hpwtRatio = hp/wt
# adding the variable into mtcars dataset
mtcars <- cbind(mtcars,hpwtRatio)
# print some rows of the updated dataframe mtcars
head(mtcars)## mpg cyl disp hp drat wt qsec vs am gear carb hpwtRatio
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 41.98473
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 38.26087
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 40.08621
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 34.21462
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 50.87209
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 30.34682
## mpg cyl disp hp drat wt qsec vs am gear carb
## Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
## hpwtRatio
## Cadillac Fleetwood 39.04762
## Lincoln Continental 39.63864
## Chrysler Imperial 43.03087
## [1] 20.09062
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.40 15.43 19.20 20.09 22.80 33.90
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## hpwtRatio
## Hornet Sportabout 50.87209
## Valiant 30.34682
## Duster 360 68.62745
## Merc 280 35.75581
## Merc 280C 35.75581
## Merc 450SE 44.22604
## Merc 450SL 48.25737
## Merc 450SLC 47.61905
## Cadillac Fleetwood 39.04762
## Lincoln Continental 39.63864
## Chrysler Imperial 43.03087
## Dodge Challenger 42.61364
## AMC Javelin 43.66812
## Camaro Z28 63.80208
## Pontiac Firebird 45.51365
## Ford Pantera L 83.28076
## Ferrari Dino 63.17690
## Maserati Bora 93.83754
## mpg cyl disp hp drat wt qsec vs am gear carb hpwtRatio
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 40.08621
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 19.43574
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 30.15873
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.00000
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 32.19814
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 35.42234
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 39.35091
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 34.10853
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 42.52336
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 74.68605
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 39.20863
## mpg cyl disp hp drat wt qsec vs am gear carb hpwtRatio
## Merc 240D 24.4 4 146.7 62 3.69 3.19 20.0 1 0 4 2 19.43574
## Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2 30.15873
# cars having either 4 or 6 cylinders (i.e. not having 8 cylinders)
mtcars6 <- subset(mtcars, cyl == 4 | cyl == 6)
mtcars6## mpg cyl disp hp drat wt qsec vs am gear carb hpwtRatio
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 41.98473
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 38.26087
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 40.08621
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 34.21462
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 30.34682
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 19.43574
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 30.15873
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 35.75581
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 35.75581
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.00000
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 32.19814
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 35.42234
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 39.35091
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 34.10853
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 42.52336
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 74.68605
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 63.17690
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 39.20863
# cars having either 4 or 6 cylinders (i.e. not having 8 cylinders)
mtcars7 <- subset(mtcars, cyl != 8)
mtcars7## mpg cyl disp hp drat wt qsec vs am gear carb hpwtRatio
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 41.98473
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 38.26087
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 40.08621
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 34.21462
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 30.34682
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 19.43574
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 30.15873
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 35.75581
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 35.75581
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 30.00000
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 32.19814
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 35.42234
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 39.35091
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 34.10853
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 42.52336
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 74.68605
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 63.17690
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 39.20863
## [1] 1 3 5 7 9
## [1] "numeric"
## [1] 6 8 10 12 14
## [1] 1 9 25 49 81
## [1] "mpg" "wt" "cyl"
## [1] "character"
## mpg wt cyl
## Mazda RX4 21.0 2.620 6
## Mazda RX4 Wag 21.0 2.875 6
## Datsun 710 22.8 2.320 4
## Hornet 4 Drive 21.4 3.215 6
## Hornet Sportabout 18.7 3.440 8
## Valiant 18.1 3.460 6
## Duster 360 14.3 3.570 8
## Merc 240D 24.4 3.190 4
## Merc 230 22.8 3.150 4
## Merc 280 19.2 3.440 6
## Merc 280C 17.8 3.440 6
## Merc 450SE 16.4 4.070 8
## Merc 450SL 17.3 3.730 8
## Merc 450SLC 15.2 3.780 8
## Cadillac Fleetwood 10.4 5.250 8
## Lincoln Continental 10.4 5.424 8
## Chrysler Imperial 14.7 5.345 8
## Fiat 128 32.4 2.200 4
## Honda Civic 30.4 1.615 4
## Toyota Corolla 33.9 1.835 4
## Toyota Corona 21.5 2.465 4
## Dodge Challenger 15.5 3.520 8
## AMC Javelin 15.2 3.435 8
## Camaro Z28 13.3 3.840 8
## Pontiac Firebird 19.2 3.845 8
## Fiat X1-9 27.3 1.935 4
## Porsche 914-2 26.0 2.140 4
## Lotus Europa 30.4 1.513 4
## Ford Pantera L 15.8 3.170 8
## Ferrari Dino 19.7 2.770 6
## Maserati Bora 15.0 3.570 8
## Volvo 142E 21.4 2.780 4
## mpg wt cyl
## Fiat 128 32.4 2.200 4
## Honda Civic 30.4 1.615 4
## Toyota Corolla 33.9 1.835 4
## Fiat X1-9 27.3 1.935 4
## Porsche 914-2 26.0 2.140 4
## Lotus Europa 30.4 1.513 4
## mpg wt cyl
## Fiat 128 32.4 2.200 4
## Honda Civic 30.4 1.615 4
## Toyota Corolla 33.9 1.835 4
## Fiat X1-9 27.3 1.935 4
## Porsche 914-2 26.0 2.140 4
## Lotus Europa 30.4 1.513 4
# using subset function
mtcars10 <- subset(mtcars, mpg > 25 & cyl == 4, select=c(mpg, wt, cyl))
mtcars10## mpg wt cyl
## Fiat 128 32.4 2.200 4
## Honda Civic 30.4 1.615 4
## Toyota Corolla 33.9 1.835 4
## Fiat X1-9 27.3 1.935 4
## Porsche 914-2 26.0 2.140 4
## Lotus Europa 30.4 1.513 4