df<- read.csv(file="https://raw.githubusercontent.com/nnaemeka-git/payment/268bd51d03488e5c388231fa038fe0f86635433b/CreditCard.csv")
head(df)
## X card reports age income share expenditure owner selfemp
## 1 1 yes 0 37.66667 4.5200 0.033269910 124.983300 yes no
## 2 2 yes 0 33.25000 2.4200 0.005216942 9.854167 no no
## 3 3 yes 0 33.66667 4.5000 0.004155556 15.000000 yes no
## 4 4 yes 0 30.50000 2.5400 0.065213780 137.869200 no no
## 5 5 yes 0 32.16667 9.7867 0.067050590 546.503300 yes no
## 6 6 yes 0 23.25000 2.5000 0.044438400 91.996670 no no
## dependents months majorcards active
## 1 3 54 1 12
## 2 3 34 1 13
## 3 4 58 1 5
## 4 0 25 1 7
## 5 2 64 1 5
## 6 0 54 1 1
summary(df)
## X card reports age
## Min. : 1.0 Length:1319 Min. : 0.0000 Min. : 0.1667
## 1st Qu.: 330.5 Class :character 1st Qu.: 0.0000 1st Qu.:25.4167
## Median : 660.0 Mode :character Median : 0.0000 Median :31.2500
## Mean : 660.0 Mean : 0.4564 Mean :33.2131
## 3rd Qu.: 989.5 3rd Qu.: 0.0000 3rd Qu.:39.4167
## Max. :1319.0 Max. :14.0000 Max. :83.5000
## income share expenditure owner
## Min. : 0.210 Min. :0.0001091 Min. : 0.000 Length:1319
## 1st Qu.: 2.244 1st Qu.:0.0023159 1st Qu.: 4.583 Class :character
## Median : 2.900 Median :0.0388272 Median : 101.298 Mode :character
## Mean : 3.365 Mean :0.0687322 Mean : 185.057
## 3rd Qu.: 4.000 3rd Qu.:0.0936168 3rd Qu.: 249.036
## Max. :13.500 Max. :0.9063205 Max. :3099.505
## selfemp dependents months majorcards
## Length:1319 Min. :0.0000 Min. : 0.00 Min. :0.0000
## Class :character 1st Qu.:0.0000 1st Qu.: 12.00 1st Qu.:1.0000
## Mode :character Median :1.0000 Median : 30.00 Median :1.0000
## Mean :0.9939 Mean : 55.27 Mean :0.8173
## 3rd Qu.:2.0000 3rd Qu.: 72.00 3rd Qu.:1.0000
## Max. :6.0000 Max. :540.00 Max. :1.0000
## active
## Min. : 0.000
## 1st Qu.: 2.000
## Median : 6.000
## Mean : 6.997
## 3rd Qu.:11.000
## Max. :46.000
#Mean Age and Income
mean(df$age,na.rm=TRUE)
## [1] 33.2131
mean(df$income,na.rm=TRUE)
## [1] 3.365376
mean(df$expenditure,na.rm=TRUE)
## [1] 185.0571
#Median Age and Income
median(df$age,na.rm=TRUE)
## [1] 31.25
median(df$income,na.rm=TRUE)
## [1] 2.9
median(df$expenditure,na.rm=TRUE)
## [1] 101.2983
NewDf<-df[0:1000,c('age','income','expenditure')]
head(NewDf,n=10)
## age income expenditure
## 1 37.66667 4.5200 124.983300
## 2 33.25000 2.4200 9.854167
## 3 33.66667 4.5000 15.000000
## 4 30.50000 2.5400 137.869200
## 5 32.16667 9.7867 546.503300
## 6 23.25000 2.5000 91.996670
## 7 27.91667 3.9600 40.833330
## 8 29.16667 2.3700 150.790000
## 9 37.00000 3.8000 777.821700
## 10 28.41667 3.2000 52.580000
NewCol <- c('NewAge','NewIncome','NewExpenditure')
colnames(NewDf)<-NewCol
head(NewDf,n=10)
## NewAge NewIncome NewExpenditure
## 1 37.66667 4.5200 124.983300
## 2 33.25000 2.4200 9.854167
## 3 33.66667 4.5000 15.000000
## 4 30.50000 2.5400 137.869200
## 5 32.16667 9.7867 546.503300
## 6 23.25000 2.5000 91.996670
## 7 27.91667 3.9600 40.833330
## 8 29.16667 2.3700 150.790000
## 9 37.00000 3.8000 777.821700
## 10 28.41667 3.2000 52.580000
and median for the same two attributes. Please compare.
summary(NewDf)
## NewAge NewIncome NewExpenditure
## Min. : 0.1667 Min. : 1.200 Min. : 0.000
## 1st Qu.:25.2500 1st Qu.: 2.250 1st Qu.: 6.479
## Median :30.7083 Median : 2.956 Median : 100.809
## Mean :32.8448 Mean : 3.392 Mean : 183.060
## 3rd Qu.:38.9375 3rd Qu.: 4.000 3rd Qu.: 250.771
## Max. :83.5000 Max. :13.500 Max. :3099.505
#Mean NewAge, NewIncome and NewExpenditure
mean(NewDf$NewAge,na.rm=TRUE)
## [1] 32.84483
mean(NewDf$NewIncome,na.rm=TRUE)
## [1] 3.392053
mean(NewDf$NewExpenditure,na.rm=TRUE)
## [1] 183.0595
#Median NewAge, NewIncome and NewExpenditure
median(NewDf$NewAge,na.rm=TRUE)
## [1] 30.70833
median(NewDf$NewIncome,na.rm=TRUE)
## [1] 2.95615
median(NewDf$NewExpenditure,na.rm=TRUE)
## [1] 100.8088
# The mean and midian values of age, income and expenditure changed slitly as a result of the dataset being subsetted
df$owner[df$owner %in% c('no','yes')]<-c('third party','custodian')
## Warning in df$owner[df$owner %in% c("no", "yes")] <- c("third party",
## "custodian"): number of items to replace is not a multiple of replacement length
head(df)
## X card reports age income share expenditure owner selfemp
## 1 1 yes 0 37.66667 4.5200 0.033269910 124.983300 third party no
## 2 2 yes 0 33.25000 2.4200 0.005216942 9.854167 custodian no
## 3 3 yes 0 33.66667 4.5000 0.004155556 15.000000 third party no
## 4 4 yes 0 30.50000 2.5400 0.065213780 137.869200 custodian no
## 5 5 yes 0 32.16667 9.7867 0.067050590 546.503300 third party no
## 6 6 yes 0 23.25000 2.5000 0.044438400 91.996670 custodian no
## dependents months majorcards active
## 1 3 54 1 12
## 2 3 34 1 13
## 3 4 58 1 5
## 4 0 25 1 7
## 5 2 64 1 5
## 6 0 54 1 1
head(df,n=50)
## X card reports age income share expenditure owner selfemp
## 1 1 yes 0 37.66667 4.5200 0.033269910 124.983300 third party no
## 2 2 yes 0 33.25000 2.4200 0.005216942 9.854167 custodian no
## 3 3 yes 0 33.66667 4.5000 0.004155556 15.000000 third party no
## 4 4 yes 0 30.50000 2.5400 0.065213780 137.869200 custodian no
## 5 5 yes 0 32.16667 9.7867 0.067050590 546.503300 third party no
## 6 6 yes 0 23.25000 2.5000 0.044438400 91.996670 custodian no
## 7 7 yes 0 27.91667 3.9600 0.012575760 40.833330 third party no
## 8 8 yes 0 29.16667 2.3700 0.076433760 150.790000 custodian no
## 9 9 yes 0 37.00000 3.8000 0.245627900 777.821700 third party no
## 10 10 yes 0 28.41667 3.2000 0.019780000 52.580000 custodian no
## 11 11 yes 0 30.50000 3.9500 0.078024560 256.664200 third party no
## 12 12 no 0 42.00000 1.9800 0.000606061 0.000000 custodian no
## 13 13 no 0 30.00000 1.7300 0.000693642 0.000000 third party no
## 14 14 yes 0 28.83333 2.4500 0.038795510 78.874170 custodian no
## 15 15 yes 0 35.33333 1.9080 0.026906710 42.615000 third party no
## 16 16 yes 0 41.16667 3.2000 0.125819400 335.435000 custodian no
## 17 17 yes 0 40.08333 4.0000 0.074815750 248.719200 third party no
## 18 18 no 7 29.50000 3.0000 0.000400000 0.000000 custodian no
## 19 19 yes 0 39.50000 9.9999 0.065794860 548.035000 third party yes
## 20 20 no 3 45.75000 3.4000 0.000352941 0.000000 custodian no
## 21 21 yes 0 35.25000 2.3500 0.022385960 43.339170 third party no
## 22 22 no 1 25.16667 1.8750 0.000640000 0.000000 custodian no
## 23 23 yes 0 34.25000 2.0000 0.131112000 218.520000 third party no
## 24 24 yes 1 35.75000 4.0000 0.051192250 170.640800 custodian no
## 25 25 yes 0 42.66667 5.1400 0.008949417 37.583330 third party no
## 26 26 yes 0 30.25000 4.5060 0.133742100 502.201700 custodian no
## 27 27 no 0 21.66667 3.8400 0.000312500 0.000000 third party yes
## 28 28 yes 0 22.25000 1.5000 0.058608000 73.176670 custodian no
## 29 29 no 0 34.25000 2.5000 0.000480000 0.000000 third party no
## 30 30 yes 0 40.00000 5.5000 0.334459600 1532.773000 custodian no
## 31 31 yes 0 21.83333 2.0272 0.025320140 42.690830 third party no
## 32 32 yes 1 29.41667 3.2000 0.156719400 417.835000 custodian no
## 33 33 no 1 24.91667 3.1500 0.000380952 0.000000 third party no
## 34 34 yes 0 21.00000 2.4663 0.268932800 552.724200 custodian no
## 35 35 yes 0 23.83333 3.0000 0.089015660 222.539200 third party no
## 36 36 yes 0 42.83333 3.5412 0.183456200 541.295800 custodian no
## 37 37 no 0 42.58333 2.2845 0.000525279 0.000000 third party no
## 38 38 yes 0 36.58333 5.7000 0.119741900 568.774200 custodian no
## 39 39 yes 0 26.75000 3.5000 0.118104300 344.470800 third party no
## 40 40 yes 0 27.75000 4.6000 0.105743900 405.351700 custodian no
## 41 41 yes 0 26.25000 3.0000 0.124375000 310.937500 third party no
## 42 42 yes 0 23.33333 2.5850 0.025057640 53.645000 custodian no
## 43 43 yes 0 29.91667 1.5100 0.051258280 63.916670 third party no
## 44 44 yes 0 30.00000 1.8500 0.107581600 165.855000 custodian no
## 45 45 yes 0 38.33333 2.6000 0.004807692 9.583333 third party no
## 46 46 no 0 28.16667 1.8000 0.000666667 0.000000 custodian yes
## 47 47 yes 0 35.58333 2.0000 0.192044000 319.490000 third party no
## 48 48 no 0 37.75000 3.2628 0.000367782 0.000000 custodian no
## 49 49 yes 0 26.08333 2.3500 0.042851060 83.083340 third party no
## 50 50 yes 0 27.75000 7.0000 0.110584900 644.828300 custodian no
## dependents months majorcards active
## 1 3 54 1 12
## 2 3 34 1 13
## 3 4 58 1 5
## 4 0 25 1 7
## 5 2 64 1 5
## 6 0 54 1 1
## 7 2 7 1 5
## 8 0 77 1 3
## 9 0 97 1 6
## 10 0 65 1 18
## 11 1 24 1 20
## 12 2 36 1 0
## 13 1 42 0 12
## 14 0 26 1 3
## 15 2 120 0 5
## 16 1 168 1 22
## 17 2 96 1 0
## 18 2 60 1 8
## 19 0 28 1 0
## 20 0 28 1 10
## 21 2 115 1 1
## 22 2 7 0 2
## 23 0 12 1 0
## 24 2 18 1 22
## 25 2 13 1 17
## 26 2 38 1 7
## 27 1 12 0 1
## 28 0 64 1 6
## 29 1 12 1 0
## 30 4 74 1 19
## 31 0 9 0 5
## 32 0 14 1 6
## 33 1 40 1 5
## 34 1 12 1 10
## 35 0 12 1 5
## 36 6 108 1 15
## 37 2 46 1 0
## 38 1 36 1 16
## 39 0 2 1 14
## 40 4 28 1 13
## 41 0 7 1 10
## 42 0 8 1 1
## 43 1 7 0 1
## 44 0 60 1 12
## 45 0 12 1 1
## 46 2 26 1 2
## 47 0 156 1 4
## 48 1 98 0 1
## 49 1 30 0 2
## 50 0 0 1 13
df_git <- read.csv(file="https://raw.githubusercontent.com/nnaemeka-git/payment/268bd51d03488e5c388231fa038fe0f86635433b/CreditCard.csv")
head(df_git,n=10)
## X card reports age income share expenditure owner selfemp
## 1 1 yes 0 37.66667 4.5200 0.033269910 124.983300 yes no
## 2 2 yes 0 33.25000 2.4200 0.005216942 9.854167 no no
## 3 3 yes 0 33.66667 4.5000 0.004155556 15.000000 yes no
## 4 4 yes 0 30.50000 2.5400 0.065213780 137.869200 no no
## 5 5 yes 0 32.16667 9.7867 0.067050590 546.503300 yes no
## 6 6 yes 0 23.25000 2.5000 0.044438400 91.996670 no no
## 7 7 yes 0 27.91667 3.9600 0.012575760 40.833330 no no
## 8 8 yes 0 29.16667 2.3700 0.076433760 150.790000 yes no
## 9 9 yes 0 37.00000 3.8000 0.245627900 777.821700 yes no
## 10 10 yes 0 28.41667 3.2000 0.019780000 52.580000 no no
## dependents months majorcards active
## 1 3 54 1 12
## 2 3 34 1 13
## 3 4 58 1 5
## 4 0 25 1 7
## 5 2 64 1 5
## 6 0 54 1 1
## 7 2 7 1 5
## 8 0 77 1 3
## 9 0 97 1 6
## 10 0 65 1 18