu,col.names = c("Education level","No return to baseline","Return to baseline","Totals"), caption = " Table 3: Education and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Education level | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| 8th grade or less | 33% (1) | 67% (2) | 100% (3) |
| Some high school, but did not graduate | 100% (1) | 0% (0) | 100% (1) |
| high school grad or GED | 20% (1) | 80% (4) | 100% (5) |
| Some college or 2 year degree (or trade or technical school) | 27% (3) | 73% (8) | 100% (11) |
| 4-year college graduate | 33% (3) | 67% (6) | 100% (9) |
| More than 4-year college degree | 18% (2) | 82% (9) | 100% (11) |
| Total | 28% (11) | 73% (29) | 100% (40) |
Parent R&E
table.pre <-qol_final %>%
tabyl(race, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.pre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 4:Parent Race and or Ethnicity and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Race and or Ethnicity | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| White | 36% (5) | 64% (9) | 100% (14) |
| Black or African American | 20% (1) | 80% (4) | 100% (5) |
| Latino or Hispanic | 33% (1) | 67% (2) | 100% (3) |
| Asian | 13% (1) | 88% (7) | 100% (8) |
| Native Hawaiian or other Pacific Islander |
|
|
100% (0) |
| Indigenous |
|
|
100% (0) |
| Other or multiracial | 30% (3) | 70% (7) | 100% (10) |
| Total | 28% (11) | 73% (29) | 100% (40) |
table.cre <-qol_final %>%
tabyl(childrace, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.cre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 5:Child Race and or Ethnicity and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Race and or Ethnicity | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| White | 36% (4) | 64% (7) | 100% (11) |
| Black or African American | 40% (2) | 60% (3) | 100% (5) |
| Latino or Hispanic | 50% (1) | 50% (1) | 100% (2) |
| Asian | 25% (1) | 75% (3) | 100% (4) |
| Native Hawaiian or other Pacific Islander |
|
|
100% (0) |
| Indigenous |
|
|
100% (0) |
| Other or multiracial | 17% (3) | 83% (15) | 100% (18) |
| Total | 28% (11) | 73% (29) | 100% (40) |
table.cge<-qol_final %>%
tabyl(childgender, `Back to Baseline`) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(rounding = "half up", digits = 0) %>%
adorn_ns()
knitr::kable(table.cge,col.names = c("Gender Identity","No return to baseline","Return to baseline","Totals"), caption = " Table 6: Child Gender Identity and Baseline")%>%
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
| Gender Identity | No return to baseline | Return to baseline | Totals |
|---|---|---|---|
| Male | 32% (6) | 68% (13) | 100% (19) |
| Female | 25% (5) | 75% (15) | 100% (20) |
| Other | 0% (0) | 100% (1) | 100% (1) |
| Total | 28% (11) | 73% (29) | 100% (40) |
Back to baseline numbers report
Univariable analysis
Summary Statistics For baseline actual number
x<-QOL.Equity.Exploraton$`Back to baseline.Parent.Actual`
#find mean
mean(x)
## [1] 10.98277
#find median
median(x)
## [1] 8.928571
#find range
max(x) - min(x)
## [1] 125
#find interquartile range (spread of middle 50% of values)
IQR(x)
## [1] 25.89286
#find standard deviation
sd(x)
## [1] 24.82186
Charts
#frequency table
table(x)
## x
## -53.5714285714286 -35.7142857142857 -25 -7.14285714285715
## 1 1 2 1
## -7.14285714285714 -3.57142857142857 0 3.57142857142857
## 3 3 2 3
## 7.14285714285714 7.14285714285715 10.7142857142857 14.2857142857143
## 3 1 4 3
## 20.3296703296703 21.4285714285714 25 28.5714285714286
## 1 2 1 2
## 35.7142857142857 38.4615384615385 39.2857142857143 46.4285714285714
## 1 1 1 1
## 57.1428571428571 59.0909090909091 71.4285714285714
## 1 1 1
#boxplot
boxplot(x)
#histogram
hist(x)
#density curve
plot(density(x))
Chi-Square Test of Independence Null hypothesis (H0): the row and the column variables of the contingency table are independent. Alternative hypothesis (H1): row and column variables are dependent
#chi^2 test wont work on negative numbers so a transformation had to be done
abs.data <- QOL.Equity.Exploraton %>%
dplyr::select(where(is.numeric)) %>%
abs()
y<-inner_join(abs.data,qol_dem, by= "record_id")
z<- y[-c(3,8,10,14,16)]
w<-lapply(z, as.numeric)
a<-as.data.frame(do.call(rbind, w))
qol.chi<-t(a)
chisq <- chisq.test(qol.chi)
## Warning in stats::chisq.test(x, y, ...): Chi-squared approximation may be
## incorrect
chisq
##
## Pearson's Chi-squared test
##
## data: qol.chi
## X-squared = 3539.8, df = 507, p-value < 2.2e-16