Tài liệu phục vụ HỘI THẢO THỐNG KÊ TRONG KHOA HỌC XÃ HỘI VỚI PHẦN MỀM MÃ NGUỒN MỞ R Chi tiết tại: https://sites.google.com/view/tkud https://viasm.edu.vn/

GIỚI THIỆU

Dữ liệu sử dụng trong hướng dẫn này là của PGS.TS Trần Văn Trang (Đại học Thương mại).

Bài báo gốc lấy tại: http://tckhtm.tmu.edu.vn/vi/news/cac-so-tap-chi/tap-chi-khoa-hoc-thuong-mai-so-141-153.html

Dữ liệu tải tại google diver: https://drive.google.com/drive/folders/1Npip6h8WyZjI9JGf5wonnU_scBUYj4sP?usp=sharing

Load các gói cần thiết và nhập liệu

setwd("D:/Tap huan VIASM/HoiThao_KHXH_2021/Projects/Y_Dinh_Hanh_Vi")

library(foreign)
require(tidyverse)
require(lavaan)
require(semPlot)
d <- read.spss("Case study Behavior Intention.sav",
               use.value.label=TRUE, to.data.frame=TRUE)

1. Lọc các biến quan sát (items)

d1 <-  d %>% select(-c("STT",  "FAM", "Formation",
                       "Work",  "Year",
                       "BI1",     "BIRecode", "BI4"))

2. Tìm hiểu các hàm sem trong gói semPlot tại:

?sem

3.Fit model3 và xem các ước lượng, chỉ số mô hình

sem.model3 <- ' BEINTEN =~  BI2 + BI3 + BI5 + BI6 
              RELA =~ REL1 + REL2 + REL3+ REL4
              EDUC =~ EDU1 + EDU2 + EDU3 + EDU4 + EDU5 + EDU6+EDU7+EDU8
              GOVE =~ GOV1 + GOV2 + GOV3 + GOV4 + GOV5
              ENDO =~   END2 + END3 + END4 + END5  
              # regression
               BEINTEN ~ RELA + EDUC + GOVE + ENDO
#  Covariance
BI2 ~~ BI3
REL4  ~~ REL1 + REL3
EDU2 ~~ EDU1 + EDU3 + EDU6
EDU5 ~~ EDU6
EDU7 ~~ EDU8
GOV4 ~~ GOV5
END5 ~~ END4 '

fitsem3 <- sem(sem.model3, data = d1)

summary(fitsem3)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        70
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               756.302
##   Degrees of freedom                               255
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN =~                                          
##     BI2               1.000                           
##     BI3               1.060    0.064   16.495    0.000
##     BI5               1.307    0.081   16.225    0.000
##     BI6               1.335    0.085   15.711    0.000
##   RELA =~                                             
##     REL1              1.000                           
##     REL2              0.987    0.043   23.040    0.000
##     REL3              0.723    0.038   18.864    0.000
##     REL4              0.626    0.042   14.854    0.000
##   EDUC =~                                             
##     EDU1              1.000                           
##     EDU2              0.994    0.044   22.763    0.000
##     EDU3              1.081    0.054   19.941    0.000
##     EDU4              1.154    0.057   20.186    0.000
##     EDU5              1.026    0.051   20.014    0.000
##     EDU6              1.005    0.058   17.269    0.000
##     EDU7              1.032    0.052   19.782    0.000
##     EDU8              0.875    0.049   17.707    0.000
##   GOVE =~                                             
##     GOV1              1.000                           
##     GOV2              1.099    0.052   21.291    0.000
##     GOV3              1.099    0.052   21.326    0.000
##     GOV4              0.988    0.052   19.126    0.000
##     GOV5              0.813    0.051   15.936    0.000
##   ENDO =~                                             
##     END2              1.000                           
##     END3              1.044    0.051   20.636    0.000
##     END4              0.789    0.045   17.409    0.000
##     END5              0.891    0.055   16.309    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN ~                                           
##     RELA              0.373    0.033   11.480    0.000
##     EDUC              0.079    0.042    1.894    0.058
##     GOVE              0.089    0.043    2.046    0.041
##     ENDO             -0.064    0.031   -2.039    0.041
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .BI2 ~~                                              
##    .BI3               0.243    0.046    5.320    0.000
##  .REL1 ~~                                             
##    .REL4             -0.153    0.045   -3.415    0.001
##  .REL3 ~~                                             
##    .REL4              0.445    0.056    7.969    0.000
##  .EDU1 ~~                                             
##    .EDU2              0.238    0.030    7.949    0.000
##  .EDU2 ~~                                             
##    .EDU3              0.230    0.027    8.577    0.000
##    .EDU6             -0.052    0.025   -2.054    0.040
##  .EDU5 ~~                                             
##    .EDU6              0.125    0.031    3.991    0.000
##  .EDU7 ~~                                             
##    .EDU8              0.194    0.028    6.979    0.000
##  .GOV4 ~~                                             
##    .GOV5              0.228    0.030    7.525    0.000
##  .END4 ~~                                             
##    .END5              0.345    0.045    7.752    0.000
##   RELA ~~                                             
##     EDUC              0.520    0.056    9.368    0.000
##     GOVE              0.423    0.050    8.451    0.000
##     ENDO             -0.040    0.051   -0.787    0.432
##   EDUC ~~                                             
##     GOVE              0.450    0.042   10.792    0.000
##     ENDO              0.213    0.037    5.722    0.000
##   GOVE ~~                                             
##     ENDO              0.188    0.035    5.406    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .BI2               0.925    0.055   16.787    0.000
##    .BI3               1.128    0.066   17.030    0.000
##    .BI5               0.703    0.054   12.950    0.000
##    .BI6               1.012    0.068   14.973    0.000
##    .REL1              0.755    0.064   11.788    0.000
##    .REL2              0.816    0.064   12.767    0.000
##    .REL3              1.113    0.064   17.449    0.000
##    .REL4              1.301    0.076   17.142    0.000
##    .EDU1              0.998    0.054   18.406    0.000
##    .EDU2              0.627    0.036   17.333    0.000
##    .EDU3              0.594    0.036   16.519    0.000
##    .EDU4              0.629    0.039   16.322    0.000
##    .EDU5              0.517    0.032   16.241    0.000
##    .EDU6              1.012    0.056   18.069    0.000
##    .EDU7              0.565    0.034   16.627    0.000
##    .EDU8              0.701    0.039   18.024    0.000
##    .GOV1              0.743    0.042   17.561    0.000
##    .GOV2              0.393    0.028   13.847    0.000
##    .GOV3              0.388    0.028   13.754    0.000
##    .GOV4              0.602    0.036   16.877    0.000
##    .GOV5              0.814    0.044   18.468    0.000
##    .END2              0.596    0.045   13.181    0.000
##    .END3              0.351    0.041    8.561    0.000
##    .END4              0.806    0.047   17.260    0.000
##    .END5              1.254    0.071   17.781    0.000
##    .BEINTEN           0.319    0.039    8.141    0.000
##     RELA              1.661    0.124   13.350    0.000
##     EDUC              0.834    0.079   10.555    0.000
##     GOVE              0.721    0.066   10.983    0.000
##     ENDO              0.914    0.076   11.955    0.000
coef(fitsem3)
##     BEINTEN=~BI3     BEINTEN=~BI5     BEINTEN=~BI6       RELA=~REL2 
##            1.060            1.307            1.335            0.987 
##       RELA=~REL3       RELA=~REL4       EDUC=~EDU2       EDUC=~EDU3 
##            0.723            0.626            0.994            1.081 
##       EDUC=~EDU4       EDUC=~EDU5       EDUC=~EDU6       EDUC=~EDU7 
##            1.154            1.026            1.005            1.032 
##       EDUC=~EDU8       GOVE=~GOV2       GOVE=~GOV3       GOVE=~GOV4 
##            0.875            1.099            1.099            0.988 
##       GOVE=~GOV5       ENDO=~END3       ENDO=~END4       ENDO=~END5 
##            0.813            1.044            0.789            0.891 
##     BEINTEN~RELA     BEINTEN~EDUC     BEINTEN~GOVE     BEINTEN~ENDO 
##            0.373            0.079            0.089           -0.064 
##         BI2~~BI3       REL1~~REL4       REL3~~REL4       EDU1~~EDU2 
##            0.243           -0.153            0.445            0.238 
##       EDU2~~EDU3       EDU2~~EDU6       EDU5~~EDU6       EDU7~~EDU8 
##            0.230           -0.052            0.125            0.194 
##       GOV4~~GOV5       END4~~END5         BI2~~BI2         BI3~~BI3 
##            0.228            0.345            0.925            1.128 
##         BI5~~BI5         BI6~~BI6       REL1~~REL1       REL2~~REL2 
##            0.703            1.012            0.755            0.816 
##       REL3~~REL3       REL4~~REL4       EDU1~~EDU1       EDU2~~EDU2 
##            1.113            1.301            0.998            0.627 
##       EDU3~~EDU3       EDU4~~EDU4       EDU5~~EDU5       EDU6~~EDU6 
##            0.594            0.629            0.517            1.012 
##       EDU7~~EDU7       EDU8~~EDU8       GOV1~~GOV1       GOV2~~GOV2 
##            0.565            0.701            0.743            0.393 
##       GOV3~~GOV3       GOV4~~GOV4       GOV5~~GOV5       END2~~END2 
##            0.388            0.602            0.814            0.596 
##       END3~~END3       END4~~END4       END5~~END5 BEINTEN~~BEINTEN 
##            0.351            0.806            1.254            0.319 
##       RELA~~RELA       EDUC~~EDUC       GOVE~~GOVE       ENDO~~ENDO 
##            1.661            0.834            0.721            0.914 
##       RELA~~EDUC       RELA~~GOVE       RELA~~ENDO       EDUC~~GOVE 
##            0.520            0.423           -0.040            0.450 
##       EDUC~~ENDO       GOVE~~ENDO 
##            0.213            0.188
fitted(fitsem3)
## $cov
##      BI2    BI3    BI5    BI6    REL1   REL2   REL3   REL4   EDU1   EDU2  
## BI2   1.553                                                               
## BI3   0.908  1.833                                                        
## BI5   0.820  0.869  1.775                                                 
## BI6   0.838  0.888  1.095  2.130                                          
## REL1  0.701  0.743  0.916  0.935  2.417                                   
## REL2  0.692  0.733  0.904  0.923  1.639  2.434                            
## REL3  0.507  0.537  0.662  0.676  1.201  1.185  1.981                     
## REL4  0.439  0.465  0.573  0.586  0.887  1.026  1.197  1.952              
## EDU1  0.286  0.303  0.374  0.382  0.520  0.513  0.376  0.326  1.831       
## EDU2  0.284  0.301  0.371  0.379  0.517  0.510  0.374  0.324  1.067  1.451
## EDU3  0.309  0.328  0.404  0.412  0.562  0.555  0.406  0.352  0.901  1.125
## EDU4  0.330  0.350  0.431  0.440  0.600  0.592  0.434  0.376  0.962  0.956
## EDU5  0.293  0.311  0.383  0.392  0.534  0.527  0.386  0.334  0.856  0.850
## EDU6  0.287  0.305  0.375  0.384  0.523  0.516  0.378  0.327  0.838  0.781
## EDU7  0.295  0.313  0.385  0.394  0.537  0.530  0.388  0.336  0.860  0.855
## EDU8  0.250  0.265  0.327  0.334  0.455  0.449  0.329  0.285  0.730  0.725
## GOV1  0.245  0.260  0.320  0.327  0.423  0.418  0.306  0.265  0.450  0.447
## GOV2  0.269  0.285  0.352  0.359  0.465  0.459  0.336  0.291  0.495  0.491
## GOV3  0.269  0.286  0.352  0.360  0.465  0.459  0.336  0.291  0.495  0.492
## GOV4  0.242  0.257  0.316  0.323  0.418  0.412  0.302  0.262  0.445  0.442
## GOV5  0.199  0.211  0.260  0.266  0.344  0.340  0.249  0.215  0.366  0.364
## END2 -0.040 -0.042 -0.052 -0.053 -0.040 -0.040 -0.029 -0.025  0.213  0.212
## END3 -0.042 -0.044 -0.055 -0.056 -0.042 -0.041 -0.030 -0.026  0.223  0.221
## END4 -0.032 -0.033 -0.041 -0.042 -0.032 -0.031 -0.023 -0.020  0.168  0.167
## END5 -0.036 -0.038 -0.047 -0.048 -0.036 -0.035 -0.026 -0.022  0.190  0.189
##      EDU3   EDU4   EDU5   EDU6   EDU7   EDU8   GOV1   GOV2   GOV3   GOV4  
## BI2                                                                       
## BI3                                                                       
## BI5                                                                       
## BI6                                                                       
## REL1                                                                      
## REL2                                                                      
## REL3                                                                      
## REL4                                                                      
## EDU1                                                                      
## EDU2                                                                      
## EDU3  1.568                                                               
## EDU4  1.040  1.738                                                        
## EDU5  0.925  0.987  1.395                                                 
## EDU6  0.906  0.967  0.985  1.855                                          
## EDU7  0.929  0.992  0.883  0.864  1.452                                   
## EDU8  0.789  0.842  0.749  0.733  0.947  1.340                            
## GOV1  0.486  0.519  0.462  0.452  0.464  0.394  1.464                     
## GOV2  0.535  0.571  0.508  0.497  0.510  0.433  0.792  1.264              
## GOV3  0.535  0.571  0.508  0.497  0.510  0.433  0.792  0.871  1.259       
## GOV4  0.480  0.513  0.456  0.447  0.459  0.389  0.712  0.782  0.783  1.305
## GOV5  0.396  0.422  0.376  0.368  0.378  0.320  0.586  0.644  0.644  0.807
## END2  0.231  0.246  0.219  0.215  0.220  0.187  0.188  0.207  0.207  0.186
## END3  0.241  0.257  0.229  0.224  0.230  0.195  0.196  0.216  0.216  0.194
## END4  0.182  0.194  0.173  0.169  0.174  0.147  0.148  0.163  0.163  0.147
## END5  0.205  0.219  0.195  0.191  0.196  0.166  0.168  0.184  0.184  0.165
##      GOV5   END2   END3   END4   END5  
## BI2                                    
## BI3                                    
## BI5                                    
## BI6                                    
## REL1                                   
## REL2                                   
## REL3                                   
## REL4                                   
## EDU1                                   
## EDU2                                   
## EDU3                                   
## EDU4                                   
## EDU5                                   
## EDU6                                   
## EDU7                                   
## EDU8                                   
## GOV1                                   
## GOV2                                   
## GOV3                                   
## GOV4                                   
## GOV5  1.291                            
## END2  0.153  1.511                     
## END3  0.160  0.955  1.348              
## END4  0.121  0.721  0.753  1.376       
## END5  0.136  0.815  0.851  0.988  1.979
show(fitsem3)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        70
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               756.302
##   Degrees of freedom                               255
##   P-value (Chi-square)                           0.000
logLik(fitsem3)
## 'log Lik.' -29226.47 (df=70)
fitMeasures(fitsem3, c("chisq", "df", "pvalue", "gfi","cfi","tli", "rmsea"))
##   chisq      df  pvalue     gfi     cfi     tli   rmsea 
## 756.302 255.000   0.000   0.929   0.953   0.945   0.049
fitMeasures(fitsem3,("chisq"))/fitMeasures(fitsem3,("df"))
## chisq 
## 2.966
fitMeasures(fitsem3, fit.measures = "all")
##                npar                fmin               chisq                  df 
##              70.000               0.458             756.302             255.000 
##              pvalue      baseline.chisq         baseline.df     baseline.pvalue 
##               0.000           10980.751             300.000               0.000 
##                 cfi                 tli                nnfi                 rfi 
##               0.953               0.945               0.945               0.919 
##                 nfi                pnfi                 ifi                 rni 
##               0.931               0.791               0.953               0.953 
##                logl   unrestricted.logl                 aic                 bic 
##          -29226.467          -28848.316           58592.934           58923.096 
##              ntotal                bic2               rmsea      rmsea.ci.lower 
##             826.000           58700.801               0.049               0.045 
##      rmsea.ci.upper        rmsea.pvalue                 rmr          rmr_nomean 
##               0.053               0.684               0.087               0.087 
##                srmr        srmr_bentler srmr_bentler_nomean                crmr 
##               0.052               0.052               0.052               0.054 
##         crmr_nomean          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.054               0.052               0.052             321.272 
##               cn_01                 gfi                agfi                pgfi 
##             340.068               0.929               0.910               0.729 
##                 mfi                ecvi 
##               0.738               1.085

4. Fit model4 và xem các ước lượng, chỉ số mô hình

#4.1.3 == SEM with latent + Control variables=================================
sem.model4 <- ' BEINTEN =~  BI2 + BI3 + BI5 + BI6 
              RELA =~ REL1 + REL2 + REL3+ REL4
              EDUC =~ EDU1 + EDU2 + EDU3 + EDU4 + EDU5 + EDU6 + EDU7  +  EDU8
              GOVE =~ GOV1 + GOV2 + GOV3 + GOV4 + GOV5
              ENDO =~   END2 + END3 + END4 + END5  
              # regression
               BEINTEN ~ RELA + EDUC + GOVE + ENDO + FAM + Formation + Work + Year
#  Covariance
BI2 ~~ BI3
REL4  ~~ REL1 + REL3
EDU2 ~~ EDU1 + EDU3 + EDU6
EDU5 ~~ EDU6
EDU7 ~~ EDU8
GOV4 ~~ GOV5
END5 ~~ END4 '

fitsem4 <- sem(sem.model4, data = d)

summary(fitsem4)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               965.013
##   Degrees of freedom                               351
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN =~                                          
##     BI2               1.000                           
##     BI3               1.060    0.065   16.357    0.000
##     BI5               1.298    0.081   16.065    0.000
##     BI6               1.326    0.085   15.552    0.000
##   RELA =~                                             
##     REL1              1.000                           
##     REL2              0.988    0.043   23.042    0.000
##     REL3              0.723    0.038   18.853    0.000
##     REL4              0.626    0.042   14.845    0.000
##   EDUC =~                                             
##     EDU1              1.000                           
##     EDU2              0.994    0.044   22.751    0.000
##     EDU3              1.081    0.054   19.927    0.000
##     EDU4              1.154    0.057   20.172    0.000
##     EDU5              1.027    0.051   20.008    0.000
##     EDU6              1.006    0.058   17.267    0.000
##     EDU7              1.032    0.052   19.777    0.000
##     EDU8              0.876    0.049   17.702    0.000
##   GOVE =~                                             
##     GOV1              1.000                           
##     GOV2              1.099    0.052   21.287    0.000
##     GOV3              1.099    0.052   21.325    0.000
##     GOV4              0.988    0.052   19.124    0.000
##     GOV5              0.813    0.051   15.936    0.000
##   ENDO =~                                             
##     END2              1.000                           
##     END3              1.044    0.051   20.633    0.000
##     END4              0.789    0.045   17.409    0.000
##     END5              0.890    0.055   16.302    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN ~                                           
##     RELA              0.372    0.032   11.465    0.000
##     EDUC              0.057    0.041    1.372    0.170
##     GOVE              0.095    0.043    2.206    0.027
##     ENDO             -0.060    0.031   -1.923    0.054
##     FAM              -0.003    0.054   -0.062    0.951
##     Formation         0.106    0.051    2.088    0.037
##     Work              0.104    0.042    2.500    0.012
##     Year             -0.083    0.051   -1.635    0.102
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .BI2 ~~                                              
##    .BI3               0.237    0.046    5.207    0.000
##  .REL1 ~~                                             
##    .REL4             -0.152    0.045   -3.394    0.001
##  .REL3 ~~                                             
##    .REL4              0.447    0.056    7.990    0.000
##  .EDU1 ~~                                             
##    .EDU2              0.239    0.030    7.957    0.000
##  .EDU2 ~~                                             
##    .EDU3              0.230    0.027    8.584    0.000
##    .EDU6             -0.052    0.025   -2.052    0.040
##  .EDU5 ~~                                             
##    .EDU6              0.124    0.031    3.976    0.000
##  .EDU7 ~~                                             
##    .EDU8              0.194    0.028    6.969    0.000
##  .GOV4 ~~                                             
##    .GOV5              0.228    0.030    7.525    0.000
##  .END4 ~~                                             
##    .END5              0.345    0.045    7.758    0.000
##   RELA ~~                                             
##     EDUC              0.520    0.056    9.364    0.000
##     GOVE              0.423    0.050    8.448    0.000
##     ENDO             -0.040    0.051   -0.788    0.430
##   EDUC ~~                                             
##     GOVE              0.450    0.042   10.790    0.000
##     ENDO              0.213    0.037    5.722    0.000
##   GOVE ~~                                             
##     ENDO              0.188    0.035    5.406    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .BI2               0.919    0.055   16.737    0.000
##    .BI3               1.122    0.066   16.984    0.000
##    .BI5               0.709    0.054   13.069    0.000
##    .BI6               1.016    0.068   15.039    0.000
##    .REL1              0.757    0.064   11.804    0.000
##    .REL2              0.814    0.064   12.731    0.000
##    .REL3              1.114    0.064   17.454    0.000
##    .REL4              1.302    0.076   17.155    0.000
##    .EDU1              0.998    0.054   18.407    0.000
##    .EDU2              0.628    0.036   17.336    0.000
##    .EDU3              0.595    0.036   16.521    0.000
##    .EDU4              0.629    0.039   16.323    0.000
##    .EDU5              0.516    0.032   16.230    0.000
##    .EDU6              1.012    0.056   18.064    0.000
##    .EDU7              0.565    0.034   16.618    0.000
##    .EDU8              0.701    0.039   18.020    0.000
##    .GOV1              0.744    0.042   17.563    0.000
##    .GOV2              0.393    0.028   13.850    0.000
##    .GOV3              0.388    0.028   13.752    0.000
##    .GOV4              0.602    0.036   16.878    0.000
##    .GOV5              0.814    0.044   18.468    0.000
##    .END2              0.596    0.045   13.173    0.000
##    .END3              0.351    0.041    8.556    0.000
##    .END4              0.806    0.047   17.261    0.000
##    .END5              1.254    0.071   17.785    0.000
##    .BEINTEN           0.315    0.039    8.085    0.000
##     RELA              1.660    0.124   13.342    0.000
##     EDUC              0.833    0.079   10.549    0.000
##     GOVE              0.721    0.066   10.981    0.000
##     ENDO              0.915    0.077   11.956    0.000
coef(fitsem4)
##      BEINTEN=~BI3      BEINTEN=~BI5      BEINTEN=~BI6        RELA=~REL2 
##             1.060             1.298             1.326             0.988 
##        RELA=~REL3        RELA=~REL4        EDUC=~EDU2        EDUC=~EDU3 
##             0.723             0.626             0.994             1.081 
##        EDUC=~EDU4        EDUC=~EDU5        EDUC=~EDU6        EDUC=~EDU7 
##             1.154             1.027             1.006             1.032 
##        EDUC=~EDU8        GOVE=~GOV2        GOVE=~GOV3        GOVE=~GOV4 
##             0.876             1.099             1.099             0.988 
##        GOVE=~GOV5        ENDO=~END3        ENDO=~END4        ENDO=~END5 
##             0.813             1.044             0.789             0.890 
##      BEINTEN~RELA      BEINTEN~EDUC      BEINTEN~GOVE      BEINTEN~ENDO 
##             0.372             0.057             0.095            -0.060 
##       BEINTEN~FAM BEINTEN~Formation      BEINTEN~Work      BEINTEN~Year 
##            -0.003             0.106             0.104            -0.083 
##          BI2~~BI3        REL1~~REL4        REL3~~REL4        EDU1~~EDU2 
##             0.237            -0.152             0.447             0.239 
##        EDU2~~EDU3        EDU2~~EDU6        EDU5~~EDU6        EDU7~~EDU8 
##             0.230            -0.052             0.124             0.194 
##        GOV4~~GOV5        END4~~END5          BI2~~BI2          BI3~~BI3 
##             0.228             0.345             0.919             1.122 
##          BI5~~BI5          BI6~~BI6        REL1~~REL1        REL2~~REL2 
##             0.709             1.016             0.757             0.814 
##        REL3~~REL3        REL4~~REL4        EDU1~~EDU1        EDU2~~EDU2 
##             1.114             1.302             0.998             0.628 
##        EDU3~~EDU3        EDU4~~EDU4        EDU5~~EDU5        EDU6~~EDU6 
##             0.595             0.629             0.516             1.012 
##        EDU7~~EDU7        EDU8~~EDU8        GOV1~~GOV1        GOV2~~GOV2 
##             0.565             0.701             0.744             0.393 
##        GOV3~~GOV3        GOV4~~GOV4        GOV5~~GOV5        END2~~END2 
##             0.388             0.602             0.814             0.596 
##        END3~~END3        END4~~END4        END5~~END5  BEINTEN~~BEINTEN 
##             0.351             0.806             1.254             0.315 
##        RELA~~RELA        EDUC~~EDUC        GOVE~~GOVE        ENDO~~ENDO 
##             1.660             0.833             0.721             0.915 
##        RELA~~EDUC        RELA~~GOVE        RELA~~ENDO        EDUC~~GOVE 
##             0.520             0.423            -0.040             0.450 
##        EDUC~~ENDO        GOVE~~ENDO 
##             0.213             0.188
fitted(fitsem4)
## $cov
##           BI2    BI3    BI5    BI6    REL1   REL2   REL3   REL4   EDU1   EDU2  
## BI2        1.540                                                               
## BI3        0.895  1.819                                                        
## BI5        0.805  0.853  1.753                                                 
## BI6        0.823  0.872  1.068  2.107                                          
## REL1       0.690  0.731  0.895  0.915  2.417                                   
## REL2       0.681  0.722  0.884  0.904  1.640  2.434                            
## REL3       0.499  0.529  0.647  0.661  1.200  1.186  1.981                     
## REL4       0.432  0.457  0.560  0.572  0.886  1.026  1.197  1.952              
## EDU1       0.271  0.287  0.351  0.359  0.520  0.513  0.376  0.325  1.831       
## EDU2       0.269  0.285  0.349  0.357  0.516  0.510  0.373  0.323  1.067  1.450
## EDU3       0.293  0.310  0.380  0.388  0.562  0.555  0.406  0.352  0.901  1.125
## EDU4       0.312  0.331  0.405  0.414  0.600  0.593  0.434  0.375  0.961  0.955
## EDU5       0.278  0.295  0.361  0.369  0.534  0.527  0.386  0.334  0.856  0.850
## EDU6       0.272  0.288  0.353  0.361  0.523  0.516  0.378  0.327  0.838  0.781
## EDU7       0.279  0.296  0.362  0.370  0.537  0.530  0.388  0.336  0.860  0.855
## EDU8       0.237  0.251  0.308  0.314  0.455  0.450  0.329  0.285  0.730  0.725
## GOV1       0.240  0.255  0.312  0.319  0.423  0.418  0.306  0.265  0.450  0.447
## GOV2       0.264  0.280  0.343  0.350  0.465  0.459  0.336  0.291  0.494  0.491
## GOV3       0.264  0.280  0.343  0.350  0.465  0.459  0.336  0.291  0.495  0.491
## GOV4       0.237  0.251  0.308  0.315  0.418  0.413  0.302  0.261  0.444  0.442
## GOV5       0.195  0.207  0.253  0.259  0.344  0.340  0.249  0.215  0.366  0.364
## END2      -0.040 -0.042 -0.052 -0.053 -0.040 -0.040 -0.029 -0.025  0.213  0.212
## END3      -0.042 -0.044 -0.054 -0.055 -0.042 -0.041 -0.030 -0.026  0.223  0.221
## END4      -0.031 -0.033 -0.041 -0.042 -0.032 -0.031 -0.023 -0.020  0.168  0.167
## END5      -0.036 -0.038 -0.046 -0.047 -0.036 -0.035 -0.026 -0.022  0.190  0.189
## FAM        0.001  0.001  0.001  0.001  0.000  0.000  0.000  0.000  0.000  0.000
## Formation  0.027  0.029  0.035  0.036  0.000  0.000  0.000  0.000  0.000  0.000
## Work       0.038  0.040  0.050  0.051  0.000  0.000  0.000  0.000  0.000  0.000
## Year      -0.017 -0.018 -0.022 -0.023  0.000  0.000  0.000  0.000  0.000  0.000
##           EDU3   EDU4   EDU5   EDU6   EDU7   EDU8   GOV1   GOV2   GOV3   GOV4  
## BI2                                                                            
## BI3                                                                            
## BI5                                                                            
## BI6                                                                            
## REL1                                                                           
## REL2                                                                           
## REL3                                                                           
## REL4                                                                           
## EDU1                                                                           
## EDU2                                                                           
## EDU3       1.568                                                               
## EDU4       1.039  1.738                                                        
## EDU5       0.925  0.987  1.395                                                 
## EDU6       0.906  0.967  0.985  1.855                                          
## EDU7       0.930  0.992  0.883  0.865  1.452                                   
## EDU8       0.789  0.842  0.749  0.734  0.947  1.340                            
## GOV1       0.486  0.519  0.462  0.452  0.464  0.394  1.464                     
## GOV2       0.534  0.571  0.508  0.497  0.510  0.433  0.792  1.264              
## GOV3       0.535  0.571  0.508  0.497  0.511  0.433  0.792  0.871  1.259       
## GOV4       0.480  0.513  0.456  0.447  0.459  0.389  0.712  0.782  0.783  1.305
## GOV5       0.396  0.422  0.376  0.368  0.378  0.320  0.586  0.644  0.644  0.807
## END2       0.231  0.246  0.219  0.215  0.220  0.187  0.188  0.207  0.207  0.186
## END3       0.241  0.257  0.229  0.224  0.230  0.195  0.196  0.216  0.216  0.194
## END4       0.182  0.194  0.173  0.169  0.174  0.147  0.148  0.163  0.163  0.147
## END5       0.205  0.219  0.195  0.191  0.196  0.166  0.167  0.184  0.184  0.165
## FAM        0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## Formation  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## Work       0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
## Year       0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000
##           GOV5   END2   END3   END4   END5   FAM    Formtn Work   Year  
## BI2                                                                     
## BI3                                                                     
## BI5                                                                     
## BI6                                                                     
## REL1                                                                    
## REL2                                                                    
## REL3                                                                    
## REL4                                                                    
## EDU1                                                                    
## EDU2                                                                    
## EDU3                                                                    
## EDU4                                                                    
## EDU5                                                                    
## EDU6                                                                    
## EDU7                                                                    
## EDU8                                                                    
## GOV1                                                                    
## GOV2                                                                    
## GOV3                                                                    
## GOV4                                                                    
## GOV5       1.291                                                        
## END2       0.153  1.511                                                 
## END3       0.160  0.955  1.348                                          
## END4       0.121  0.721  0.753  1.376                                   
## END5       0.136  0.814  0.850  0.988  1.979                            
## FAM        0.000  0.000  0.000  0.000  0.000  0.218                     
## Formation  0.000  0.000  0.000  0.000  0.000  0.022  0.249              
## Work       0.000  0.000  0.000  0.000  0.000 -0.010  0.014  0.372       
## Year       0.000  0.000  0.000  0.000  0.000 -0.006  0.009  0.026  0.250
show(fitsem4)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               965.013
##   Degrees of freedom                               351
##   P-value (Chi-square)                           0.000
logLik(fitsem4)
## 'log Lik.' -29220.27 (df=74)
fitMeasures(fitsem4, c("chisq", "df", "pvalue", "gfi","cfi","tli", "rmsea"))
##   chisq      df  pvalue     gfi     cfi     tli   rmsea 
## 965.013 351.000   0.000   0.912   0.943   0.935   0.046
fitMeasures(fitsem4,("chisq"))/fitMeasures(fitsem4,("df"))
## chisq 
## 2.749
fitMeasures(fitsem4, fit.measures = "all")
##                npar                fmin               chisq                  df 
##              74.000               0.584             965.013             351.000 
##              pvalue      baseline.chisq         baseline.df     baseline.pvalue 
##               0.000           11201.862             400.000               0.000 
##                 cfi                 tli                nnfi                 rfi 
##               0.943               0.935               0.935               0.902 
##                 nfi                pnfi                 ifi                 rni 
##               0.914               0.802               0.943               0.943 
##                logl   unrestricted.logl                 aic                 bic 
##          -29220.267          -28737.761           58588.535           58937.563 
##              ntotal                bic2               rmsea      rmsea.ci.lower 
##             826.000           58702.566               0.046               0.043 
##      rmsea.ci.upper        rmsea.pvalue                 rmr          rmr_nomean 
##               0.049               0.970               0.079               0.079 
##                srmr        srmr_bentler srmr_bentler_nomean                crmr 
##               0.058               0.058               0.058               0.060 
##         crmr_nomean          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.060               0.058               0.058             339.688 
##               cn_01                 gfi                agfi                pgfi 
##             356.699               0.912               0.891               0.736 
##                 mfi                ecvi 
##               0.690               1.347

5. Ghép kết quả độ phù hợp model3 và model4

Tab5 <- data.frame(cbind(round(fitMeasures(fitsem3, c( "gfi","cfi", "rmsea")),3),
                         round(fitMeasures(fitsem4, c( "gfi","cfi", "rmsea")), 3)))

names(Tab5) <- c("Sem3", "Sem4")

Tab5["CMINDf", ] <- c(round(fitMeasures(fitsem3,("chisq"))/fitMeasures(fitsem3,("df")), 3),
                      round(fitMeasures(fitsem4,("chisq"))/fitMeasures(fitsem4,("df")), 3))

Tab5
##         Sem3  Sem4
## gfi    0.929 0.912
## cfi    0.953 0.943
## rmsea  0.049 0.046
## CMINDf 2.966 2.749

6. Ghép bảng hệ số hồi quy của model3 và model4

Reg.coef.sem3 <- summary(fitsem3)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        70
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               756.302
##   Degrees of freedom                               255
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN =~                                          
##     BI2               1.000                           
##     BI3               1.060    0.064   16.495    0.000
##     BI5               1.307    0.081   16.225    0.000
##     BI6               1.335    0.085   15.711    0.000
##   RELA =~                                             
##     REL1              1.000                           
##     REL2              0.987    0.043   23.040    0.000
##     REL3              0.723    0.038   18.864    0.000
##     REL4              0.626    0.042   14.854    0.000
##   EDUC =~                                             
##     EDU1              1.000                           
##     EDU2              0.994    0.044   22.763    0.000
##     EDU3              1.081    0.054   19.941    0.000
##     EDU4              1.154    0.057   20.186    0.000
##     EDU5              1.026    0.051   20.014    0.000
##     EDU6              1.005    0.058   17.269    0.000
##     EDU7              1.032    0.052   19.782    0.000
##     EDU8              0.875    0.049   17.707    0.000
##   GOVE =~                                             
##     GOV1              1.000                           
##     GOV2              1.099    0.052   21.291    0.000
##     GOV3              1.099    0.052   21.326    0.000
##     GOV4              0.988    0.052   19.126    0.000
##     GOV5              0.813    0.051   15.936    0.000
##   ENDO =~                                             
##     END2              1.000                           
##     END3              1.044    0.051   20.636    0.000
##     END4              0.789    0.045   17.409    0.000
##     END5              0.891    0.055   16.309    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN ~                                           
##     RELA              0.373    0.033   11.480    0.000
##     EDUC              0.079    0.042    1.894    0.058
##     GOVE              0.089    0.043    2.046    0.041
##     ENDO             -0.064    0.031   -2.039    0.041
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .BI2 ~~                                              
##    .BI3               0.243    0.046    5.320    0.000
##  .REL1 ~~                                             
##    .REL4             -0.153    0.045   -3.415    0.001
##  .REL3 ~~                                             
##    .REL4              0.445    0.056    7.969    0.000
##  .EDU1 ~~                                             
##    .EDU2              0.238    0.030    7.949    0.000
##  .EDU2 ~~                                             
##    .EDU3              0.230    0.027    8.577    0.000
##    .EDU6             -0.052    0.025   -2.054    0.040
##  .EDU5 ~~                                             
##    .EDU6              0.125    0.031    3.991    0.000
##  .EDU7 ~~                                             
##    .EDU8              0.194    0.028    6.979    0.000
##  .GOV4 ~~                                             
##    .GOV5              0.228    0.030    7.525    0.000
##  .END4 ~~                                             
##    .END5              0.345    0.045    7.752    0.000
##   RELA ~~                                             
##     EDUC              0.520    0.056    9.368    0.000
##     GOVE              0.423    0.050    8.451    0.000
##     ENDO             -0.040    0.051   -0.787    0.432
##   EDUC ~~                                             
##     GOVE              0.450    0.042   10.792    0.000
##     ENDO              0.213    0.037    5.722    0.000
##   GOVE ~~                                             
##     ENDO              0.188    0.035    5.406    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .BI2               0.925    0.055   16.787    0.000
##    .BI3               1.128    0.066   17.030    0.000
##    .BI5               0.703    0.054   12.950    0.000
##    .BI6               1.012    0.068   14.973    0.000
##    .REL1              0.755    0.064   11.788    0.000
##    .REL2              0.816    0.064   12.767    0.000
##    .REL3              1.113    0.064   17.449    0.000
##    .REL4              1.301    0.076   17.142    0.000
##    .EDU1              0.998    0.054   18.406    0.000
##    .EDU2              0.627    0.036   17.333    0.000
##    .EDU3              0.594    0.036   16.519    0.000
##    .EDU4              0.629    0.039   16.322    0.000
##    .EDU5              0.517    0.032   16.241    0.000
##    .EDU6              1.012    0.056   18.069    0.000
##    .EDU7              0.565    0.034   16.627    0.000
##    .EDU8              0.701    0.039   18.024    0.000
##    .GOV1              0.743    0.042   17.561    0.000
##    .GOV2              0.393    0.028   13.847    0.000
##    .GOV3              0.388    0.028   13.754    0.000
##    .GOV4              0.602    0.036   16.877    0.000
##    .GOV5              0.814    0.044   18.468    0.000
##    .END2              0.596    0.045   13.181    0.000
##    .END3              0.351    0.041    8.561    0.000
##    .END4              0.806    0.047   17.260    0.000
##    .END5              1.254    0.071   17.781    0.000
##    .BEINTEN           0.319    0.039    8.141    0.000
##     RELA              1.661    0.124   13.350    0.000
##     EDUC              0.834    0.079   10.555    0.000
##     GOVE              0.721    0.066   10.983    0.000
##     ENDO              0.914    0.076   11.955    0.000
Reg.coef.sem3 <- Reg.coef.sem3[[1]]%>% filter(op == "~") %>% select(lhs,op, rhs ,exo ,est, pvalue)
Reg.coef.sem3$star <- ifelse(Reg.coef.sem3$pvalue <= 0.001, "***",
                             ifelse(Reg.coef.sem3$pvalue > 0.001 &Reg.coef.sem3$pvalue<0.01, "**", 
                                    ifelse(Reg.coef.sem3$pvalue > 0.01 & Reg.coef.sem3$pvalue<0.05, "*", " ")))
Reg.coef.sem3 <- Reg.coef.sem3 %>% 
               mutate(Sem3 = paste0(round(est, 3),star ), Sem3Pvalue = round(pvalue,3)) %>% 
             select(rhs, Sem3, Sem3Pvalue)


Reg.coef.sem4 <- summary(fitsem4)
## lavaan 0.6-8 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##                                                       
##   Number of observations                           826
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               965.013
##   Degrees of freedom                               351
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN =~                                          
##     BI2               1.000                           
##     BI3               1.060    0.065   16.357    0.000
##     BI5               1.298    0.081   16.065    0.000
##     BI6               1.326    0.085   15.552    0.000
##   RELA =~                                             
##     REL1              1.000                           
##     REL2              0.988    0.043   23.042    0.000
##     REL3              0.723    0.038   18.853    0.000
##     REL4              0.626    0.042   14.845    0.000
##   EDUC =~                                             
##     EDU1              1.000                           
##     EDU2              0.994    0.044   22.751    0.000
##     EDU3              1.081    0.054   19.927    0.000
##     EDU4              1.154    0.057   20.172    0.000
##     EDU5              1.027    0.051   20.008    0.000
##     EDU6              1.006    0.058   17.267    0.000
##     EDU7              1.032    0.052   19.777    0.000
##     EDU8              0.876    0.049   17.702    0.000
##   GOVE =~                                             
##     GOV1              1.000                           
##     GOV2              1.099    0.052   21.287    0.000
##     GOV3              1.099    0.052   21.325    0.000
##     GOV4              0.988    0.052   19.124    0.000
##     GOV5              0.813    0.051   15.936    0.000
##   ENDO =~                                             
##     END2              1.000                           
##     END3              1.044    0.051   20.633    0.000
##     END4              0.789    0.045   17.409    0.000
##     END5              0.890    0.055   16.302    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   BEINTEN ~                                           
##     RELA              0.372    0.032   11.465    0.000
##     EDUC              0.057    0.041    1.372    0.170
##     GOVE              0.095    0.043    2.206    0.027
##     ENDO             -0.060    0.031   -1.923    0.054
##     FAM              -0.003    0.054   -0.062    0.951
##     Formation         0.106    0.051    2.088    0.037
##     Work              0.104    0.042    2.500    0.012
##     Year             -0.083    0.051   -1.635    0.102
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .BI2 ~~                                              
##    .BI3               0.237    0.046    5.207    0.000
##  .REL1 ~~                                             
##    .REL4             -0.152    0.045   -3.394    0.001
##  .REL3 ~~                                             
##    .REL4              0.447    0.056    7.990    0.000
##  .EDU1 ~~                                             
##    .EDU2              0.239    0.030    7.957    0.000
##  .EDU2 ~~                                             
##    .EDU3              0.230    0.027    8.584    0.000
##    .EDU6             -0.052    0.025   -2.052    0.040
##  .EDU5 ~~                                             
##    .EDU6              0.124    0.031    3.976    0.000
##  .EDU7 ~~                                             
##    .EDU8              0.194    0.028    6.969    0.000
##  .GOV4 ~~                                             
##    .GOV5              0.228    0.030    7.525    0.000
##  .END4 ~~                                             
##    .END5              0.345    0.045    7.758    0.000
##   RELA ~~                                             
##     EDUC              0.520    0.056    9.364    0.000
##     GOVE              0.423    0.050    8.448    0.000
##     ENDO             -0.040    0.051   -0.788    0.430
##   EDUC ~~                                             
##     GOVE              0.450    0.042   10.790    0.000
##     ENDO              0.213    0.037    5.722    0.000
##   GOVE ~~                                             
##     ENDO              0.188    0.035    5.406    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .BI2               0.919    0.055   16.737    0.000
##    .BI3               1.122    0.066   16.984    0.000
##    .BI5               0.709    0.054   13.069    0.000
##    .BI6               1.016    0.068   15.039    0.000
##    .REL1              0.757    0.064   11.804    0.000
##    .REL2              0.814    0.064   12.731    0.000
##    .REL3              1.114    0.064   17.454    0.000
##    .REL4              1.302    0.076   17.155    0.000
##    .EDU1              0.998    0.054   18.407    0.000
##    .EDU2              0.628    0.036   17.336    0.000
##    .EDU3              0.595    0.036   16.521    0.000
##    .EDU4              0.629    0.039   16.323    0.000
##    .EDU5              0.516    0.032   16.230    0.000
##    .EDU6              1.012    0.056   18.064    0.000
##    .EDU7              0.565    0.034   16.618    0.000
##    .EDU8              0.701    0.039   18.020    0.000
##    .GOV1              0.744    0.042   17.563    0.000
##    .GOV2              0.393    0.028   13.850    0.000
##    .GOV3              0.388    0.028   13.752    0.000
##    .GOV4              0.602    0.036   16.878    0.000
##    .GOV5              0.814    0.044   18.468    0.000
##    .END2              0.596    0.045   13.173    0.000
##    .END3              0.351    0.041    8.556    0.000
##    .END4              0.806    0.047   17.261    0.000
##    .END5              1.254    0.071   17.785    0.000
##    .BEINTEN           0.315    0.039    8.085    0.000
##     RELA              1.660    0.124   13.342    0.000
##     EDUC              0.833    0.079   10.549    0.000
##     GOVE              0.721    0.066   10.981    0.000
##     ENDO              0.915    0.077   11.956    0.000
Reg.coef.sem4 <- Reg.coef.sem4[[1]]%>% 
  filter(op == "~") %>%
  select(lhs,op, rhs ,exo ,est, pvalue)
Reg.coef.sem4$star <- ifelse(Reg.coef.sem4$pvalue <= 0.001, "***",
                             ifelse(Reg.coef.sem4$pvalue > 0.001 &Reg.coef.sem4$pvalue<0.01, "**", 
                                    ifelse(Reg.coef.sem4$pvalue > 0.01 & Reg.coef.sem4$pvalue<0.05, "*", " ")))
Reg.coef.sem4 <- Reg.coef.sem4 %>%
  mutate(Sem4 = paste0(round(est, 3),star ), Sem4Pvalue = round(pvalue,3)) %>%
  select(rhs, Sem4, Sem4Pvalue)

Reg.coef.ALL <- left_join(Reg.coef.sem4, Reg.coef.sem3)
## Joining, by = "rhs"
Reg.coef.ALL 
##         rhs     Sem4 Sem4Pvalue     Sem3 Sem3Pvalue
## 1      RELA 0.372***      0.000 0.373***      0.000
## 2      EDUC   0.057       0.170   0.079       0.058
## 3      GOVE   0.095*      0.027   0.089*      0.041
## 4      ENDO   -0.06       0.054  -0.064*      0.041
## 5       FAM  -0.003       0.951     <NA>         NA
## 6 Formation   0.106*      0.037     <NA>         NA
## 7      Work   0.104*      0.012     <NA>         NA
## 8      Year  -0.083       0.102     <NA>         NA

7. Ghi bảng kết quả dưới file .csv

write.csv(Tab5, file= "Tab5.csv")
write.csv(Reg.coef.ALL, file= "Reg.coef.ALL.csv")

8. Vẽ Pathdiagram

semPaths(fitsem3, "std", edge.label.cex = 0.7, 
         curvePivot = FALSE, rotation = 2,
         intercepts = FALSE,
         fade = FALSE,
         sizeMan2 = 1.5, edge.width = 0.6,# width size of edge.x
         covAtResiduals = FALSE,
         esize = 2, residScale = 1) 

semPaths(fitsem4, "est", edge.label.cex = 0.5, 
         curvePivot = FALSE, rotation = 2,
         intercepts = FALSE,
         fade = FALSE,
         sizeMan2 = 1.5, edge.width = 0.6,# width size of edge.x
         covAtResiduals = FALSE,
         esize = 2, residScale = 1) 

Trân trọng cảm ơn!