#IMPORTING DATA
data<-read.csv("/Users/leopestillo/Google Drive/Analysis/jhainy/banco_SM.csv",sep=',')
#Dados Síndrome Metabólica
dados_sindrome_metabolica <- with(data, data.frame(
#q1,#q2,
#q3,
q4,#q5,
q6,q7,q8,q9,q10,q11,q12,q13,#q14,
q15,q16,q17,q18,q19,q20,q21,q22,q23,q24,q25,q26,q27,q28,q29,q30,q31,q32,q33,q34,
q35,q36,q37,q38,q39#q40
))
summary(dados_sindrome_metabolica)
## q4 q6 q7 q8 q9
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.00 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.00 Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.49 Mean :1.343 Mean :1.196 Mean :1.171 Mean :1.228
## 3rd Qu.:2.00 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :4.00 Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## q10 q11 q12 q13
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.437 Mean :1.451 Mean :1.625 Mean :1.435
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## q15 q16 q17 q18
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :3.000
## Mean :1.212 Mean :1.086 Mean :1.429 Mean :2.486
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :4.000 Max. :4.000 Max. :5.000 Max. :5.000
##
## q19 q20 q21 q22
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.522 Mean :1.481 Mean :1.721 Mean :1.581
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## q23 q24 q25 q26
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.201 Mean :1.459 Mean :1.749 Mean :1.582
## 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :4.000 Max. :5.000 Max. :5.000
## NA's :121
## q27 q28 q29 q30
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :2.000 Median :1.000
## Mean :1.868 Mean :1.834 Mean :1.806 Mean :1.407
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :4.000
##
## q31 q32 q33 q34 q35
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.00 Median :1.000
## Mean :1.481 Mean :1.366 Mean :1.379 Mean :1.63 Mean :1.543
## 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:2.000
## Max. :5.000 Max. :4.000 Max. :5.000 Max. :5.00 Max. :5.000
##
## q36 q37 q38 q39
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.623 Mean :1.415 Mean :1.472 Mean :1.362
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
describe(dados_sindrome_metabolica)
## dados_sindrome_metabolica
##
## 34 Variables 718 Observations
## --------------------------------------------------------------------------------
## q4
## n missing distinct Info Mean Gmd
## 718 0 4 0.752 1.49 0.6343
##
## Value 1 2 3 4
## Frequency 422 256 24 16
## Proportion 0.588 0.357 0.033 0.022
## --------------------------------------------------------------------------------
## q6
## n missing distinct Info Mean Gmd
## 718 0 5 0.585 1.343 0.5442
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 532 144 29 8 5
## Proportion 0.741 0.201 0.040 0.011 0.007
## --------------------------------------------------------------------------------
## q7
## n missing distinct Info Mean Gmd
## 718 0 5 0.382 1.196 0.3463
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 611 83 16 6 2
## Proportion 0.851 0.116 0.022 0.008 0.003
## --------------------------------------------------------------------------------
## q8
## n missing distinct Info Mean Gmd
## 718 0 5 0.349 1.171 0.3056
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 622 76 14 5 1
## Proportion 0.866 0.106 0.019 0.007 0.001
## --------------------------------------------------------------------------------
## q9
## n missing distinct Info Mean Gmd
## 718 0 5 0.403 1.228 0.4027
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 604 85 14 9 6
## Proportion 0.841 0.118 0.019 0.013 0.008
## --------------------------------------------------------------------------------
## q10
## n missing distinct Info Mean Gmd
## 718 0 5 0.672 1.437 0.6555
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 487 179 27 19 6
## Proportion 0.678 0.249 0.038 0.026 0.008
## --------------------------------------------------------------------------------
## q11
## n missing distinct Info Mean Gmd
## 718 0 5 0.664 1.451 0.6868
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 494 153 46 21 4
## Proportion 0.688 0.213 0.064 0.029 0.006
## --------------------------------------------------------------------------------
## q12
## n missing distinct Info Mean Gmd
## 718 0 5 0.777 1.625 0.8637
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 422 192 65 29 10
## Proportion 0.588 0.267 0.091 0.040 0.014
## --------------------------------------------------------------------------------
## q13
## n missing distinct Info Mean Gmd
## 718 0 5 0.69 1.435 0.6292
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 473 207 14 19 5
## Proportion 0.659 0.288 0.019 0.026 0.007
## --------------------------------------------------------------------------------
## q15
## n missing distinct Info Mean Gmd
## 718 0 4 0.409 1.212 0.3681
##
## Value 1 2 3 4
## Frequency 602 86 24 6
## Proportion 0.838 0.120 0.033 0.008
## --------------------------------------------------------------------------------
## q16
## n missing distinct Info Mean Gmd
## 718 0 4 0.184 1.086 0.1636
##
## Value 1 2 3 4
## Frequency 671 33 13 1
## Proportion 0.935 0.046 0.018 0.001
## --------------------------------------------------------------------------------
## q17
## n missing distinct Info Mean Gmd
## 718 0 5 0.637 1.429 0.6652
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 509 132 60 12 5
## Proportion 0.709 0.184 0.084 0.017 0.007
## --------------------------------------------------------------------------------
## q18
## n missing distinct Info Mean Gmd
## 718 0 5 0.879 2.486 1.178
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 184 122 332 39 41
## Proportion 0.256 0.170 0.462 0.054 0.057
## --------------------------------------------------------------------------------
## q19
## n missing distinct Info Mean Gmd
## 718 0 5 0.644 1.522 0.8236
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 507 108 61 23 19
## Proportion 0.706 0.150 0.085 0.032 0.026
## --------------------------------------------------------------------------------
## q20
## n missing distinct Info Mean Gmd
## 718 0 5 0.677 1.481 0.7312
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 486 166 32 21 13
## Proportion 0.677 0.231 0.045 0.029 0.018
## --------------------------------------------------------------------------------
## q21
## n missing distinct Info Mean Gmd
## 718 0 5 0.761 1.721 0.9711
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 435 80 178 18 7
## Proportion 0.606 0.111 0.248 0.025 0.010
## --------------------------------------------------------------------------------
## q22
## n missing distinct Info Mean Gmd
## 718 0 5 0.754 1.581 0.8049
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 442 150 113 11 2
## Proportion 0.616 0.209 0.157 0.015 0.003
## --------------------------------------------------------------------------------
## q23
## n missing distinct Info Mean Gmd
## 718 0 5 0.377 1.201 0.3551
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 613 75 22 7 1
## Proportion 0.854 0.104 0.031 0.010 0.001
## --------------------------------------------------------------------------------
## q24
## n missing distinct Info Mean Gmd
## 597 121 4 0.675 1.459 0.6813
##
## Value 1 2 3 4
## Frequency 407 111 74 5
## Proportion 0.682 0.186 0.124 0.008
## --------------------------------------------------------------------------------
## q25
## n missing distinct Info Mean Gmd
## 718 0 5 0.831 1.749 0.951
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 379 179 130 21 9
## Proportion 0.528 0.249 0.181 0.029 0.013
## --------------------------------------------------------------------------------
## q26
## n missing distinct Info Mean Gmd
## 718 0 5 0.747 1.582 0.8134
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 447 140 119 8 4
## Proportion 0.623 0.195 0.166 0.011 0.006
## --------------------------------------------------------------------------------
## q27
## n missing distinct Info Mean Gmd
## 718 0 5 0.853 1.868 1.032
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 354 144 193 15 12
## Proportion 0.493 0.201 0.269 0.021 0.017
## --------------------------------------------------------------------------------
## q28
## n missing distinct Info Mean Gmd
## 718 0 5 0.846 1.834 0.9974
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 361 144 191 15 7
## Proportion 0.503 0.201 0.266 0.021 0.010
## --------------------------------------------------------------------------------
## q29
## n missing distinct Info Mean Gmd
## 718 0 5 0.86 1.806 0.9557
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 339 221 126 22 10
## Proportion 0.472 0.308 0.175 0.031 0.014
## --------------------------------------------------------------------------------
## q30
## n missing distinct Info Mean Gmd
## 718 0 4 0.654 1.407 0.6111
##
## Value 1 2 3 4
## Frequency 499 153 59 7
## Proportion 0.695 0.213 0.082 0.010
## --------------------------------------------------------------------------------
## q31
## n missing distinct Info Mean Gmd
## 718 0 5 0.689 1.481 0.7076
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 482 137 90 8 1
## Proportion 0.671 0.191 0.125 0.011 0.001
## --------------------------------------------------------------------------------
## q32
## n missing distinct Info Mean Gmd
## 718 0 4 0.569 1.366 0.5901
##
## Value 1 2 3 4
## Frequency 541 103 62 12
## Proportion 0.753 0.143 0.086 0.017
## --------------------------------------------------------------------------------
## q33
## n missing distinct Info Mean Gmd
## 718 0 5 0.615 1.379 0.5903
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 519 139 48 11 1
## Proportion 0.723 0.194 0.067 0.015 0.001
## --------------------------------------------------------------------------------
## q34
## n missing distinct Info Mean Gmd
## 718 0 5 0.783 1.63 0.8589
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 419 184 89 14 12
## Proportion 0.584 0.256 0.124 0.019 0.017
## --------------------------------------------------------------------------------
## q35
## n missing distinct Info Mean Gmd
## 718 0 5 0.772 1.543 0.7127
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 416 230 59 10 3
## Proportion 0.579 0.320 0.082 0.014 0.004
## --------------------------------------------------------------------------------
## q36
## n missing distinct Info Mean Gmd
## 718 0 5 0.782 1.623 0.8456
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 419 184 91 15 9
## Proportion 0.584 0.256 0.127 0.021 0.013
## --------------------------------------------------------------------------------
## q37
## n missing distinct Info Mean Gmd
## 718 0 5 0.656 1.415 0.6268
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 498 156 53 8 3
## Proportion 0.694 0.217 0.074 0.011 0.004
## --------------------------------------------------------------------------------
## q38
## n missing distinct Info Mean Gmd
## 718 0 5 0.689 1.472 0.6991
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 481 153 69 12 3
## Proportion 0.670 0.213 0.096 0.017 0.004
## --------------------------------------------------------------------------------
## q39
## n missing distinct Info Mean Gmd
## 718 0 5 0.584 1.362 0.5774
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 534 120 54 8 2
## Proportion 0.744 0.167 0.075 0.011 0.003
## --------------------------------------------------------------------------------
#Complementar dados faltantes
data_imputed <- mice(dados_sindrome_metabolica, seed = 2222, m=10)
##
## iter imp variable
## 1 1 q24
## 1 2 q24
## 1 3 q24
## 1 4 q24
## 1 5 q24
## 1 6 q24
## 1 7 q24
## 1 8 q24
## 1 9 q24
## 1 10 q24
## 2 1 q24
## 2 2 q24
## 2 3 q24
## 2 4 q24
## 2 5 q24
## 2 6 q24
## 2 7 q24
## 2 8 q24
## 2 9 q24
## 2 10 q24
## 3 1 q24
## 3 2 q24
## 3 3 q24
## 3 4 q24
## 3 5 q24
## 3 6 q24
## 3 7 q24
## 3 8 q24
## 3 9 q24
## 3 10 q24
## 4 1 q24
## 4 2 q24
## 4 3 q24
## 4 4 q24
## 4 5 q24
## 4 6 q24
## 4 7 q24
## 4 8 q24
## 4 9 q24
## 4 10 q24
## 5 1 q24
## 5 2 q24
## 5 3 q24
## 5 4 q24
## 5 5 q24
## 5 6 q24
## 5 7 q24
## 5 8 q24
## 5 9 q24
## 5 10 q24
SM_dados<-mice::complete(data_imputed,4)
summary(SM_dados)
## q4 q6 q7 q8 q9
## Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.00 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.00 Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.49 Mean :1.343 Mean :1.196 Mean :1.171 Mean :1.228
## 3rd Qu.:2.00 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :4.00 Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## q10 q11 q12 q13
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.437 Mean :1.451 Mean :1.625 Mean :1.435
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## q15 q16 q17 q18
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :3.000
## Mean :1.212 Mean :1.086 Mean :1.429 Mean :2.486
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :4.000 Max. :4.000 Max. :5.000 Max. :5.000
## q19 q20 q21 q22
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.522 Mean :1.481 Mean :1.721 Mean :1.581
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## q23 q24 q25 q26
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.201 Mean :1.443 Mean :1.749 Mean :1.582
## 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :4.000 Max. :5.000 Max. :5.000
## q27 q28 q29 q30
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :2.000 Median :1.000
## Mean :1.868 Mean :1.834 Mean :1.806 Mean :1.407
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :4.000
## q31 q32 q33 q34 q35
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.00 Median :1.000
## Mean :1.481 Mean :1.366 Mean :1.379 Mean :1.63 Mean :1.543
## 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:2.000
## Max. :5.000 Max. :4.000 Max. :5.000 Max. :5.00 Max. :5.000
## q36 q37 q38 q39
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.623 Mean :1.415 Mean :1.472 Mean :1.362
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
describe(SM_dados)
## SM_dados
##
## 34 Variables 718 Observations
## --------------------------------------------------------------------------------
## q4
## n missing distinct Info Mean Gmd
## 718 0 4 0.752 1.49 0.6343
##
## Value 1 2 3 4
## Frequency 422 256 24 16
## Proportion 0.588 0.357 0.033 0.022
## --------------------------------------------------------------------------------
## q6
## n missing distinct Info Mean Gmd
## 718 0 5 0.585 1.343 0.5442
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 532 144 29 8 5
## Proportion 0.741 0.201 0.040 0.011 0.007
## --------------------------------------------------------------------------------
## q7
## n missing distinct Info Mean Gmd
## 718 0 5 0.382 1.196 0.3463
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 611 83 16 6 2
## Proportion 0.851 0.116 0.022 0.008 0.003
## --------------------------------------------------------------------------------
## q8
## n missing distinct Info Mean Gmd
## 718 0 5 0.349 1.171 0.3056
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 622 76 14 5 1
## Proportion 0.866 0.106 0.019 0.007 0.001
## --------------------------------------------------------------------------------
## q9
## n missing distinct Info Mean Gmd
## 718 0 5 0.403 1.228 0.4027
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 604 85 14 9 6
## Proportion 0.841 0.118 0.019 0.013 0.008
## --------------------------------------------------------------------------------
## q10
## n missing distinct Info Mean Gmd
## 718 0 5 0.672 1.437 0.6555
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 487 179 27 19 6
## Proportion 0.678 0.249 0.038 0.026 0.008
## --------------------------------------------------------------------------------
## q11
## n missing distinct Info Mean Gmd
## 718 0 5 0.664 1.451 0.6868
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 494 153 46 21 4
## Proportion 0.688 0.213 0.064 0.029 0.006
## --------------------------------------------------------------------------------
## q12
## n missing distinct Info Mean Gmd
## 718 0 5 0.777 1.625 0.8637
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 422 192 65 29 10
## Proportion 0.588 0.267 0.091 0.040 0.014
## --------------------------------------------------------------------------------
## q13
## n missing distinct Info Mean Gmd
## 718 0 5 0.69 1.435 0.6292
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 473 207 14 19 5
## Proportion 0.659 0.288 0.019 0.026 0.007
## --------------------------------------------------------------------------------
## q15
## n missing distinct Info Mean Gmd
## 718 0 4 0.409 1.212 0.3681
##
## Value 1 2 3 4
## Frequency 602 86 24 6
## Proportion 0.838 0.120 0.033 0.008
## --------------------------------------------------------------------------------
## q16
## n missing distinct Info Mean Gmd
## 718 0 4 0.184 1.086 0.1636
##
## Value 1 2 3 4
## Frequency 671 33 13 1
## Proportion 0.935 0.046 0.018 0.001
## --------------------------------------------------------------------------------
## q17
## n missing distinct Info Mean Gmd
## 718 0 5 0.637 1.429 0.6652
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 509 132 60 12 5
## Proportion 0.709 0.184 0.084 0.017 0.007
## --------------------------------------------------------------------------------
## q18
## n missing distinct Info Mean Gmd
## 718 0 5 0.879 2.486 1.178
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 184 122 332 39 41
## Proportion 0.256 0.170 0.462 0.054 0.057
## --------------------------------------------------------------------------------
## q19
## n missing distinct Info Mean Gmd
## 718 0 5 0.644 1.522 0.8236
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 507 108 61 23 19
## Proportion 0.706 0.150 0.085 0.032 0.026
## --------------------------------------------------------------------------------
## q20
## n missing distinct Info Mean Gmd
## 718 0 5 0.677 1.481 0.7312
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 486 166 32 21 13
## Proportion 0.677 0.231 0.045 0.029 0.018
## --------------------------------------------------------------------------------
## q21
## n missing distinct Info Mean Gmd
## 718 0 5 0.761 1.721 0.9711
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 435 80 178 18 7
## Proportion 0.606 0.111 0.248 0.025 0.010
## --------------------------------------------------------------------------------
## q22
## n missing distinct Info Mean Gmd
## 718 0 5 0.754 1.581 0.8049
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 442 150 113 11 2
## Proportion 0.616 0.209 0.157 0.015 0.003
## --------------------------------------------------------------------------------
## q23
## n missing distinct Info Mean Gmd
## 718 0 5 0.377 1.201 0.3551
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 613 75 22 7 1
## Proportion 0.854 0.104 0.031 0.010 0.001
## --------------------------------------------------------------------------------
## q24
## n missing distinct Info Mean Gmd
## 718 0 4 0.663 1.443 0.6633
##
## Value 1 2 3 4
## Frequency 496 131 86 5
## Proportion 0.691 0.182 0.120 0.007
## --------------------------------------------------------------------------------
## q25
## n missing distinct Info Mean Gmd
## 718 0 5 0.831 1.749 0.951
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 379 179 130 21 9
## Proportion 0.528 0.249 0.181 0.029 0.013
## --------------------------------------------------------------------------------
## q26
## n missing distinct Info Mean Gmd
## 718 0 5 0.747 1.582 0.8134
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 447 140 119 8 4
## Proportion 0.623 0.195 0.166 0.011 0.006
## --------------------------------------------------------------------------------
## q27
## n missing distinct Info Mean Gmd
## 718 0 5 0.853 1.868 1.032
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 354 144 193 15 12
## Proportion 0.493 0.201 0.269 0.021 0.017
## --------------------------------------------------------------------------------
## q28
## n missing distinct Info Mean Gmd
## 718 0 5 0.846 1.834 0.9974
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 361 144 191 15 7
## Proportion 0.503 0.201 0.266 0.021 0.010
## --------------------------------------------------------------------------------
## q29
## n missing distinct Info Mean Gmd
## 718 0 5 0.86 1.806 0.9557
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 339 221 126 22 10
## Proportion 0.472 0.308 0.175 0.031 0.014
## --------------------------------------------------------------------------------
## q30
## n missing distinct Info Mean Gmd
## 718 0 4 0.654 1.407 0.6111
##
## Value 1 2 3 4
## Frequency 499 153 59 7
## Proportion 0.695 0.213 0.082 0.010
## --------------------------------------------------------------------------------
## q31
## n missing distinct Info Mean Gmd
## 718 0 5 0.689 1.481 0.7076
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 482 137 90 8 1
## Proportion 0.671 0.191 0.125 0.011 0.001
## --------------------------------------------------------------------------------
## q32
## n missing distinct Info Mean Gmd
## 718 0 4 0.569 1.366 0.5901
##
## Value 1 2 3 4
## Frequency 541 103 62 12
## Proportion 0.753 0.143 0.086 0.017
## --------------------------------------------------------------------------------
## q33
## n missing distinct Info Mean Gmd
## 718 0 5 0.615 1.379 0.5903
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 519 139 48 11 1
## Proportion 0.723 0.194 0.067 0.015 0.001
## --------------------------------------------------------------------------------
## q34
## n missing distinct Info Mean Gmd
## 718 0 5 0.783 1.63 0.8589
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 419 184 89 14 12
## Proportion 0.584 0.256 0.124 0.019 0.017
## --------------------------------------------------------------------------------
## q35
## n missing distinct Info Mean Gmd
## 718 0 5 0.772 1.543 0.7127
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 416 230 59 10 3
## Proportion 0.579 0.320 0.082 0.014 0.004
## --------------------------------------------------------------------------------
## q36
## n missing distinct Info Mean Gmd
## 718 0 5 0.782 1.623 0.8456
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 419 184 91 15 9
## Proportion 0.584 0.256 0.127 0.021 0.013
## --------------------------------------------------------------------------------
## q37
## n missing distinct Info Mean Gmd
## 718 0 5 0.656 1.415 0.6268
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 498 156 53 8 3
## Proportion 0.694 0.217 0.074 0.011 0.004
## --------------------------------------------------------------------------------
## q38
## n missing distinct Info Mean Gmd
## 718 0 5 0.689 1.472 0.6991
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 481 153 69 12 3
## Proportion 0.670 0.213 0.096 0.017 0.004
## --------------------------------------------------------------------------------
## q39
## n missing distinct Info Mean Gmd
## 718 0 5 0.584 1.362 0.5774
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 534 120 54 8 2
## Proportion 0.744 0.167 0.075 0.011 0.003
## --------------------------------------------------------------------------------
head(SM_dados)
## q4 q6 q7 q8 q9 q10 q11 q12 q13 q15 q16 q17 q18 q19 q20 q21 q22 q23 q24 q25
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 4
## 3 1 4 1 1 1 1 1 1 1 1 1 1 1 2 1 1 4 1 1 2
## 4 1 1 2 1 1 1 2 2 1 2 2 1 1 1 1 1 1 2 3 3
## 5 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1
## 6 1 3 1 1 1 1 1 2 3 1 1 1 3 1 3 1 1 1 1 1
## q26 q27 q28 q29 q30 q31 q32 q33 q34 q35 q36 q37 q38 q39
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 2 2 3 3 4 3 3 2 2 3 3 3 4 3
## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2
## 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1
## 5 2 1 1 1 1 2 1 2 1 1 1 1 1 1
## 6 3 1 1 1 3 1 1 1 1 1 1 1 1 3
#RELIABILITY
psych::alpha(SM_dados,n.iter=1000,check.keys=TRUE)
##
## Reliability analysis
## Call: psych::alpha(x = SM_dados, check.keys = TRUE, n.iter = 1000)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.95 0.3 14 0.0037 1.5 0.43 0.28
##
## lower alpha upper 95% confidence boundaries
## 0.92 0.93 0.94
##
## lower median upper bootstrapped confidence intervals
## 0.92 0.93 0.94
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## q4 0.93 0.93 0.95 0.30 14 0.0038 0.0099 0.29
## q6 0.93 0.93 0.95 0.30 14 0.0037 0.0095 0.29
## q7 0.93 0.93 0.94 0.30 14 0.0038 0.0099 0.28
## q8 0.93 0.93 0.94 0.30 14 0.0038 0.0097 0.28
## q9 0.93 0.93 0.95 0.30 14 0.0038 0.0099 0.28
## q10 0.93 0.93 0.94 0.30 14 0.0038 0.0099 0.28
## q11 0.93 0.93 0.94 0.30 14 0.0038 0.0100 0.28
## q12 0.93 0.93 0.95 0.30 14 0.0038 0.0099 0.29
## q13 0.93 0.93 0.95 0.30 14 0.0038 0.0100 0.29
## q15 0.93 0.93 0.94 0.29 14 0.0038 0.0099 0.28
## q16 0.93 0.93 0.94 0.30 14 0.0038 0.0096 0.28
## q17 0.93 0.93 0.94 0.30 14 0.0038 0.0101 0.28
## q18 0.93 0.93 0.95 0.30 14 0.0037 0.0094 0.29
## q19 0.93 0.93 0.95 0.30 14 0.0037 0.0098 0.29
## q20 0.93 0.93 0.95 0.30 14 0.0038 0.0101 0.29
## q21 0.93 0.93 0.95 0.30 14 0.0038 0.0099 0.28
## q22 0.93 0.93 0.94 0.29 14 0.0039 0.0100 0.28
## q23 0.93 0.93 0.94 0.29 14 0.0039 0.0097 0.28
## q24 0.93 0.93 0.94 0.29 14 0.0039 0.0096 0.28
## q25 0.93 0.93 0.94 0.30 14 0.0038 0.0100 0.28
## q26 0.93 0.93 0.94 0.29 14 0.0039 0.0098 0.28
## q27 0.93 0.93 0.94 0.30 14 0.0038 0.0099 0.28
## q28 0.93 0.93 0.94 0.30 14 0.0039 0.0097 0.28
## q29 0.93 0.93 0.95 0.30 14 0.0038 0.0098 0.28
## q30 0.93 0.93 0.94 0.29 14 0.0039 0.0093 0.28
## q31 0.93 0.93 0.94 0.29 14 0.0039 0.0092 0.28
## q32 0.93 0.93 0.94 0.29 14 0.0039 0.0098 0.28
## q33 0.93 0.93 0.94 0.29 14 0.0039 0.0097 0.28
## q34 0.93 0.93 0.94 0.30 14 0.0038 0.0099 0.28
## q35 0.93 0.93 0.94 0.29 14 0.0039 0.0096 0.28
## q36 0.93 0.93 0.94 0.29 14 0.0039 0.0096 0.28
## q37 0.93 0.93 0.94 0.29 14 0.0039 0.0096 0.28
## q38 0.93 0.93 0.94 0.29 14 0.0039 0.0096 0.28
## q39 0.93 0.93 0.94 0.29 14 0.0039 0.0094 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## q4 718 0.42 0.42 0.40 0.38 1.5 0.67
## q6 718 0.39 0.41 0.38 0.35 1.3 0.68
## q7 718 0.52 0.55 0.54 0.49 1.2 0.54
## q8 718 0.51 0.55 0.53 0.48 1.2 0.49
## q9 718 0.45 0.48 0.45 0.41 1.2 0.63
## q10 718 0.52 0.53 0.51 0.48 1.4 0.76
## q11 718 0.52 0.52 0.50 0.48 1.5 0.79
## q12 718 0.51 0.50 0.49 0.46 1.6 0.91
## q13 718 0.47 0.48 0.45 0.43 1.4 0.73
## q15 718 0.59 0.62 0.60 0.56 1.2 0.53
## q16 718 0.54 0.59 0.58 0.52 1.1 0.35
## q17 718 0.57 0.57 0.55 0.53 1.4 0.77
## q18 718 0.43 0.39 0.36 0.36 2.5 1.10
## q19 718 0.44 0.42 0.40 0.38 1.5 0.96
## q20 718 0.49 0.49 0.47 0.45 1.5 0.86
## q21 718 0.53 0.51 0.49 0.48 1.7 0.98
## q22 718 0.63 0.62 0.60 0.59 1.6 0.83
## q23 718 0.64 0.67 0.66 0.62 1.2 0.55
## q24 718 0.66 0.66 0.66 0.63 1.4 0.73
## q25 718 0.56 0.54 0.52 0.52 1.7 0.94
## q26 718 0.64 0.62 0.61 0.60 1.6 0.84
## q27 718 0.58 0.54 0.53 0.53 1.9 0.99
## q28 718 0.62 0.59 0.58 0.58 1.8 0.96
## q29 718 0.51 0.49 0.47 0.46 1.8 0.93
## q30 718 0.69 0.69 0.69 0.66 1.4 0.68
## q31 718 0.71 0.71 0.71 0.68 1.5 0.76
## q32 718 0.59 0.60 0.59 0.56 1.4 0.71
## q33 718 0.63 0.63 0.62 0.60 1.4 0.69
## q34 718 0.58 0.57 0.55 0.54 1.6 0.89
## q35 718 0.68 0.67 0.67 0.65 1.5 0.74
## q36 718 0.65 0.65 0.64 0.62 1.6 0.87
## q37 718 0.61 0.62 0.61 0.58 1.4 0.71
## q38 718 0.60 0.61 0.60 0.57 1.5 0.77
## q39 718 0.64 0.65 0.64 0.61 1.4 0.69
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## q4 0.59 0.36 0.03 0.02 0.00 0
## q6 0.74 0.20 0.04 0.01 0.01 0
## q7 0.85 0.12 0.02 0.01 0.00 0
## q8 0.87 0.11 0.02 0.01 0.00 0
## q9 0.84 0.12 0.02 0.01 0.01 0
## q10 0.68 0.25 0.04 0.03 0.01 0
## q11 0.69 0.21 0.06 0.03 0.01 0
## q12 0.59 0.27 0.09 0.04 0.01 0
## q13 0.66 0.29 0.02 0.03 0.01 0
## q15 0.84 0.12 0.03 0.01 0.00 0
## q16 0.93 0.05 0.02 0.00 0.00 0
## q17 0.71 0.18 0.08 0.02 0.01 0
## q18 0.26 0.17 0.46 0.05 0.06 0
## q19 0.71 0.15 0.08 0.03 0.03 0
## q20 0.68 0.23 0.04 0.03 0.02 0
## q21 0.61 0.11 0.25 0.03 0.01 0
## q22 0.62 0.21 0.16 0.02 0.00 0
## q23 0.85 0.10 0.03 0.01 0.00 0
## q24 0.69 0.18 0.12 0.01 0.00 0
## q25 0.53 0.25 0.18 0.03 0.01 0
## q26 0.62 0.19 0.17 0.01 0.01 0
## q27 0.49 0.20 0.27 0.02 0.02 0
## q28 0.50 0.20 0.27 0.02 0.01 0
## q29 0.47 0.31 0.18 0.03 0.01 0
## q30 0.69 0.21 0.08 0.01 0.00 0
## q31 0.67 0.19 0.13 0.01 0.00 0
## q32 0.75 0.14 0.09 0.02 0.00 0
## q33 0.72 0.19 0.07 0.02 0.00 0
## q34 0.58 0.26 0.12 0.02 0.02 0
## q35 0.58 0.32 0.08 0.01 0.00 0
## q36 0.58 0.26 0.13 0.02 0.01 0
## q37 0.69 0.22 0.07 0.01 0.00 0
## q38 0.67 0.21 0.10 0.02 0.00 0
## q39 0.74 0.17 0.08 0.01 0.00 0
#correlação
cor_data<- cor2(SM_dados)
## xi
## xi 1.00
## 0.29 1.00
## 0.26 0.37 1.00
## 0.26 0.33 0.51 1.00
## 0.23 0.30 0.32 0.40 1.00
## 0.22 0.15 0.33 0.35 0.37 1.00
## 0.25 0.16 0.26 0.33 0.31 0.51 1.00
## 0.19 0.10 0.23 0.29 0.28 0.47 0.50 1.00
## 0.22 0.18 0.24 0.33 0.22 0.25 0.25 0.28 1.00
## 0.23 0.34 0.45 0.42 0.32 0.28 0.26 0.28 0.33 1.00
## 0.24 0.29 0.50 0.55 0.34 0.35 0.26 0.30 0.33 0.51 1.00
## 0.15 0.17 0.34 0.31 0.22 0.26 0.23 0.31 0.27 0.38 0.37
## 0.18 0.04 0.12 0.13 0.08 0.25 0.21 0.28 0.17 0.14 0.05
## 0.22 0.21 0.23 0.18 0.14 0.14 0.14 0.13 0.15 0.22 0.22
## 0.18 0.21 0.23 0.24 0.24 0.33 0.27 0.27 0.29 0.38 0.29
## 0.17 0.16 0.25 0.20 0.13 0.19 0.18 0.15 0.22 0.27 0.24
## 0.19 0.25 0.27 0.28 0.27 0.30 0.31 0.29 0.28 0.31 0.27
## 0.22 0.24 0.44 0.45 0.35 0.40 0.34 0.37 0.41 0.46 0.57
## 0.25 0.17 0.30 0.33 0.22 0.25 0.31 0.26 0.29 0.37 0.38
## 0.14 0.22 0.22 0.17 0.16 0.21 0.21 0.20 0.26 0.22 0.25
## 0.16 0.15 0.29 0.21 0.22 0.29 0.26 0.29 0.21 0.36 0.28
## 0.27 0.13 0.17 0.18 0.18 0.21 0.24 0.26 0.22 0.23 0.15
## 0.20 0.19 0.23 0.20 0.15 0.20 0.25 0.22 0.23 0.24 0.17
## 0.14 0.12 0.16 0.12 0.13 0.19 0.23 0.25 0.19 0.20 0.14
## 0.19 0.25 0.32 0.28 0.27 0.32 0.27 0.28 0.25 0.37 0.34
## 0.27 0.23 0.30 0.30 0.26 0.26 0.30 0.27 0.25 0.35 0.30
## 0.23 0.21 0.37 0.31 0.22 0.22 0.26 0.23 0.25 0.35 0.34
## 0.24 0.20 0.21 0.29 0.30 0.27 0.21 0.21 0.28 0.35 0.31
## 0.21 0.15 0.18 0.17 0.23 0.20 0.23 0.21 0.22 0.26 0.21
## 0.24 0.23 0.25 0.27 0.27 0.28 0.29 0.26 0.26 0.36 0.30
## 0.23 0.25 0.28 0.26 0.26 0.29 0.26 0.24 0.21 0.40 0.29
## 0.20 0.18 0.33 0.30 0.24 0.21 0.23 0.24 0.20 0.40 0.37
## 0.23 0.16 0.29 0.20 0.21 0.27 0.26 0.23 0.20 0.35 0.30
## 0.21 0.18 0.34 0.32 0.24 0.29 0.36 0.27 0.21 0.38 0.38
##
## 1.00
## 0.29 1.00
## 0.26 0.20 1.00
## 0.26 0.23 0.32 1.00
## 0.26 0.24 0.22 0.12 1.00
## 0.34 0.25 0.31 0.27 0.45 1.00
## 0.38 0.11 0.32 0.36 0.29 0.44 1.00
## 0.36 0.18 0.22 0.26 0.35 0.41 0.47 1.00
## 0.27 0.25 0.24 0.22 0.35 0.31 0.29 0.42 1.00
## 0.43 0.25 0.24 0.28 0.34 0.34 0.38 0.51 0.46 1.00
## 0.27 0.33 0.26 0.22 0.34 0.39 0.26 0.37 0.37 0.39 1.00
## 0.42 0.32 0.27 0.15 0.39 0.40 0.29 0.41 0.39 0.46 0.49
## 0.23 0.26 0.12 0.23 0.25 0.23 0.19 0.32 0.30 0.30 0.31
## 0.32 0.17 0.21 0.28 0.34 0.42 0.41 0.48 0.38 0.43 0.34
## 0.38 0.21 0.26 0.28 0.37 0.43 0.37 0.58 0.38 0.48 0.40
## 0.31 0.15 0.18 0.28 0.28 0.28 0.39 0.39 0.30 0.33 0.27
## 0.25 0.20 0.20 0.23 0.31 0.36 0.38 0.44 0.37 0.35 0.33
## 0.31 0.22 0.19 0.25 0.25 0.33 0.29 0.39 0.32 0.38 0.32
## 0.32 0.24 0.30 0.31 0.33 0.42 0.40 0.41 0.34 0.43 0.37
## 0.31 0.19 0.23 0.29 0.31 0.41 0.39 0.40 0.28 0.41 0.37
## 0.28 0.14 0.20 0.27 0.26 0.35 0.35 0.36 0.29 0.32 0.22
## 0.29 0.20 0.16 0.17 0.27 0.29 0.36 0.36 0.33 0.31 0.31
## 0.26 0.16 0.21 0.24 0.27 0.36 0.38 0.46 0.28 0.34 0.27
##
## 1.00
## 0.36 1.00
## 0.41 0.45 1.00
## 0.44 0.42 0.63 1.00
## 0.30 0.33 0.49 0.51 1.00
## 0.39 0.28 0.50 0.52 0.44 1.00
## 0.38 0.37 0.41 0.42 0.26 0.43 1.00
## 0.47 0.33 0.47 0.47 0.33 0.48 0.49 1.00
## 0.37 0.26 0.47 0.48 0.35 0.42 0.46 0.55 1.00
## 0.31 0.31 0.48 0.41 0.46 0.42 0.39 0.48 0.53 1.00
## 0.31 0.31 0.49 0.49 0.47 0.47 0.34 0.42 0.47 0.52 1.00
## 0.31 0.29 0.53 0.50 0.43 0.45 0.34 0.53 0.49 0.56 0.55
## [1] 1.00
#KMO
#Análise Paralela e Eigenvalues
kmo<-kmo(na.omit(SM_dados))
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
kmo$overall
## [1] 0.9448702
kmo$AIR #anti-image matrix
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9292228542 -0.1755010693 -0.0519166770 -0.021632838 -0.041810436
## [2,] -0.1755010693 0.8879856107 -0.1641927710 -0.101223433 -0.127257740
## [3,] -0.0519166770 -0.1641927710 0.9411869767 -0.219028266 -0.035055930
## [4,] -0.0216328379 -0.1012234331 -0.2190282664 0.933581658 -0.142061311
## [5,] -0.0418104356 -0.1272577395 -0.0350559298 -0.142061311 0.953204100
## [6,] -0.0296979048 0.0696988672 -0.0983036225 -0.046221351 -0.133939289
## [7,] -0.0810125858 0.0006114864 0.0250492432 -0.087598808 -0.075662719
## [8,] -0.0120404370 0.0425508161 0.0378749456 -0.003401484 -0.038576465
## [9,] -0.0760649208 0.0082557250 0.0322668155 -0.097390397 0.012232127
## [10,] 0.0118998964 -0.1466220316 -0.1149398722 -0.033970029 -0.034205414
## [11,] -0.0462072430 -0.0116528016 -0.1284852456 -0.246363907 -0.026040713
## [12,] 0.0698899844 0.0300659794 -0.0516846057 -0.043732986 -0.013603842
## [13,] -0.0732985533 0.0719278471 -0.0132894753 -0.060085127 0.062364644
## [14,] -0.0980067364 -0.0631391756 -0.0461522759 0.028767184 0.022817902
## [15,] 0.0100957820 -0.0504378466 0.0537155634 0.041426657 -0.017057499
## [16,] -0.0167146164 0.0322190678 -0.0500614808 0.018041937 0.048329446
## [17,] 0.0624843568 -0.0983198161 0.0207401443 0.001900200 -0.053451346
## [18,] 0.0394529576 0.0493402823 -0.0825848854 -0.052933395 -0.037460826
## [19,] -0.0603580558 0.0697401745 0.0202419628 -0.044460922 0.052016915
## [20,] 0.0791480926 -0.1372336859 -0.0069631542 0.055429513 0.029572900
## [21,] 0.0390393655 0.0636002761 -0.0555559316 0.071680570 -0.032982815
## [22,] -0.1265187730 0.0647252693 0.0337140227 -0.023413661 -0.037257837
## [23,] -0.0008503851 -0.0527339430 -0.0313745131 -0.004784757 0.061892124
## [24,] 0.0215824806 -0.0168908098 -0.0009984571 0.051048620 0.010406091
## [25,] 0.0629394971 -0.0691006666 -0.0187318040 0.044185581 -0.005425816
## [26,] -0.0635275137 0.0048795143 0.0006330506 -0.063452076 -0.017968846
## [27,] -0.0205646214 -0.0164969358 -0.1212953807 -0.025281485 0.023418673
## [28,] -0.0339865878 0.0050125804 0.1428180057 -0.059684650 -0.107130286
## [29,] -0.0402428681 0.0149260741 0.0164114198 0.044464012 -0.055360007
## [30,] -0.0092093964 -0.0366422585 0.0597436798 -0.008015855 -0.026391196
## [31,] -0.0047431962 -0.0869280284 0.0141386724 0.010332047 0.001685952
## [32,] -0.0222872325 0.0960312575 -0.0463255285 -0.046841787 -0.021834569
## [33,] -0.0534485116 0.0279020645 -0.0351383934 0.129029032 0.010453888
## [34,] 0.0337762309 0.0356595950 -0.0533899692 -0.037514776 0.039815927
## [,6] [,7] [,8] [,9] [,10]
## [1,] -0.029697905 -0.0810125858 -0.012040437 -0.076064921 0.011899896
## [2,] 0.069698867 0.0006114864 0.042550816 0.008255725 -0.146622032
## [3,] -0.098303622 0.0250492432 0.037874946 0.032266816 -0.114939872
## [4,] -0.046221351 -0.0875988081 -0.003401484 -0.097390397 -0.033970029
## [5,] -0.133939289 -0.0756627190 -0.038576465 0.012232127 -0.034205414
## [6,] 0.919301577 -0.2746349637 -0.185788701 0.010830377 0.050499123
## [7,] -0.274634964 0.9139649853 -0.273262405 -0.018068715 -0.003680087
## [8,] -0.185788701 -0.2732624047 0.930635306 -0.062584382 -0.020400552
## [9,] 0.010830377 -0.0180687149 -0.062584382 0.954931269 -0.087795183
## [10,] 0.050499123 -0.0036800873 -0.020400552 -0.087795183 0.955926026
## [11,] -0.073246782 0.0687866172 -0.048667919 -0.022749829 -0.172845601
## [12,] 0.011662702 0.0398245361 -0.086674936 -0.037619981 -0.102972666
## [13,] -0.097733261 0.0150977558 -0.121331027 -0.026378717 0.009447071
## [14,] 0.055711516 0.0207305501 0.045772588 0.060742592 0.036385807
## [15,] -0.130980744 -0.0410167015 0.002885513 -0.094217810 -0.171127925
## [16,] -0.015672554 0.0062782615 0.066813028 -0.034267473 -0.059246706
## [17,] -0.033645553 -0.0640667664 -0.025193186 -0.026457842 0.021095867
## [18,] -0.063695913 -0.0149658849 -0.096764216 -0.167838330 -0.028513456
## [19,] 0.069461603 -0.0679395649 0.037516630 -0.016040206 -0.034363949
## [20,] -0.006745592 -0.0292176391 0.015971338 -0.098939475 0.098709331
## [21,] -0.068844005 0.0307245752 -0.053540035 0.076198204 -0.109143543
## [22,] 0.029630194 0.0196162015 -0.072743893 -0.007896198 -0.020568160
## [23,] 0.026039966 -0.0696913724 0.040560960 -0.023768784 0.047447462
## [24,] 0.006035542 -0.0352551654 -0.075924905 -0.032390964 0.005182733
## [25,] -0.095626477 0.0696794910 -0.016209322 0.008477715 0.001897881
## [26,] 0.044988733 -0.0037819462 -0.023485046 0.016701905 0.032477528
## [27,] 0.064677860 -0.0492159730 0.012556944 -0.021684704 0.020243206
## [28,] -0.062933224 0.0988247744 0.031607139 -0.050807077 -0.074357722
## [29,] 0.042162534 -0.0432240839 0.028726446 -0.021159318 0.035446849
## [30,] -0.002394164 0.0061098237 0.006034186 -0.018537307 -0.007999404
## [31,] -0.059830611 0.0175459555 0.022825352 0.024947299 -0.068302399
## [32,] 0.093961254 0.0474775378 -0.052573368 0.040917859 -0.078733955
## [33,] -0.069622366 -0.0169138222 0.024886468 0.024536256 -0.062349123
## [34,] 0.021432718 -0.1675647062 0.003463798 0.025073618 -0.010802917
## [,11] [,12] [,13] [,14] [,15]
## [1,] -0.046207243 0.069889984 -0.073298553 -0.0980067364 0.0100957820
## [2,] -0.011652802 0.030065979 0.071927847 -0.0631391756 -0.0504378466
## [3,] -0.128485246 -0.051684606 -0.013289475 -0.0461522759 0.0537155634
## [4,] -0.246363907 -0.043732986 -0.060085127 0.0287671835 0.0414266566
## [5,] -0.026040713 -0.013603842 0.062364644 0.0228179022 -0.0170574995
## [6,] -0.073246782 0.011662702 -0.097733261 0.0557115162 -0.1309807438
## [7,] 0.068786617 0.039824536 0.015097756 0.0207305501 -0.0410167015
## [8,] -0.048667919 -0.086674936 -0.121331027 0.0457725880 0.0028855135
## [9,] -0.022749829 -0.037619981 -0.026378717 0.0607425919 -0.0942178104
## [10,] -0.172845601 -0.102972666 0.009447071 0.0363858074 -0.1711279247
## [11,] 0.933018369 -0.115861592 0.104424477 -0.0221464117 -0.0162073523
## [12,] -0.115861592 0.947184619 -0.134112313 -0.0612111971 -0.0114152875
## [13,] 0.104424477 -0.134112313 0.898243285 -0.0693245241 -0.1165530591
## [14,] -0.022146412 -0.061211197 -0.069324524 0.9245221974 -0.1863018592
## [15,] -0.016207352 -0.011415288 -0.116553059 -0.1863018592 0.9218671366
## [16,] -0.057640096 0.032421871 -0.072757323 -0.0281113578 0.1079267002
## [17,] 0.079727608 -0.060845796 -0.055548573 -0.0838058972 -0.0122061326
## [18,] -0.242009463 -0.029335349 0.117038003 -0.1456410828 -0.0671701625
## [19,] -0.077574631 -0.016017056 0.034218525 0.0497394857 0.0003069245
## [20,] -0.067780071 0.029349573 -0.062492565 -0.0617178598 -0.0167008641
## [21,] 0.037952415 -0.139056383 -0.014252771 -0.0002985098 -0.0274149743
## [22,] 0.036825293 0.055728842 -0.107807793 -0.0624511578 -0.0346291874
## [23,] 0.075484641 -0.203784584 -0.074182693 -0.0515798937 0.1347891105
## [24,] 0.023849162 0.021260191 -0.100517113 0.0571594969 -0.0729917304
## [25,] -0.021694423 0.021025724 0.056718942 0.0354414177 -0.0002466746
## [26,] 0.052337902 -0.070520979 0.059515210 -0.0625514933 -0.0386737494
## [27,] 0.011035494 -0.054829519 0.016578170 0.0309093067 -0.0898749471
## [28,] -0.007216336 0.094345835 -0.042889007 0.0227478022 0.0289674263
## [29,] 0.003674818 -0.084564706 -0.027134510 0.0183925255 -0.0253040650
## [30,] 0.003730303 0.017242520 -0.009811890 -0.0810590789 -0.0686044397
## [31,] 0.051344630 -0.002636091 0.010507912 0.0283912169 -0.0267560812
## [32,] -0.084333028 0.023948559 0.032295023 -0.0117653591 -0.0580143748
## [33,] 0.007416737 -0.056812813 -0.063412055 0.0380665400 0.1264176935
## [34,] -0.080090023 0.059932798 -0.001223763 -0.0246644684 0.0240424352
## [,16] [,17] [,18] [,19] [,20]
## [1,] -0.016714616 0.06248436 0.039452958 -0.0603580558 0.079148093
## [2,] 0.032219068 -0.09831982 0.049340282 0.0697401745 -0.137233686
## [3,] -0.050061481 0.02074014 -0.082584885 0.0202419628 -0.006963154
## [4,] 0.018041937 0.00190020 -0.052933395 -0.0444609217 0.055429513
## [5,] 0.048329446 -0.05345135 -0.037460826 0.0520169150 0.029572900
## [6,] -0.015672554 -0.03364555 -0.063695913 0.0694616030 -0.006745592
## [7,] 0.006278261 -0.06406677 -0.014965885 -0.0679395649 -0.029217639
## [8,] 0.066813028 -0.02519319 -0.096764216 0.0375166298 0.015971338
## [9,] -0.034267473 -0.02645784 -0.167838330 -0.0160402064 -0.098939475
## [10,] -0.059246706 0.02109587 -0.028513456 -0.0343639495 0.098709331
## [11,] -0.057640096 0.07972761 -0.242009463 -0.0775746306 -0.067780071
## [12,] 0.032421871 -0.06084580 -0.029335349 -0.0160170559 0.029349573
## [13,] -0.072757323 -0.05554857 0.117038003 0.0342185247 -0.062492565
## [14,] -0.028111358 -0.08380590 -0.145641083 0.0497394857 -0.061717860
## [15,] 0.107926700 -0.01220613 -0.067170162 0.0003069245 -0.016700864
## [16,] 0.949696828 -0.24775388 0.013202058 -0.0305584570 -0.113388667
## [17,] -0.247753882 0.95103395 -0.169080683 -0.0476918068 0.020323125
## [18,] 0.013202058 -0.16908068 0.944341525 -0.1572289188 0.026180132
## [19,] -0.030558457 -0.04769181 -0.157228919 0.9566232466 -0.109058238
## [20,] -0.113388667 0.02032313 0.026180132 -0.1090582382 0.941798232
## [21,] -0.040449426 0.05559091 -0.045218378 -0.1833089506 -0.219148376
## [22,] -0.051979001 -0.10524031 0.034578170 -0.0491281606 -0.102759569
## [23,] -0.084688780 -0.04885756 0.007642690 -0.0420453395 -0.036265226
## [24,] -0.034321365 0.05983044 0.044717960 -0.0167968562 -0.039363603
## [25,] -0.018206346 -0.05827376 -0.057789043 -0.0132074903 -0.042284497
## [26,] -0.032338226 -0.07963363 0.103341794 -0.2350446260 0.014814167
## [27,] -0.046535815 0.06988800 -0.079950518 0.0066700663 0.002280293
## [28,] -0.009666722 -0.01445409 -0.040626567 -0.0555483958 -0.085965986
## [29,] 0.028998461 -0.01515576 0.006723564 -0.0738317119 -0.028092858
## [30,] -0.031428296 -0.02906429 -0.055552894 0.0540079344 0.004023091
## [31,] -0.028140488 -0.05426769 -0.054358386 0.0098953415 0.068193764
## [32,] 0.017583531 -0.09119060 0.064340085 0.0340078270 -0.052610081
## [33,] 0.012632747 0.07367120 -0.098777285 0.0553552593 -0.086134307
## [34,] 0.019993825 -0.02712484 0.062070393 -0.1294339890 0.045379827
## [,21] [,22] [,23] [,24] [,25]
## [1,] 0.0390393655 -0.126518773 -0.0008503851 0.0215824806 0.0629394971
## [2,] 0.0636002761 0.064725269 -0.0527339430 -0.0168908098 -0.0691006666
## [3,] -0.0555559316 0.033714023 -0.0313745131 -0.0009984571 -0.0187318040
## [4,] 0.0716805703 -0.023413661 -0.0047847575 0.0510486205 0.0441855808
## [5,] -0.0329828148 -0.037257837 0.0618921243 0.0104060914 -0.0054258161
## [6,] -0.0688440051 0.029630194 0.0260399659 0.0060355421 -0.0956264771
## [7,] 0.0307245752 0.019616202 -0.0696913724 -0.0352551654 0.0696794910
## [8,] -0.0535400353 -0.072743893 0.0405609601 -0.0759249045 -0.0162093216
## [9,] 0.0761982036 -0.007896198 -0.0237687843 -0.0323909636 0.0084777152
## [10,] -0.1091435432 -0.020568160 0.0474474618 0.0051827327 0.0018978810
## [11,] 0.0379524146 0.036825293 0.0754846410 0.0238491622 -0.0216944226
## [12,] -0.1390563833 0.055728842 -0.2037845843 0.0212601911 0.0210257237
## [13,] -0.0142527711 -0.107807793 -0.0741826927 -0.1005171128 0.0567189415
## [14,] -0.0002985098 -0.062451158 -0.0515798937 0.0571594969 0.0354414177
## [15,] -0.0274149743 -0.034629187 0.1347891105 -0.0729917304 -0.0002466746
## [16,] -0.0404494263 -0.051979001 -0.0846887796 -0.0343213646 -0.0182063464
## [17,] 0.0555909094 -0.105240309 -0.0488575587 0.0598304402 -0.0582737598
## [18,] -0.0452183780 0.034578170 0.0076426896 0.0447179603 -0.0577890432
## [19,] -0.1833089506 -0.049128161 -0.0420453395 -0.0167968562 -0.0132074903
## [20,] -0.2191483756 -0.102759569 -0.0362652260 -0.0393636025 -0.0422844972
## [21,] 0.9512167529 -0.048449586 -0.1160212096 0.0174606193 -0.0233278420
## [22,] -0.0484495856 0.943876839 -0.2281529057 -0.0546163011 -0.0023073243
## [23,] -0.1160212096 -0.228152906 0.9419507178 -0.0903152857 -0.0348248602
## [24,] 0.0174606193 -0.054616301 -0.0903152857 0.9400064522 -0.1919647006
## [25,] -0.0233278420 -0.002307324 -0.0348248602 -0.1919647006 0.9631752209
## [26,] -0.0863597244 -0.014572757 -0.0220430832 -0.1015742523 -0.2602968616
## [27,] -0.0178564909 -0.028058340 0.0112242489 -0.0716137635 -0.0798892935
## [28,] 0.0403318299 0.002269256 -0.0964132633 0.0799274196 -0.0907456989
## [29,] -0.0505815281 -0.007470067 -0.0168938156 -0.1564968857 -0.0308831847
## [30,] -0.0808070786 -0.011283313 -0.1568874183 -0.0362282070 0.0053371448
## [31,] -0.0772293687 -0.123512208 0.0104821517 0.0906455749 -0.0396176117
## [32,] 0.0201174662 0.124425787 -0.0437671714 -0.0648482548 -0.0779204629
## [33,] 0.0729509171 -0.062402183 0.0309290396 -0.0271216841 -0.0356825494
## [34,] 0.0134237462 0.022231360 0.0439229391 0.0239885571 -0.1323970244
## [,26] [,27] [,28] [,29] [,30]
## [1,] -0.0635275137 -0.020564621 -0.033986588 -0.040242868 -0.009209396
## [2,] 0.0048795143 -0.016496936 0.005012580 0.014926074 -0.036642259
## [3,] 0.0006330506 -0.121295381 0.142818006 0.016411420 0.059743680
## [4,] -0.0634520762 -0.025281485 -0.059684650 0.044464012 -0.008015855
## [5,] -0.0179688460 0.023418673 -0.107130286 -0.055360007 -0.026391196
## [6,] 0.0449887329 0.064677860 -0.062933224 0.042162534 -0.002394164
## [7,] -0.0037819462 -0.049215973 0.098824774 -0.043224084 0.006109824
## [8,] -0.0234850464 0.012556944 0.031607139 0.028726446 0.006034186
## [9,] 0.0167019053 -0.021684704 -0.050807077 -0.021159318 -0.018537307
## [10,] 0.0324775276 0.020243206 -0.074357722 0.035446849 -0.007999404
## [11,] 0.0523379020 0.011035494 -0.007216336 0.003674818 0.003730303
## [12,] -0.0705209786 -0.054829519 0.094345835 -0.084564706 0.017242520
## [13,] 0.0595152098 0.016578170 -0.042889007 -0.027134510 -0.009811890
## [14,] -0.0625514933 0.030909307 0.022747802 0.018392525 -0.081059079
## [15,] -0.0386737494 -0.089874947 0.028967426 -0.025304065 -0.068604440
## [16,] -0.0323382256 -0.046535815 -0.009666722 0.028998461 -0.031428296
## [17,] -0.0796336261 0.069887996 -0.014454093 -0.015155757 -0.029064292
## [18,] 0.1033417942 -0.079950518 -0.040626567 0.006723564 -0.055552894
## [19,] -0.2350446260 0.006670066 -0.055548396 -0.073831712 0.054007934
## [20,] 0.0148141671 0.002280293 -0.085965986 -0.028092858 0.004023091
## [21,] -0.0863597244 -0.017856491 0.040331830 -0.050581528 -0.080807079
## [22,] -0.0145727574 -0.028058340 0.002269256 -0.007470067 -0.011283313
## [23,] -0.0220430832 0.011224249 -0.096413263 -0.016893816 -0.156887418
## [24,] -0.1015742523 -0.071613764 0.079927420 -0.156496886 -0.036228207
## [25,] -0.2602968616 -0.079889293 -0.090745699 -0.030883185 0.005337145
## [26,] 0.9515781546 -0.161808157 -0.121251430 -0.011549451 -0.014262097
## [27,] -0.1618081574 0.958151249 -0.137555342 0.078549044 0.062574016
## [28,] -0.1212514302 -0.137555342 0.955189433 -0.147004272 -0.094331500
## [29,] -0.0115494514 0.078549044 -0.147004272 0.957593655 -0.153357922
## [30,] -0.0142620967 0.062574016 -0.094331500 -0.153357922 0.963235952
## [31,] -0.0788185893 0.039872917 0.022741384 -0.152638785 -0.167558043
## [32,] 0.0984582505 -0.146865441 -0.029318270 -0.080368656 -0.077130356
## [33,] -0.1171887055 -0.127950515 -0.113950176 0.012684598 -0.005091811
## [34,] -0.0451251562 -0.033383495 -0.040573894 0.048358317 -0.212866966
## [,31] [,32] [,33] [,34]
## [1,] -0.004743196 -0.02228723 -0.053448512 0.033776231
## [2,] -0.086928028 0.09603126 0.027902064 0.035659595
## [3,] 0.014138672 -0.04632553 -0.035138393 -0.053389969
## [4,] 0.010332047 -0.04684179 0.129029032 -0.037514776
## [5,] 0.001685952 -0.02183457 0.010453888 0.039815927
## [6,] -0.059830611 0.09396125 -0.069622366 0.021432718
## [7,] 0.017545956 0.04747754 -0.016913822 -0.167564706
## [8,] 0.022825352 -0.05257337 0.024886468 0.003463798
## [9,] 0.024947299 0.04091786 0.024536256 0.025073618
## [10,] -0.068302399 -0.07873396 -0.062349123 -0.010802917
## [11,] 0.051344630 -0.08433303 0.007416737 -0.080090023
## [12,] -0.002636091 0.02394856 -0.056812813 0.059932798
## [13,] 0.010507912 0.03229502 -0.063412055 -0.001223763
## [14,] 0.028391217 -0.01176536 0.038066540 -0.024664468
## [15,] -0.026756081 -0.05801437 0.126417693 0.024042435
## [16,] -0.028140488 0.01758353 0.012632747 0.019993825
## [17,] -0.054267690 -0.09119060 0.073671200 -0.027124836
## [18,] -0.054358386 0.06434009 -0.098777285 0.062070393
## [19,] 0.009895341 0.03400783 0.055355259 -0.129433989
## [20,] 0.068193764 -0.05261008 -0.086134307 0.045379827
## [21,] -0.077229369 0.02011747 0.072950917 0.013423746
## [22,] -0.123512208 0.12442579 -0.062402183 0.022231360
## [23,] 0.010482152 -0.04376717 0.030929040 0.043922939
## [24,] 0.090645575 -0.06484825 -0.027121684 0.023988557
## [25,] -0.039617612 -0.07792046 -0.035682549 -0.132397024
## [26,] -0.078818589 0.09845825 -0.117188706 -0.045125156
## [27,] 0.039872917 -0.14686544 -0.127950515 -0.033383495
## [28,] 0.022741384 -0.02931827 -0.113950176 -0.040573894
## [29,] -0.152638785 -0.08036866 0.012684598 0.048358317
## [30,] -0.167558043 -0.07713036 -0.005091811 -0.212866966
## [31,] 0.958664062 -0.21162104 -0.104314041 -0.067582715
## [32,] -0.211621039 0.94079542 -0.177087766 -0.187346961
## [33,] -0.104314041 -0.17708777 0.944253236 -0.209372732
## [34,] -0.067582715 -0.18734696 -0.209372732 0.949943747
cortest.bartlett(cor2(SM_dados), n = 718,diag=FALSE)
## xi
## xi 1.00
## 0.29 1.00
## 0.26 0.37 1.00
## 0.26 0.33 0.51 1.00
## 0.23 0.30 0.32 0.40 1.00
## 0.22 0.15 0.33 0.35 0.37 1.00
## 0.25 0.16 0.26 0.33 0.31 0.51 1.00
## 0.19 0.10 0.23 0.29 0.28 0.47 0.50 1.00
## 0.22 0.18 0.24 0.33 0.22 0.25 0.25 0.28 1.00
## 0.23 0.34 0.45 0.42 0.32 0.28 0.26 0.28 0.33 1.00
## 0.24 0.29 0.50 0.55 0.34 0.35 0.26 0.30 0.33 0.51 1.00
## 0.15 0.17 0.34 0.31 0.22 0.26 0.23 0.31 0.27 0.38 0.37
## 0.18 0.04 0.12 0.13 0.08 0.25 0.21 0.28 0.17 0.14 0.05
## 0.22 0.21 0.23 0.18 0.14 0.14 0.14 0.13 0.15 0.22 0.22
## 0.18 0.21 0.23 0.24 0.24 0.33 0.27 0.27 0.29 0.38 0.29
## 0.17 0.16 0.25 0.20 0.13 0.19 0.18 0.15 0.22 0.27 0.24
## 0.19 0.25 0.27 0.28 0.27 0.30 0.31 0.29 0.28 0.31 0.27
## 0.22 0.24 0.44 0.45 0.35 0.40 0.34 0.37 0.41 0.46 0.57
## 0.25 0.17 0.30 0.33 0.22 0.25 0.31 0.26 0.29 0.37 0.38
## 0.14 0.22 0.22 0.17 0.16 0.21 0.21 0.20 0.26 0.22 0.25
## 0.16 0.15 0.29 0.21 0.22 0.29 0.26 0.29 0.21 0.36 0.28
## 0.27 0.13 0.17 0.18 0.18 0.21 0.24 0.26 0.22 0.23 0.15
## 0.20 0.19 0.23 0.20 0.15 0.20 0.25 0.22 0.23 0.24 0.17
## 0.14 0.12 0.16 0.12 0.13 0.19 0.23 0.25 0.19 0.20 0.14
## 0.19 0.25 0.32 0.28 0.27 0.32 0.27 0.28 0.25 0.37 0.34
## 0.27 0.23 0.30 0.30 0.26 0.26 0.30 0.27 0.25 0.35 0.30
## 0.23 0.21 0.37 0.31 0.22 0.22 0.26 0.23 0.25 0.35 0.34
## 0.24 0.20 0.21 0.29 0.30 0.27 0.21 0.21 0.28 0.35 0.31
## 0.21 0.15 0.18 0.17 0.23 0.20 0.23 0.21 0.22 0.26 0.21
## 0.24 0.23 0.25 0.27 0.27 0.28 0.29 0.26 0.26 0.36 0.30
## 0.23 0.25 0.28 0.26 0.26 0.29 0.26 0.24 0.21 0.40 0.29
## 0.20 0.18 0.33 0.30 0.24 0.21 0.23 0.24 0.20 0.40 0.37
## 0.23 0.16 0.29 0.20 0.21 0.27 0.26 0.23 0.20 0.35 0.30
## 0.21 0.18 0.34 0.32 0.24 0.29 0.36 0.27 0.21 0.38 0.38
##
## 1.00
## 0.29 1.00
## 0.26 0.20 1.00
## 0.26 0.23 0.32 1.00
## 0.26 0.24 0.22 0.12 1.00
## 0.34 0.25 0.31 0.27 0.45 1.00
## 0.38 0.11 0.32 0.36 0.29 0.44 1.00
## 0.36 0.18 0.22 0.26 0.35 0.41 0.47 1.00
## 0.27 0.25 0.24 0.22 0.35 0.31 0.29 0.42 1.00
## 0.43 0.25 0.24 0.28 0.34 0.34 0.38 0.51 0.46 1.00
## 0.27 0.33 0.26 0.22 0.34 0.39 0.26 0.37 0.37 0.39 1.00
## 0.42 0.32 0.27 0.15 0.39 0.40 0.29 0.41 0.39 0.46 0.49
## 0.23 0.26 0.12 0.23 0.25 0.23 0.19 0.32 0.30 0.30 0.31
## 0.32 0.17 0.21 0.28 0.34 0.42 0.41 0.48 0.38 0.43 0.34
## 0.38 0.21 0.26 0.28 0.37 0.43 0.37 0.58 0.38 0.48 0.40
## 0.31 0.15 0.18 0.28 0.28 0.28 0.39 0.39 0.30 0.33 0.27
## 0.25 0.20 0.20 0.23 0.31 0.36 0.38 0.44 0.37 0.35 0.33
## 0.31 0.22 0.19 0.25 0.25 0.33 0.29 0.39 0.32 0.38 0.32
## 0.32 0.24 0.30 0.31 0.33 0.42 0.40 0.41 0.34 0.43 0.37
## 0.31 0.19 0.23 0.29 0.31 0.41 0.39 0.40 0.28 0.41 0.37
## 0.28 0.14 0.20 0.27 0.26 0.35 0.35 0.36 0.29 0.32 0.22
## 0.29 0.20 0.16 0.17 0.27 0.29 0.36 0.36 0.33 0.31 0.31
## 0.26 0.16 0.21 0.24 0.27 0.36 0.38 0.46 0.28 0.34 0.27
##
## 1.00
## 0.36 1.00
## 0.41 0.45 1.00
## 0.44 0.42 0.63 1.00
## 0.30 0.33 0.49 0.51 1.00
## 0.39 0.28 0.50 0.52 0.44 1.00
## 0.38 0.37 0.41 0.42 0.26 0.43 1.00
## 0.47 0.33 0.47 0.47 0.33 0.48 0.49 1.00
## 0.37 0.26 0.47 0.48 0.35 0.42 0.46 0.55 1.00
## 0.31 0.31 0.48 0.41 0.46 0.42 0.39 0.48 0.53 1.00
## 0.31 0.31 0.49 0.49 0.47 0.47 0.34 0.42 0.47 0.52 1.00
## 0.31 0.29 0.53 0.50 0.43 0.45 0.34 0.53 0.49 0.56 0.55
## [1] 1.00
## $chisq
## [1] 9822.053
##
## $p.value
## [1] 0
##
## $df
## [1] 561
fa.parallel(cor_data,cor="poly")
## Warning in fa.parallel(cor_data, cor = "poly"): It seems as if you are using a
## correlation matrix, but have not specified the number of cases. The number of
## subjects is arbitrarily set to be 100
## Parallel analysis suggests that the number of factors = 2 and the number of components = 2
#Análise Fatorial Exploratória
fa(SM_dados,fm="pa",rotate="promax")
## Factor Analysis using method = pa
## Call: fa(r = SM_dados, rotate = "promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 h2 u2 com
## q4 0.38 0.15 0.85 1
## q6 0.37 0.14 0.86 1
## q7 0.52 0.28 0.72 1
## q8 0.52 0.27 0.73 1
## q9 0.44 0.20 0.80 1
## q10 0.49 0.24 0.76 1
## q11 0.49 0.24 0.76 1
## q12 0.47 0.22 0.78 1
## q13 0.44 0.20 0.80 1
## q15 0.60 0.36 0.64 1
## q16 0.56 0.32 0.68 1
## q17 0.54 0.29 0.71 1
## q18 0.35 0.12 0.88 1
## q19 0.39 0.15 0.85 1
## q20 0.46 0.21 0.79 1
## q21 0.49 0.24 0.76 1
## q22 0.60 0.36 0.64 1
## q23 0.65 0.43 0.57 1
## q24 0.66 0.44 0.56 1
## q25 0.52 0.27 0.73 1
## q26 0.61 0.37 0.63 1
## q27 0.52 0.27 0.73 1
## q28 0.57 0.33 0.67 1
## q29 0.47 0.22 0.78 1
## q30 0.70 0.49 0.51 1
## q31 0.71 0.51 0.49 1
## q32 0.60 0.35 0.65 1
## q33 0.63 0.40 0.60 1
## q34 0.55 0.31 0.69 1
## q35 0.67 0.45 0.55 1
## q36 0.65 0.42 0.58 1
## q37 0.62 0.38 0.62 1
## q38 0.60 0.36 0.64 1
## q39 0.65 0.42 0.58 1
##
## PA1
## SS loadings 10.39
## Proportion Var 0.31
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 561 and the objective function was 13.94 with Chi Square of 9822.05
## The degrees of freedom for the model are 527 and the objective function was 3.97
##
## The root mean square of the residuals (RMSR) is 0.07
## The df corrected root mean square of the residuals is 0.07
##
## The harmonic number of observations is 718 with the empirical chi square 3695.7 with prob < 0
## The total number of observations was 718 with Likelihood Chi Square = 2797.74 with prob < 5.1e-305
##
## Tucker Lewis Index of factoring reliability = 0.739
## RMSEA index = 0.077 and the 90 % confidence intervals are 0.075 0.08
## BIC = -668.06
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy
## PA1
## Correlation of (regression) scores with factors 0.97
## Multiple R square of scores with factors 0.94
## Minimum correlation of possible factor scores 0.88
fa(SM_dados,2,fm="pa",rotate="promax")
## Factor Analysis using method = pa
## Call: fa(r = SM_dados, nfactors = 2, rotate = "promax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 h2 u2 com
## q4 0.12 0.30 0.16 0.84 1.3
## q6 -0.02 0.45 0.19 0.81 1.0
## q7 -0.10 0.71 0.42 0.58 1.0
## q8 -0.23 0.85 0.50 0.50 1.1
## q9 -0.07 0.58 0.28 0.72 1.0
## q10 0.02 0.55 0.31 0.69 1.0
## q11 0.11 0.44 0.27 0.73 1.1
## q12 0.09 0.43 0.25 0.75 1.1
## q13 0.08 0.42 0.23 0.77 1.1
## q15 0.07 0.61 0.43 0.57 1.0
## q16 -0.18 0.84 0.54 0.46 1.1
## q17 0.31 0.28 0.30 0.70 2.0
## q18 0.41 -0.05 0.14 0.86 1.0
## q19 0.24 0.18 0.15 0.85 1.8
## q20 0.13 0.39 0.23 0.77 1.2
## q21 0.51 0.00 0.26 0.74 1.0
## q22 0.47 0.18 0.36 0.64 1.3
## q23 0.08 0.67 0.52 0.48 1.0
## q24 0.56 0.15 0.45 0.55 1.1
## q25 0.58 -0.04 0.31 0.69 1.0
## q26 0.61 0.04 0.40 0.60 1.0
## q27 0.65 -0.11 0.33 0.67 1.1
## q28 0.76 -0.16 0.43 0.57 1.1
## q29 0.61 -0.13 0.28 0.72 1.1
## q30 0.67 0.07 0.52 0.48 1.0
## q31 0.75 0.00 0.56 0.44 1.0
## q32 0.42 0.22 0.35 0.65 1.5
## q33 0.60 0.06 0.42 0.58 1.0
## q34 0.65 -0.08 0.36 0.64 1.0
## q35 0.66 0.05 0.48 0.52 1.0
## q36 0.59 0.10 0.44 0.56 1.1
## q37 0.49 0.17 0.38 0.62 1.2
## q38 0.58 0.06 0.38 0.62 1.0
## q39 0.50 0.19 0.43 0.57 1.3
##
## PA1 PA2
## SS loadings 7.14 4.93
## Proportion Var 0.21 0.14
## Cumulative Var 0.21 0.35
## Proportion Explained 0.59 0.41
## Cumulative Proportion 0.59 1.00
##
## With factor correlations of
## PA1 PA2
## PA1 1.00 0.69
## PA2 0.69 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
##
## The degrees of freedom for the null model are 561 and the objective function was 13.94 with Chi Square of 9822.05
## The degrees of freedom for the model are 494 and the objective function was 2.74
##
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 718 with the empirical chi square 1920.4 with prob < 7.1e-167
## The total number of observations was 718 with Likelihood Chi Square = 1928.64 with prob < 3.3e-168
##
## Tucker Lewis Index of factoring reliability = 0.824
## RMSEA index = 0.064 and the 90 % confidence intervals are 0.061 0.067
## BIC = -1320.14
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
## PA1 PA2
## Correlation of (regression) scores with factors 0.96 0.95
## Multiple R square of scores with factors 0.93 0.90
## Minimum correlation of possible factor scores 0.85 0.80
#based on a polychoric correlation matrix
fafitfree <- fa(cor_data,nfactors = ncol(SM_dados), rotate = "none")
n_factors <- length(fafitfree$e.values)
scree <- data.frame(
Factor_n = as.factor(1:n_factors),
Eigenvalue = fafitfree$e.values)
ggplot(scree, aes(x = Factor_n, y = Eigenvalue, group = 1)) +
geom_point() + geom_line() +
xlab("Number of factors") +
ylab("Initial eigenvalue") +
labs( title = "Scree Plot",
subtitle = "(Based on the unreduced correlation matrix)")
# 1 fator
fa.none <- fa(r=SM_dados,
#nfactors = 4,
# covar = FALSE, SMC = TRUE,
fm="pa", # type of factor analysis we want to use (“pa” is principal axis factoring)
max.iter=100, # (50 is the default, but we have changed it to 100
rotate="varimax") # none rotation
print(fa.none)
## Factor Analysis using method = pa
## Call: fa(r = SM_dados, rotate = "varimax", max.iter = 100, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 h2 u2 com
## q4 0.38 0.15 0.85 1
## q6 0.37 0.14 0.86 1
## q7 0.52 0.28 0.72 1
## q8 0.52 0.27 0.73 1
## q9 0.44 0.20 0.80 1
## q10 0.49 0.24 0.76 1
## q11 0.49 0.24 0.76 1
## q12 0.47 0.22 0.78 1
## q13 0.44 0.20 0.80 1
## q15 0.60 0.36 0.64 1
## q16 0.56 0.32 0.68 1
## q17 0.54 0.29 0.71 1
## q18 0.35 0.12 0.88 1
## q19 0.39 0.15 0.85 1
## q20 0.46 0.21 0.79 1
## q21 0.49 0.24 0.76 1
## q22 0.60 0.36 0.64 1
## q23 0.65 0.43 0.57 1
## q24 0.66 0.44 0.56 1
## q25 0.52 0.27 0.73 1
## q26 0.61 0.37 0.63 1
## q27 0.52 0.27 0.73 1
## q28 0.57 0.33 0.67 1
## q29 0.47 0.22 0.78 1
## q30 0.70 0.49 0.51 1
## q31 0.71 0.51 0.49 1
## q32 0.60 0.35 0.65 1
## q33 0.63 0.40 0.60 1
## q34 0.55 0.31 0.69 1
## q35 0.67 0.45 0.55 1
## q36 0.65 0.42 0.58 1
## q37 0.62 0.38 0.62 1
## q38 0.60 0.36 0.64 1
## q39 0.65 0.42 0.58 1
##
## PA1
## SS loadings 10.39
## Proportion Var 0.31
##
## Mean item complexity = 1
## Test of the hypothesis that 1 factor is sufficient.
##
## The degrees of freedom for the null model are 561 and the objective function was 13.94 with Chi Square of 9822.05
## The degrees of freedom for the model are 527 and the objective function was 3.97
##
## The root mean square of the residuals (RMSR) is 0.07
## The df corrected root mean square of the residuals is 0.07
##
## The harmonic number of observations is 718 with the empirical chi square 3695.7 with prob < 0
## The total number of observations was 718 with Likelihood Chi Square = 2797.74 with prob < 5.1e-305
##
## Tucker Lewis Index of factoring reliability = 0.739
## RMSEA index = 0.077 and the 90 % confidence intervals are 0.075 0.08
## BIC = -668.06
## Fit based upon off diagonal values = 0.95
## Measures of factor score adequacy
## PA1
## Correlation of (regression) scores with factors 0.97
## Multiple R square of scores with factors 0.94
## Minimum correlation of possible factor scores 0.88
fa.diagram(fa.none)
#2 fatores
fa.none <- fa(r=SM_dados,
nfactors = 2,
# covar = FALSE, SMC = TRUE,
fm="pa", # type of factor analysis we want to use (“pa” is principal axis factoring)
max.iter=100, # (50 is the default, but we have changed it to 100
rotate="varimax") # none rotation
print(fa.none)
## Factor Analysis using method = pa
## Call: fa(r = SM_dados, nfactors = 2, rotate = "varimax", max.iter = 100,
## fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 h2 u2 com
## q4 0.23 0.33 0.16 0.84 1.8
## q6 0.15 0.41 0.19 0.81 1.3
## q7 0.17 0.62 0.42 0.58 1.2
## q8 0.10 0.70 0.50 0.50 1.0
## q9 0.15 0.51 0.28 0.72 1.2
## q10 0.22 0.51 0.31 0.69 1.3
## q11 0.26 0.45 0.27 0.73 1.6
## q12 0.25 0.44 0.25 0.75 1.6
## q13 0.23 0.42 0.23 0.77 1.6
## q15 0.29 0.59 0.43 0.57 1.5
## q16 0.15 0.72 0.54 0.46 1.1
## q17 0.39 0.38 0.30 0.70 2.0
## q18 0.36 0.11 0.14 0.86 1.2
## q19 0.29 0.26 0.15 0.85 2.0
## q20 0.26 0.40 0.23 0.77 1.7
## q21 0.47 0.19 0.26 0.74 1.3
## q22 0.50 0.34 0.36 0.64 1.8
## q23 0.32 0.65 0.52 0.48 1.5
## q24 0.57 0.35 0.45 0.55 1.6
## q25 0.53 0.19 0.31 0.69 1.2
## q26 0.58 0.26 0.40 0.60 1.4
## q27 0.56 0.14 0.33 0.67 1.1
## q28 0.64 0.13 0.43 0.57 1.1
## q29 0.52 0.11 0.28 0.72 1.1
## q30 0.65 0.31 0.52 0.48 1.4
## q31 0.69 0.28 0.56 0.44 1.3
## q32 0.47 0.36 0.35 0.65 1.9
## q33 0.58 0.28 0.42 0.58 1.5
## q34 0.58 0.17 0.36 0.64 1.2
## q35 0.63 0.29 0.48 0.52 1.4
## q36 0.58 0.31 0.44 0.56 1.5
## q37 0.52 0.34 0.38 0.62 1.7
## q38 0.56 0.27 0.38 0.62 1.5
## q39 0.54 0.37 0.43 0.57 1.8
##
## PA1 PA2
## SS loadings 6.81 5.25
## Proportion Var 0.20 0.15
## Cumulative Var 0.20 0.35
## Proportion Explained 0.56 0.44
## Cumulative Proportion 0.56 1.00
##
## Mean item complexity = 1.4
## Test of the hypothesis that 2 factors are sufficient.
##
## The degrees of freedom for the null model are 561 and the objective function was 13.94 with Chi Square of 9822.05
## The degrees of freedom for the model are 494 and the objective function was 2.74
##
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 718 with the empirical chi square 1920.4 with prob < 7.1e-167
## The total number of observations was 718 with Likelihood Chi Square = 1928.64 with prob < 3.3e-168
##
## Tucker Lewis Index of factoring reliability = 0.824
## RMSEA index = 0.064 and the 90 % confidence intervals are 0.061 0.067
## BIC = -1320.14
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
## PA1 PA2
## Correlation of (regression) scores with factors 0.93 0.91
## Multiple R square of scores with factors 0.86 0.82
## Minimum correlation of possible factor scores 0.72 0.65
fa.diagram(fa.none)
#Análise Fatorial Confirmatória
cfa_model <- '
Sindrome Metabólica =~ q4+q6+q7+q8+q9+q10+q11+q12+q13+
q15+q16+q17+q18+q19+q20+q21+q22+q23+q24+q25+q26+q27+q28+q29+q30+q31+q32+q33+q34+
q35+q36+q37+q38+q39
'
fit <- lavaan::cfa(cfa_model,
data = SM_dados,
estimator="WLSMV",
ordered=colnames(SM_dados)
)
summary(fit, fit.measures=TRUE)
## lavaan 0.6-9 ended normally after 55 iterations
##
## Estimator DWLS
## Optimization method NLMINB
## Number of model parameters 164
##
## Number of observations 718
##
## Model Test User Model:
## Standard Robust
## Test Statistic 2022.370 2147.932
## Degrees of freedom 527 527
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.067
## Shift parameter 253.196
## simple second-order correction
##
## Model Test Baseline Model:
##
## Test statistic 83099.665 19381.393
## Degrees of freedom 561 561
## P-value 0.000 0.000
## Scaling correction factor 4.386
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.982 0.914
## Tucker-Lewis Index (TLI) 0.981 0.908
##
## Robust Comparative Fit Index (CFI) NA
## Robust Tucker-Lewis Index (TLI) NA
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.063 0.065
## 90 Percent confidence interval - lower 0.060 0.063
## 90 Percent confidence interval - upper 0.066 0.068
## P-value RMSEA <= 0.05 0.000 0.000
##
## Robust RMSEA NA
## 90 Percent confidence interval - lower NA
## 90 Percent confidence interval - upper NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.076 0.076
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Unstructured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## SindromeMetabólica =~
## q4 1.000
## q6 0.997 0.092 10.887 0.000
## q7 1.421 0.117 12.158 0.000
## q8 1.442 0.121 11.961 0.000
## q9 1.329 0.117 11.326 0.000
## q10 1.293 0.107 12.075 0.000
## q11 1.301 0.103 12.607 0.000
## q12 1.195 0.103 11.586 0.000
## q13 1.130 0.097 11.620 0.000
## q15 1.603 0.121 13.191 0.000
## q16 1.820 0.153 11.897 0.000
## q17 1.405 0.116 12.097 0.000
## q18 0.944 0.098 9.643 0.000
## q19 1.128 0.101 11.113 0.000
## q20 1.226 0.103 11.853 0.000
## q21 1.259 0.107 11.786 0.000
## q22 1.491 0.119 12.545 0.000
## q23 1.748 0.131 13.334 0.000
## q24 1.672 0.129 12.997 0.000
## q25 1.366 0.113 12.050 0.000
## q26 1.564 0.127 12.353 0.000
## q27 1.385 0.114 12.182 0.000
## q28 1.484 0.121 12.307 0.000
## q29 1.264 0.106 11.900 0.000
## q30 1.758 0.137 12.839 0.000
## q31 1.768 0.139 12.696 0.000
## q32 1.565 0.122 12.830 0.000
## q33 1.634 0.125 13.043 0.000
## q34 1.494 0.117 12.723 0.000
## q35 1.685 0.131 12.857 0.000
## q36 1.642 0.133 12.391 0.000
## q37 1.610 0.130 12.376 0.000
## q38 1.599 0.127 12.582 0.000
## q39 1.715 0.137 12.509 0.000
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|)
## .q4 0.000
## .q6 0.000
## .q7 0.000
## .q8 0.000
## .q9 0.000
## .q10 0.000
## .q11 0.000
## .q12 0.000
## .q13 0.000
## .q15 0.000
## .q16 0.000
## .q17 0.000
## .q18 0.000
## .q19 0.000
## .q20 0.000
## .q21 0.000
## .q22 0.000
## .q23 0.000
## .q24 0.000
## .q25 0.000
## .q26 0.000
## .q27 0.000
## .q28 0.000
## .q29 0.000
## .q30 0.000
## .q31 0.000
## .q32 0.000
## .q33 0.000
## .q34 0.000
## .q35 0.000
## .q36 0.000
## .q37 0.000
## .q38 0.000
## .q39 0.000
## SindromeMetabólica 0.000
##
## Thresholds:
## Estimate Std.Err z-value P(>|z|)
## q4|t1 0.222 0.047 4.695 0.000
## q4|t2 1.592 0.076 20.884 0.000
## q4|t3 2.009 0.104 19.334 0.000
## q6|t1 0.646 0.051 12.788 0.000
## q6|t2 1.568 0.075 20.886 0.000
## q6|t3 2.095 0.112 18.714 0.000
## q6|t4 2.459 0.160 15.360 0.000
## q7|t1 1.041 0.057 18.165 0.000
## q7|t2 1.833 0.090 20.313 0.000
## q7|t3 2.285 0.134 17.074 0.000
## q7|t4 2.772 0.230 12.052 0.000
## q8|t1 1.109 0.059 18.820 0.000
## q8|t2 1.913 0.096 19.917 0.000
## q8|t3 2.393 0.149 16.031 0.000
## q8|t4 2.990 0.305 9.792 0.000
## q9|t1 1.000 0.056 17.729 0.000
## q9|t2 1.746 0.085 20.628 0.000
## q9|t3 2.036 0.106 19.148 0.000
## q9|t4 2.393 0.149 16.031 0.000
## q10|t1 0.463 0.049 9.510 0.000
## q10|t2 1.458 0.070 20.759 0.000
## q10|t3 1.814 0.089 20.390 0.000
## q10|t4 2.393 0.149 16.031 0.000
## q11|t1 0.490 0.049 10.024 0.000
## q11|t2 1.288 0.064 20.110 0.000
## q11|t3 1.814 0.089 20.390 0.000
## q11|t4 2.538 0.175 14.537 0.000
## q12|t1 0.222 0.047 4.695 0.000
## q12|t2 1.059 0.058 18.347 0.000
## q12|t3 1.604 0.077 20.878 0.000
## q12|t4 2.199 0.123 17.853 0.000
## q13|t1 0.409 0.048 8.478 0.000
## q13|t2 1.617 0.077 20.870 0.000
## q13|t3 1.833 0.090 20.313 0.000
## q13|t4 2.459 0.160 15.360 0.000
## q15|t1 0.988 0.056 17.602 0.000
## q15|t2 1.730 0.084 20.673 0.000
## q15|t3 2.393 0.149 16.031 0.000
## q16|t1 1.510 0.072 20.848 0.000
## q16|t2 2.064 0.109 18.942 0.000
## q16|t3 2.990 0.305 9.792 0.000
## q17|t1 0.550 0.049 11.121 0.000
## q17|t2 1.241 0.063 19.834 0.000
## q17|t3 1.983 0.102 19.502 0.000
## q17|t4 2.459 0.160 15.360 0.000
## q18|t1 -0.655 0.051 -12.932 0.000
## q18|t2 -0.186 0.047 -3.951 0.000
## q18|t3 1.219 0.062 19.687 0.000
## q18|t4 1.580 0.076 20.886 0.000
## q19|t1 0.542 0.049 10.975 0.000
## q19|t2 1.065 0.058 18.408 0.000
## q19|t3 1.568 0.075 20.886 0.000
## q19|t4 1.936 0.098 19.792 0.000
## q20|t1 0.459 0.049 9.436 0.000
## q20|t2 1.329 0.065 20.318 0.000
## q20|t3 1.671 0.080 20.804 0.000
## q20|t4 2.095 0.112 18.714 0.000
## q21|t1 0.269 0.047 5.662 0.000
## q21|t2 0.575 0.050 11.558 0.000
## q21|t3 1.814 0.089 20.390 0.000
## q21|t4 2.336 0.141 16.594 0.000
## q22|t1 0.294 0.048 6.182 0.000
## q22|t2 0.933 0.055 16.955 0.000
## q22|t3 2.095 0.112 18.714 0.000
## q22|t4 2.772 0.230 12.052 0.000
## q23|t1 1.053 0.058 18.287 0.000
## q23|t2 1.730 0.084 20.673 0.000
## q23|t3 2.285 0.134 17.074 0.000
## q23|t4 2.990 0.305 9.792 0.000
## q24|t1 0.498 0.049 10.171 0.000
## q24|t2 1.142 0.060 19.104 0.000
## q24|t3 2.459 0.160 15.360 0.000
## q25|t1 0.070 0.047 1.492 0.136
## q25|t2 0.763 0.052 14.637 0.000
## q25|t3 1.730 0.084 20.673 0.000
## q25|t4 2.240 0.128 17.490 0.000
## q26|t1 0.312 0.048 6.553 0.000
## q26|t2 0.906 0.055 16.624 0.000
## q26|t3 2.127 0.115 18.459 0.000
## q26|t4 2.538 0.175 14.537 0.000
## q27|t1 -0.017 0.047 -0.373 0.709
## q27|t2 0.506 0.049 10.317 0.000
## q27|t3 1.779 0.087 20.522 0.000
## q27|t4 2.127 0.115 18.459 0.000
## q28|t1 0.007 0.047 0.149 0.881
## q28|t2 0.534 0.049 10.829 0.000
## q28|t3 1.871 0.093 20.134 0.000
## q28|t4 2.336 0.141 16.594 0.000
## q29|t1 -0.070 0.047 -1.492 0.136
## q29|t2 0.772 0.052 14.777 0.000
## q29|t3 1.700 0.082 20.747 0.000
## q29|t4 2.199 0.123 17.853 0.000
## q30|t1 0.510 0.049 10.390 0.000
## q30|t2 1.329 0.065 20.318 0.000
## q30|t3 2.336 0.141 16.594 0.000
## q31|t1 0.444 0.049 9.142 0.000
## q31|t2 1.090 0.058 18.645 0.000
## q31|t3 2.240 0.128 17.490 0.000
## q31|t4 2.990 0.305 9.792 0.000
## q32|t1 0.685 0.051 13.433 0.000
## q32|t2 1.264 0.063 19.975 0.000
## q32|t3 2.127 0.115 18.459 0.000
## q33|t1 0.591 0.050 11.849 0.000
## q33|t2 1.381 0.067 20.537 0.000
## q33|t3 2.127 0.115 18.459 0.000
## q33|t4 2.990 0.305 9.792 0.000
## q34|t1 0.211 0.047 4.472 0.000
## q34|t2 0.994 0.056 17.665 0.000
## q34|t3 1.796 0.088 20.459 0.000
## q34|t4 2.127 0.115 18.459 0.000
## q35|t1 0.200 0.047 4.249 0.000
## q35|t2 1.280 0.064 20.066 0.000
## q35|t3 2.095 0.112 18.714 0.000
## q35|t4 2.637 0.196 13.486 0.000
## q36|t1 0.211 0.047 4.472 0.000
## q36|t2 0.994 0.056 17.665 0.000
## q36|t3 1.833 0.090 20.313 0.000
## q36|t4 2.240 0.128 17.490 0.000
## q37|t1 0.506 0.049 10.317 0.000
## q37|t2 1.346 0.066 20.395 0.000
## q37|t3 2.162 0.119 18.174 0.000
## q37|t4 2.637 0.196 13.486 0.000
## q38|t1 0.440 0.048 9.068 0.000
## q38|t2 1.190 0.061 19.482 0.000
## q38|t3 2.036 0.106 19.148 0.000
## q38|t4 2.637 0.196 13.486 0.000
## q39|t1 0.655 0.051 12.932 0.000
## q39|t2 1.346 0.066 20.395 0.000
## q39|t3 2.199 0.123 17.853 0.000
## q39|t4 2.772 0.230 12.052 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .q4 0.784
## .q6 0.785
## .q7 0.564
## .q8 0.551
## .q9 0.619
## .q10 0.639
## .q11 0.635
## .q12 0.692
## .q13 0.724
## .q15 0.446
## .q16 0.285
## .q17 0.574
## .q18 0.808
## .q19 0.726
## .q20 0.676
## .q21 0.658
## .q22 0.520
## .q23 0.341
## .q24 0.397
## .q25 0.597
## .q26 0.472
## .q27 0.586
## .q28 0.525
## .q29 0.655
## .q30 0.333
## .q31 0.325
## .q32 0.471
## .q33 0.424
## .q34 0.518
## .q35 0.387
## .q36 0.418
## .q37 0.441
## .q38 0.448
## .q39 0.365
## SindromeMetabólica 0.216 0.034 6.411 0.000
##
## Scales y*:
## Estimate Std.Err z-value P(>|z|)
## q4 1.000
## q6 1.000
## q7 1.000
## q8 1.000
## q9 1.000
## q10 1.000
## q11 1.000
## q12 1.000
## q13 1.000
## q15 1.000
## q16 1.000
## q17 1.000
## q18 1.000
## q19 1.000
## q20 1.000
## q21 1.000
## q22 1.000
## q23 1.000
## q24 1.000
## q25 1.000
## q26 1.000
## q27 1.000
## q28 1.000
## q29 1.000
## q30 1.000
## q31 1.000
## q32 1.000
## q33 1.000
## q34 1.000
## q35 1.000
## q36 1.000
## q37 1.000
## q38 1.000
## q39 1.000
lavaan::fitMeasures(fit, fit.measures = c("rmsea.scaled",
"rmsea.ci.lower.scaled",
"rmsea.ci.upper.scaled",
"cfi.scaled",
"tli.scaled",
"nnfi.scaled",
"chisq.scaled",
"pvalue.scaled"
))
## rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled
## 0.065 0.063 0.068
## cfi.scaled tli.scaled nnfi.scaled
## 0.914 0.908 0.908
## chisq.scaled pvalue.scaled
## 2147.932 0.000
Est <- lavaan::parameterEstimates(fit, ci = TRUE, standardized = TRUE)
subset(Est, op == "=~")
## lhs op rhs est se z pvalue ci.lower ci.upper std.lv
## 1 SindromeMetabólica =~ q4 1.000 0.000 NA NA 1.000 1.000 0.465
## 2 SindromeMetabólica =~ q6 0.997 0.092 10.887 0 0.817 1.176 0.463
## 3 SindromeMetabólica =~ q7 1.421 0.117 12.158 0 1.192 1.650 0.660
## 4 SindromeMetabólica =~ q8 1.442 0.121 11.961 0 1.205 1.678 0.670
## 5 SindromeMetabólica =~ q9 1.329 0.117 11.326 0 1.099 1.559 0.618
## 6 SindromeMetabólica =~ q10 1.293 0.107 12.075 0 1.083 1.503 0.601
## 7 SindromeMetabólica =~ q11 1.301 0.103 12.607 0 1.098 1.503 0.604
## 8 SindromeMetabólica =~ q12 1.195 0.103 11.586 0 0.993 1.397 0.555
## 9 SindromeMetabólica =~ q13 1.130 0.097 11.620 0 0.939 1.321 0.525
## 10 SindromeMetabólica =~ q15 1.603 0.121 13.191 0 1.365 1.841 0.745
## 11 SindromeMetabólica =~ q16 1.820 0.153 11.897 0 1.520 2.120 0.846
## 12 SindromeMetabólica =~ q17 1.405 0.116 12.097 0 1.178 1.633 0.653
## 13 SindromeMetabólica =~ q18 0.944 0.098 9.643 0 0.752 1.136 0.439
## 14 SindromeMetabólica =~ q19 1.128 0.101 11.113 0 0.929 1.327 0.524
## 15 SindromeMetabólica =~ q20 1.226 0.103 11.853 0 1.023 1.428 0.569
## 16 SindromeMetabólica =~ q21 1.259 0.107 11.786 0 1.050 1.468 0.585
## 17 SindromeMetabólica =~ q22 1.491 0.119 12.545 0 1.258 1.723 0.693
## 18 SindromeMetabólica =~ q23 1.748 0.131 13.334 0 1.491 2.005 0.812
## 19 SindromeMetabólica =~ q24 1.672 0.129 12.997 0 1.420 1.924 0.777
## 20 SindromeMetabólica =~ q25 1.366 0.113 12.050 0 1.144 1.588 0.635
## 21 SindromeMetabólica =~ q26 1.564 0.127 12.353 0 1.316 1.812 0.726
## 22 SindromeMetabólica =~ q27 1.385 0.114 12.182 0 1.163 1.608 0.644
## 23 SindromeMetabólica =~ q28 1.484 0.121 12.307 0 1.248 1.720 0.689
## 24 SindromeMetabólica =~ q29 1.264 0.106 11.900 0 1.055 1.472 0.587
## 25 SindromeMetabólica =~ q30 1.758 0.137 12.839 0 1.490 2.027 0.817
## 26 SindromeMetabólica =~ q31 1.768 0.139 12.696 0 1.495 2.041 0.821
## 27 SindromeMetabólica =~ q32 1.565 0.122 12.830 0 1.326 1.804 0.727
## 28 SindromeMetabólica =~ q33 1.634 0.125 13.043 0 1.388 1.879 0.759
## 29 SindromeMetabólica =~ q34 1.494 0.117 12.723 0 1.264 1.724 0.694
## 30 SindromeMetabólica =~ q35 1.685 0.131 12.857 0 1.428 1.942 0.783
## 31 SindromeMetabólica =~ q36 1.642 0.133 12.391 0 1.382 1.902 0.763
## 32 SindromeMetabólica =~ q37 1.610 0.130 12.376 0 1.355 1.865 0.748
## 33 SindromeMetabólica =~ q38 1.599 0.127 12.582 0 1.350 1.848 0.743
## 34 SindromeMetabólica =~ q39 1.715 0.137 12.509 0 1.447 1.984 0.797
## std.all std.nox
## 1 0.465 0.465
## 2 0.463 0.463
## 3 0.660 0.660
## 4 0.670 0.670
## 5 0.618 0.618
## 6 0.601 0.601
## 7 0.604 0.604
## 8 0.555 0.555
## 9 0.525 0.525
## 10 0.745 0.745
## 11 0.846 0.846
## 12 0.653 0.653
## 13 0.439 0.439
## 14 0.524 0.524
## 15 0.569 0.569
## 16 0.585 0.585
## 17 0.693 0.693
## 18 0.812 0.812
## 19 0.777 0.777
## 20 0.635 0.635
## 21 0.726 0.726
## 22 0.644 0.644
## 23 0.689 0.689
## 24 0.587 0.587
## 25 0.817 0.817
## 26 0.821 0.821
## 27 0.727 0.727
## 28 0.759 0.759
## 29 0.694 0.694
## 30 0.783 0.783
## 31 0.763 0.763
## 32 0.748 0.748
## 33 0.743 0.743
## 34 0.797 0.797
subset(Est, op == "~~")
## lhs op rhs est se z pvalue ci.lower
## 165 q4 ~~ q4 0.784 0.000 NA NA 0.784
## 166 q6 ~~ q6 0.785 0.000 NA NA 0.785
## 167 q7 ~~ q7 0.564 0.000 NA NA 0.564
## 168 q8 ~~ q8 0.551 0.000 NA NA 0.551
## 169 q9 ~~ q9 0.619 0.000 NA NA 0.619
## 170 q10 ~~ q10 0.639 0.000 NA NA 0.639
## 171 q11 ~~ q11 0.635 0.000 NA NA 0.635
## 172 q12 ~~ q12 0.692 0.000 NA NA 0.692
## 173 q13 ~~ q13 0.724 0.000 NA NA 0.724
## 174 q15 ~~ q15 0.446 0.000 NA NA 0.446
## 175 q16 ~~ q16 0.285 0.000 NA NA 0.285
## 176 q17 ~~ q17 0.574 0.000 NA NA 0.574
## 177 q18 ~~ q18 0.808 0.000 NA NA 0.808
## 178 q19 ~~ q19 0.726 0.000 NA NA 0.726
## 179 q20 ~~ q20 0.676 0.000 NA NA 0.676
## 180 q21 ~~ q21 0.658 0.000 NA NA 0.658
## 181 q22 ~~ q22 0.520 0.000 NA NA 0.520
## 182 q23 ~~ q23 0.341 0.000 NA NA 0.341
## 183 q24 ~~ q24 0.397 0.000 NA NA 0.397
## 184 q25 ~~ q25 0.597 0.000 NA NA 0.597
## 185 q26 ~~ q26 0.472 0.000 NA NA 0.472
## 186 q27 ~~ q27 0.586 0.000 NA NA 0.586
## 187 q28 ~~ q28 0.525 0.000 NA NA 0.525
## 188 q29 ~~ q29 0.655 0.000 NA NA 0.655
## 189 q30 ~~ q30 0.333 0.000 NA NA 0.333
## 190 q31 ~~ q31 0.325 0.000 NA NA 0.325
## 191 q32 ~~ q32 0.471 0.000 NA NA 0.471
## 192 q33 ~~ q33 0.424 0.000 NA NA 0.424
## 193 q34 ~~ q34 0.518 0.000 NA NA 0.518
## 194 q35 ~~ q35 0.387 0.000 NA NA 0.387
## 195 q36 ~~ q36 0.418 0.000 NA NA 0.418
## 196 q37 ~~ q37 0.441 0.000 NA NA 0.441
## 197 q38 ~~ q38 0.448 0.000 NA NA 0.448
## 198 q39 ~~ q39 0.365 0.000 NA NA 0.365
## 199 SindromeMetabólica ~~ SindromeMetabólica 0.216 0.034 6.411 0 0.150
## ci.upper std.lv std.all std.nox
## 165 0.784 0.784 0.784 0.784
## 166 0.785 0.785 0.785 0.785
## 167 0.564 0.564 0.564 0.564
## 168 0.551 0.551 0.551 0.551
## 169 0.619 0.619 0.619 0.619
## 170 0.639 0.639 0.639 0.639
## 171 0.635 0.635 0.635 0.635
## 172 0.692 0.692 0.692 0.692
## 173 0.724 0.724 0.724 0.724
## 174 0.446 0.446 0.446 0.446
## 175 0.285 0.285 0.285 0.285
## 176 0.574 0.574 0.574 0.574
## 177 0.808 0.808 0.808 0.808
## 178 0.726 0.726 0.726 0.726
## 179 0.676 0.676 0.676 0.676
## 180 0.658 0.658 0.658 0.658
## 181 0.520 0.520 0.520 0.520
## 182 0.341 0.341 0.341 0.341
## 183 0.397 0.397 0.397 0.397
## 184 0.597 0.597 0.597 0.597
## 185 0.472 0.472 0.472 0.472
## 186 0.586 0.586 0.586 0.586
## 187 0.525 0.525 0.525 0.525
## 188 0.655 0.655 0.655 0.655
## 189 0.333 0.333 0.333 0.333
## 190 0.325 0.325 0.325 0.325
## 191 0.471 0.471 0.471 0.471
## 192 0.424 0.424 0.424 0.424
## 193 0.518 0.518 0.518 0.518
## 194 0.387 0.387 0.387 0.387
## 195 0.418 0.418 0.418 0.418
## 196 0.441 0.441 0.441 0.441
## 197 0.448 0.448 0.448 0.448
## 198 0.365 0.365 0.365 0.365
## 199 0.282 1.000 1.000 1.000
Mod <- lavaan::modificationIndices(fit)
subset(Mod, mi > 10)
## lhs op rhs mi epc sepc.lv sepc.all sepc.nox
## 269 q4 ~~ q6 31.607 0.236 0.236 0.300 0.300
## 281 q4 ~~ q19 11.596 0.139 0.139 0.185 0.185
## 302 q6 ~~ q7 22.203 0.220 0.220 0.331 0.331
## 304 q6 ~~ q9 11.799 0.170 0.170 0.243 0.243
## 334 q7 ~~ q8 29.327 0.251 0.251 0.451 0.451
## 341 q7 ~~ q16 10.072 0.165 0.165 0.413 0.413
## 365 q8 ~~ q9 14.773 0.189 0.189 0.323 0.323
## 371 q8 ~~ q16 29.070 0.237 0.237 0.598 0.598
## 393 q8 ~~ q38 10.282 -0.182 -0.182 -0.366 -0.366
## 395 q9 ~~ q10 18.810 0.186 0.186 0.295 0.295
## 424 q10 ~~ q11 107.356 0.326 0.326 0.513 0.513
## 425 q10 ~~ q12 62.547 0.274 0.274 0.413 0.413
## 432 q10 ~~ q20 10.898 0.138 0.138 0.210 0.210
## 452 q11 ~~ q12 96.684 0.323 0.323 0.488 0.488
## 513 q13 ~~ q23 12.328 0.155 0.155 0.313 0.313
## 530 q15 ~~ q16 10.782 0.145 0.145 0.408 0.408
## 534 q15 ~~ q20 11.987 0.151 0.151 0.275 0.275
## 555 q16 ~~ q18 10.051 -0.254 -0.254 -0.529 -0.529
## 585 q17 ~~ q26 14.139 0.119 0.119 0.228 0.228
## 607 q18 ~~ q27 19.963 0.148 0.148 0.216 0.216
## 620 q19 ~~ q20 19.765 0.184 0.184 0.263 0.263
## 622 q19 ~~ q22 10.533 0.118 0.118 0.191 0.191
## 640 q20 ~~ q21 10.154 -0.147 -0.147 -0.221 -0.221
## 647 q20 ~~ q28 12.662 -0.168 -0.168 -0.282 -0.282
## 659 q21 ~~ q22 29.178 0.177 0.177 0.302 0.302
## 711 q24 ~~ q26 13.716 0.107 0.107 0.247 0.247
## 716 q24 ~~ q31 10.889 0.090 0.090 0.251 0.251
## 725 q25 ~~ q26 41.504 0.157 0.157 0.295 0.295
## 740 q26 ~~ q28 11.684 0.092 0.092 0.185 0.185
## 752 q27 ~~ q28 47.588 0.176 0.176 0.317 0.317
## 761 q27 ~~ q37 16.100 -0.153 -0.153 -0.301 -0.301
## 775 q29 ~~ q30 23.019 0.139 0.139 0.297 0.297
## 785 q30 ~~ q31 20.967 0.111 0.111 0.337 0.337
## 807 q32 ~~ q38 11.062 0.106 0.106 0.231 0.231
## 815 q34 ~~ q35 19.442 0.108 0.108 0.240 0.240
## 816 q34 ~~ q36 11.934 0.087 0.087 0.186 0.186
## 820 q35 ~~ q36 20.192 0.107 0.107 0.267 0.267
## 824 q36 ~~ q37 22.690 0.127 0.127 0.295 0.295
## 827 q37 ~~ q38 17.292 0.121 0.121 0.272 0.272
## 828 q37 ~~ q39 31.498 0.138 0.138 0.345 0.345
## 829 q38 ~~ q39 43.143 0.150 0.150 0.371 0.371
#Composite Reliabilty
sum(Est$std.all[1:34])^2/(sum(Est$std.all[1:34])^2+sum(Est$std.all[165:198]))
## [1] 0.9656443
#Average Extracted Variance
sum(Est$std.all[1:34]^2)/length(Est$std.all[1:34])
## [1] 0.4591538
#Thresholds
by(Est$std.all[1:34],Est$lhs[1:34],mean)
## Est$lhs[1:34]: SindromeMetabólica
## [1] 0.6686623
#Factor scores
SM_scores<-lavaan::predict(fit)
write.csv(SM_scores,"/Users/leopestillo/Google Drive/Analysis/jhainy//SM_scores.csv")