1.1 Primary Analysis Goal
Determine the general service readiness within each of the domains (as defined by the SARA tool) For Bunyala Subcounty as indicated in the KHFA survey from March 2020.
Analysis Report
By:
Kelly, Caitrin Maura, Kimaina Allan kimkenal@gmail.com, Michael Kibiwott mkibiwott@ampathplus.or.ke, jamilalariik jamilalariik@gmail.com Linner Soy linnersoy22@gmail.com, ORERA BODO orerabodo@gmail.com, Shadrack Mutai mailshadrack@gmail.com, Cornelius Kiptoo corny.kip@gmail.com, Turissini, Matthew Louis" mturissi@iu.edu David Kiptoo
Determine the general service readiness within each of the domains (as defined by the SARA tool) For Bunyala Subcounty as indicated in the KHFA survey from March 2020.
How does service readiness impact service availability using the UHC framework indexes? Look at the WHO Kenya UHC indices included in community baseline survey, and specific service readniess indicators that may impact them (ex stocks of immunizations, diarrhea and Pneumonia tx, stock of family planning supplies, etc)
Service specific areas (ex maternal health came up a lot during FGDs, may want to look into SARA measures and KHFA service specific areas for maternal health or other areas).
power: combine with question 2028 on uninterrupted power; in order to get “credit”for power indicator need to have both Q2025=YES, and Q2035=1 or =2
Improved water source: to count it for improved water source, must have 2050=1,13,4,9,2 AND question 2053=2 (NO)
room with privacy: 2230=3(BOTH AUDITORY AND VISUAL PRIVACY) –> Is there a room with auditory and visual privacy available for patient consultations?
adequate sanitation Require both male and female latrines to be functioning If either male or female are not functioning or do not meet the criteria for improved sanitation, indicator is counted as 0
communication equipment 2000 only count indicator if response is 1, YES FUNCTION
access to computer & internet 2002 only include indicator if 2002=1, AND 2004=1
Emergency transportation to get credit for this indicator, 2133=1 OR 2 AND 2134=YES/1 AND 2135=1/YES
Scoring: Domain score = Mean score of items as percentage: mean*100
# define on SARA
aggr_var=c('power', 'improved_water_source', 'room_with_privacy', 'adequate_sanitation_toilet', 'communication_equipment','computer_internet','emergency_transportation')
# define non-SARA
other_var=c()
# define score vars
score_var=c('BA_SARA_score')
# combine both sara and non-sara
all_var=unique(c(aggr_var,other_var))
# indicator calculations
basic_amenities.df = data%>%mutate(
# Step 0: clean data
available_functioning_femalet=replace_na(available_functioning_femalet, 9999),
have_functioning_computer=replace_na(have_functioning_computer, 9999),
is_there_access_to_email_o=replace_na(is_there_access_to_email_o, 9999),
# Step 1: aggregate SARA components
power = if_else((does_this_facility_have_po==1 & during_the_past_7_days_was%in%c(1,2)) ,1,0),
improved_water_source = if_else((water_shortage_past7days==2 & what_is_the_most_commonly%in%c(1,13,4,9,2)) ,1,0),
room_with_privacy= if_else(auditory_visual_privacy==3,1,0),
adequate_sanitation_toilet= if_else(male_toilet___8!=1 & available_functioning_malet___1==1& female_toilet!=9 & available_functioning_femalet==1,1,0),
communication_equipment= if_else(formal_means_communicating%in%c(1),1,0),
computer_internet=if_else(have_functioning_computer==1 & is_there_access_to_email_o==1,1,0),
emergency_transportation=if_else((driver_available==1 & vehicle_available==1 & emergency_transport%in%c(1,2)) ,1,0)
# Step 2: aggregate non-SARA components
# No non-sara for amenities
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
BA_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) )
)%>%mutate_at( all_var, to_YesNo)Improved water sources as defined in the WHO SARA tool are:” Improved water source uses uniform definitions for safe water sources promoted by UNICEF. These include the following: Piped, public tap, standpipe, tubewell/borehole, protected dug well, protected spring, rain water “. So looks like your coding also needs to include protected dug well, protected spring,…..I see there are other options listed on the survey so I guess I would consider them NOT improved
| facility_name.factor | facility_type.factor | level | power | improved_water_source | room_with_privacy | adequate_sanitation_toilet | communication_equipment | computer_internet | emergency_transportation | BA_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | No | No | Yes | No | No | No | 28.6 |
| Bulwani | Dispensary | Level 2 | No | Yes | Yes | No | No | No | No | 28.6 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | No | No | 71.4 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | No | No | Yes | Yes | Yes | Yes | 71.4 |
| Rukala | Health Centre | Level 3 | No | Yes | Yes | Yes | Yes | No | No | 57.1 |
| Sisenye | Dispensary | Level 2 | No | No | Yes | Yes | No | No | No | 28.6 |
| Osieko | Dispensary | Level 2 | No | Yes | Yes | Yes | No | No | No | 42.9 |
| Khajula | Dispensary | Level 2 | Yes | Yes | Yes | No | No | No | Yes | 57.1 |
| Busagwa | Dispensary | Level 2 | No | No | Yes | Yes | No | No | No | 28.6 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
power | 0.7 | ||||
No | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
Yes | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
improved_water_source | 0.4 | ||||
No | 4 (44%) | 3 (50%) | 0 (0%) | 1 (100%) | |
Yes | 5 (56%) | 3 (50%) | 2 (100%) | 0 (0%) | |
room_with_privacy | 0.2 | ||||
No | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
Yes | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
adequate_sanitation_toilet | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
communication_equipment | 0.012 | ||||
No | 6 (67%) | 6 (100%) | 0 (0%) | 0 (0%) | |
Yes | 3 (33%) | 0 (0%) | 2 (100%) | 1 (100%) | |
computer_internet | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
emergency_transportation | 0.2 | ||||
No | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
Yes | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
BA_SARA_score | 0.066 | ||||
Median (IQR) | 43 (29, 57) | 29 (29, 39) | 64 (61, 68) | 71 (71, 71) | |
Mean (SD) | 46 (19) | 36 (12) | 64 (10) | 71 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
We do not have
Aggregating: give credit for item if =1 or 2 (observed or reported) AND part B=1 YES, functioning
Scoring: Domain score = Mean score of items as percentage: N/6*100
# define on SARA
aggr_var=c('adult_weighing_scale', 'child_weighing_scale', 'thermometer', 'stethoscope', 'blood_pressure_apparatus','light_source')
# define non-SARA
other_var=c('pulse_oximeter', 'adult_self_inflating_bag_and_mas', 'paed_self_inflating_bag_and_mas', 'neonatal_bag_and_mask',
'defibrillator', 'ekg_machine', 'electrodes_and_leads_EKG', 'oxygen_currently_in_the_unit', 'oxygen_called_for_from_a_central_location',
'central_piped_oxygen_supp','oxygen_concentrator','oxygen_tank_cylinder', 'flowmeter_for_oxygen_sourc', 'oxygen_delivery_apparatus')
# define score vars
score_var=c('BE_SARA_score','BE_SARAExtra_score')
# combine both sara and non-sara
all_var=unique(c(aggr_var,other_var))
# indicator calculations
basic_equipment.df = data%>%mutate(
# Step 0: clean daata
neonatal_bag_and_mask_been_unavailable=replace_na(neonatal_bag_and_mask_been_unavailable, 0),
# Step 1: aggregate SARA components
adult_weighing_scale = if_else((adult_weighing_scale_digit___1==1 | adult_weighing_scale_digit___2==1) & adult_weighing_scale_digit___4==1,1,0),
child_weighing_scale = if_else((child_weighing_scale_250_g___1==1 | child_weighing_scale_250_g___2==1) & child_weighing_scale_250_g___4==1,1,0),
thermometer = if_else((thermometer___1==1 | thermometer___2==1) & thermometer___4==1,1,0),
stethoscope = if_else((stethoscope___1==1 | stethoscope___2==1) & stethoscope___4==1,1,0),
blood_pressure_apparatus = if_else((blood_pressure_apparatus___1==1 | blood_pressure_apparatus___2==1) & blood_pressure_apparatus___4==1,1,0),
light_source = if_else((light_source_that_can_be_p___1==1 | light_source_that_can_be_p___2==1) & light_source_that_can_be_p___4==1,1,0),
# Step 2: aggregate non-SARA components
pulse_oximeter = if_else((emergency_pulse_oximeter___1==1 | emergency_pulse_oximeter___2==1) & emergency_pulse_oximeter___4==1,1,0),
adult_self_inflating_bag_and_mas = if_else((adult_self_inflating_bag_and_mas___1==1 | adult_self_inflating_bag_and_mas___2==1) & adult_self_inflating_bag_and_mas___4==1,1,0),
paed_self_inflating_bag_and_mas = if_else((paed_self_inflating_bag_and_mas___1==1 | paed_self_inflating_bag_and_mas___2==1) & paed_self_inflating_bag_and_mas___4==1,1,0),
neonatal_bag_and_mask = neonatal_bag_and_mask_been_unavailable,
defibrillator = if_else((defibrillator___1==1 | defibrillator___2==1) & defibrillator___4==1,1,0),
ekg_machine = if_else((ekg_machine___1==1 | ekg_machine___2==1) & ekg_machine___4==1,1,0),
electrodes_and_leads_EKG = if_else((electrodes_and_leads_for_e___1==1 | electrodes_and_leads_for_e___2==1) & electrodes_and_leads_for_e___4==1,1,0),
oxygen_currently_in_the_unit = oxygen_currently_in_the_unit,
oxygen_called_for_from_a_central_location=oxygen_called_for_from_a_central_location,
central_piped_oxygen_supp = if_else((central_piped_oxygen_suppl___1==1 | central_piped_oxygen_suppl___2==1) & central_piped_oxygen_suppl___4==1,1,0),
oxygen_concentrator = if_else((oxygen_concentrator___1==1 | oxygen_concentrator___2==1) & oxygen_concentrator___4==1,1,0),
oxygen_tank_cylinder = if_else((oxygen_tank_cylinder_with___1==1 | oxygen_tank_cylinder_with___2==1) & oxygen_tank_cylinder_with___4==1,1,0),
flowmeter_for_oxygen_sourc = if_else((flowmeter_for_oxygen_sourc___1==1 | flowmeter_for_oxygen_sourc___2==1) & flowmeter_for_oxygen_sourc___4==1,1,0),
oxygen_delivery_apparatus = if_else((oxygen_delivery_apparatus___1==1 | oxygen_delivery_apparatus___2==1) & oxygen_delivery_apparatus___4==1,1,0),
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
BE_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) ),
BE_SARAExtra_score=as.numeric( round((select(.,all_var) %>% rowMeans(na.rm=T))*100,1))
)%>%mutate_at( all_var, to_YesNo)| facility_name.factor | facility_type.factor | level | adult_weighing_scale | child_weighing_scale | thermometer | stethoscope | blood_pressure_apparatus | light_source | BE_SARA_score |
|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | Yes | Yes | Yes | No | No | 66.7 |
| Bulwani | Dispensary | Level 2 | No | No | No | No | Yes | No | 16.7 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | Yes | 100.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | Yes | Yes | No | 66.7 |
| Rukala | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | No | 83.3 |
| Sisenye | Dispensary | Level 2 | Yes | No | Yes | Yes | Yes | No | 66.7 |
| Osieko | Dispensary | Level 2 | Yes | Yes | Yes | Yes | Yes | Yes | 100.0 |
| Khajula | Dispensary | Level 2 | No | No | No | No | No | No | 0.0 |
| Busagwa | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | No | 66.7 |
part B=1 YES, functioning
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
adult_weighing_scale | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
child_weighing_scale | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
thermometer | 0.4 | ||||
No | 3 (33%) | 2 (33%) | 0 (0%) | 1 (100%) | |
Yes | 6 (67%) | 4 (67%) | 2 (100%) | 0 (0%) | |
stethoscope | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
blood_pressure_apparatus | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
light_source | 0.6 | ||||
No | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
Yes | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
BE_SARA_score | 0.2 | ||||
Median (IQR) | 67 (67, 83) | 67 (29, 67) | 92 (87, 96) | 67 (67, 67) | |
Mean (SD) | 63 (34) | 53 (37) | 92 (12) | 67 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
| facility_name.factor | facility_type.factor | level | adult_weighing_scale | child_weighing_scale | thermometer | stethoscope | blood_pressure_apparatus | light_source | pulse_oximeter | adult_self_inflating_bag_and_mas | paed_self_inflating_bag_and_mas | neonatal_bag_and_mask | defibrillator | ekg_machine | electrodes_and_leads_EKG | oxygen_currently_in_the_unit | oxygen_called_for_from_a_central_location | central_piped_oxygen_supp | oxygen_concentrator | oxygen_tank_cylinder | flowmeter_for_oxygen_sourc | oxygen_delivery_apparatus | BE_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | NA | NA | No | No | No | No | No | 66.7 |
| Bulwani | Dispensary | Level 2 | No | No | No | No | Yes | No | No | No | No | No | No | No | No | NA | NA | No | No | No | No | No | 16.7 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No | No | 100.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | Yes | Yes | No | No | No | No | No | No | No | No | No | Yes | No | No | Yes | Yes | Yes | 66.7 |
| Rukala | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No | No | No | 83.3 |
| Sisenye | Dispensary | Level 2 | Yes | No | Yes | Yes | Yes | No | No | No | No | No | No | No | No | NA | NA | No | No | No | No | No | 66.7 |
| Osieko | Dispensary | Level 2 | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | NA | NA | No | No | No | No | No | 100.0 |
| Khajula | Dispensary | Level 2 | No | No | No | No | No | No | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | 0.0 |
| Busagwa | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | No | No | No | No | No | No | No | No | NA | NA | No | No | No | No | No | 66.7 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
adult_weighing_scale | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
child_weighing_scale | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
thermometer | 0.4 | ||||
No | 3 (33%) | 2 (33%) | 0 (0%) | 1 (100%) | |
Yes | 6 (67%) | 4 (67%) | 2 (100%) | 0 (0%) | |
stethoscope | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
blood_pressure_apparatus | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
light_source | 0.6 | ||||
No | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
Yes | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
pulse_oximeter | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
adult_self_inflating_bag_and_mas | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
paed_self_inflating_bag_and_mas | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
neonatal_bag_and_mask | >0.9 | ||||
No | 8 (89%) | 5 (83%) | 2 (100%) | 1 (100%) | |
Yes | 1 (11%) | 1 (17%) | 0 (0%) | 0 (0%) | |
defibrillator | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
ekg_machine | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
electrodes_and_leads_EKG | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxygen_currently_in_the_unit | |||||
No | 4 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | |
Unknown | 5 | 5 | 0 | 0 | |
oxygen_called_for_from_a_central_location | 0.5 | ||||
No | 3 (75%) | 1 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (25%) | 0 (0%) | 0 (0%) | 1 (100%) | |
Unknown | 5 | 5 | 0 | 0 | |
central_piped_oxygen_supp | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxygen_concentrator | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxygen_tank_cylinder | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
flowmeter_for_oxygen_sourc | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
oxygen_delivery_apparatus | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
BE_SARAExtra_score | 0.058 | ||||
Median (IQR) | 33 (22, 50) | 28 (22, 33) | 62 (59, 66) | 50 (50, 50) | |
Mean (SD) | 36 (19) | 25 (11) | 62 (11) | 50 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
Aggregating: count the indicator as present (1) if observed and function, or reported avialable and functional (Responses 1, 2) do not count the indicator (0)if not functional, not available today, or never available (3, 4, 5)
Scoring: Domain score = Mean score of items as percentage: N/8*100
# define on SARA
aggr_var=c('haemoglobin', 'blood_glucose', 'malaria_diagnostic_capacity', 'urine_dipstick_protein', 'urine_dipstick_glucose','HIV_diagnostic_capacity','syphilis_rapid_test','urine_test_for_preg')
# define non-SARA
other_var=c('UEC', 'hemoglobin_a1c', 'geneXpert', 'x_ray', 'ultrasound', 'ECG')
# define score vars
score_var=c('DC_SARA_score','DC_SARAExtra_score')
# combine both sara and non-sara
all_var=unique(c(aggr_var,other_var))
# indicator calculations
diagnostic_capacity.df = data%>%mutate(
# Step 0: clean daata
#neonatal_bag_and_mask_been_unavailable=replace_na(neonatal_bag_and_mask_been_unavailable, 0),
# Step 1: aggregate SARA components
haemoglobin = if_else((colorimeter_or_haemoglobin___1==1 | colorimeter_or_haemoglobin___2==1) |
(hemocue___1==1 | hemocue___2==1) |
( haematology_analyser___4==1 | haematology_analyser___5==1) |
(any_tests_of_blood_white_a___4==1 | any_tests_of_blood_white_a___5==1) |
( other_tests_for_full_blood___4==1 | other_tests_for_full_blood___5==1) |
( other_tests_for_anemia___4==1 | other_tests_for_anemia___5==1) ,1,0),
blood_glucose = if_else((glucometer___1==1 | glucometer___2==1 | glucometer_test_strips_dis___1==1 | glucometer_test_strips_dis___2==1),1,0),
malaria_diagnostic_capacity = if_else((malaria_rapid_diagnostic_t___1==1 | malaria_rapid_d_kits%in%(c(1,2))),1,0),
urine_dipstick_protein = if_else( urine_dipstick%in%(c(1,3)) | (urine_dipstick_3___1==1 | urine_dipstick_3___3==1) | (urine_dipstick_9___1==1 | urine_dipstick_9___3==1),1,0),
urine_dipstick_glucose = if_else( urine_dipstick%in%(c(1,3)) | (urine_dipstick_3___1==1 | urine_dipstick_3___3==1) | (urine_dipstick_9___1==1 | urine_dipstick_9___3==1),1,0),
HIV_diagnostic_capacity = if_else( rapid_hiv_testing%in%(c(1,3)) | (hiv_rapid_test___1==1 | hiv_rapid_test___3==1),1,0),
syphilis_rapid_test = if_else( (syphilis_rapid_test___1==1 | syphilis_rapid_test___3==1),1,0),
urine_test_for_preg = if_else( (urine_rapid_tests_for_preg___1==1 | urine_rapid_tests_for_preg___3==1),1,0),
# Step 2: aggregate non-SARA components
UEC = if_else((assay_kit_s_renal_funct___4==1 | assay_kit_s_renal_funct___5==1),1,0), # check if this is same as UEC
hemoglobin_a1c = if_else((hemoglobin_a1c_rapid_test___1==1 | hemoglobin_a1c_rapid_test___3==1),1,0), # check if a1c means hemoglobin_a1c?
geneXpert = if_else((genexpert_4_module_unit_wi___4==1 | genexpert_4_module_unit_wi___5==1),1,0), # must catridge be available?
x_ray = if_else((x_ray___1==1 & x_ray___3==1),1,0),
ultrasound = if_else((ultrasound___1==1 & ultrasound___3==1),1,0),
ECG = if_else((electrocardiogram_ecg___1==1 & electrocardiogram_ecg___3==1),1,0),
# TODO: ***Jamil to add
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
DC_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) ),
DC_SARAExtra_score=as.numeric( round((select(.,all_var) %>% rowMeans(na.rm=T))*100,1))
)%>%mutate_at( all_var, to_YesNo)| facility_name.factor | facility_type.factor | level | haemoglobin | blood_glucose | malaria_diagnostic_capacity | urine_dipstick_protein | urine_dipstick_glucose | HIV_diagnostic_capacity | syphilis_rapid_test | urine_test_for_preg | DC_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | No | No | 37.5 |
| Bulwani | Dispensary | Level 2 | No | No | Yes | Yes | Yes | Yes | Yes | Yes | 75.0 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 100.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 100.0 |
| Rukala | Health Centre | Level 3 | No | Yes | Yes | No | No | Yes | Yes | No | 50.0 |
| Sisenye | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | Yes | No | 50.0 |
| Osieko | Dispensary | Level 2 | No | No | Yes | No | No | Yes | No | No | 25.0 |
| Khajula | Dispensary | Level 2 | No | No | Yes | No | No | Yes | Yes | Yes | 50.0 |
| Busagwa | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | Yes | No | 50.0 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
haemoglobin | 0.083 | ||||
No | 7 (78%) | 6 (100%) | 1 (50%) | 0 (0%) | |
Yes | 2 (22%) | 0 (0%) | 1 (50%) | 1 (100%) | |
blood_glucose | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
malaria_diagnostic_capacity | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
urine_dipstick_protein | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
urine_dipstick_glucose | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
HIV_diagnostic_capacity | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
syphilis_rapid_test | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
urine_test_for_preg | 0.7 | ||||
No | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
Yes | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
DC_SARA_score | 0.2 | ||||
Median (IQR) | 50 (50, 75) | 50 (41, 50) | 75 (62, 88) | 100 (100, 100) | |
Mean (SD) | 60 (26) | 48 (17) | 75 (35) | 100 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
| facility_name.factor | facility_type.factor | level | haemoglobin | blood_glucose | malaria_diagnostic_capacity | urine_dipstick_protein | urine_dipstick_glucose | HIV_diagnostic_capacity | syphilis_rapid_test | urine_test_for_preg | UEC | hemoglobin_a1c | geneXpert | x_ray | ultrasound | ECG | DC_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | No | No | No | No | No | No | No | No | 37.5 |
| Bulwani | Dispensary | Level 2 | No | No | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | No | 75.0 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | No | No | 100.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No | 100.0 |
| Rukala | Health Centre | Level 3 | No | Yes | Yes | No | No | Yes | Yes | No | No | No | No | No | No | No | 50.0 |
| Sisenye | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | Yes | No | No | No | No | No | No | No | 50.0 |
| Osieko | Dispensary | Level 2 | No | No | Yes | No | No | Yes | No | No | No | No | No | No | No | No | 25.0 |
| Khajula | Dispensary | Level 2 | No | No | Yes | No | No | Yes | Yes | Yes | No | No | No | No | No | No | 50.0 |
| Busagwa | Dispensary | Level 2 | No | Yes | Yes | No | No | Yes | Yes | No | No | No | No | No | No | No | 50.0 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
haemoglobin | 0.083 | ||||
No | 7 (78%) | 6 (100%) | 1 (50%) | 0 (0%) | |
Yes | 2 (22%) | 0 (0%) | 1 (50%) | 1 (100%) | |
blood_glucose | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
malaria_diagnostic_capacity | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
urine_dipstick_protein | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
urine_dipstick_glucose | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
HIV_diagnostic_capacity | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
syphilis_rapid_test | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
urine_test_for_preg | 0.7 | ||||
No | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
Yes | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
UEC | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
hemoglobin_a1c | 0.3 | ||||
No | 8 (89%) | 6 (100%) | 1 (50%) | 1 (100%) | |
Yes | 1 (11%) | 0 (0%) | 1 (50%) | 0 (0%) | |
geneXpert | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
x_ray | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
ultrasound | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
ECG | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
DC_SARAExtra_score | 0.2 | ||||
Median (IQR) | 29 (29, 43) | 29 (23, 29) | 46 (38, 55) | 64 (64, 64) | |
Mean (SD) | 36 (18) | 27 (10) | 46 (25) | 64 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
# define on SARA
aggr_var=c('sharp_waste_final_disposal', 'infectious_waste_disposal', 'sharps_safety_box', 'waste_receptacle_bin', 'disinfectant','single_use_syringe','soap_water_alcohol','latex_glove')
# define non-SARA
other_var=c( 'covid_surgical_masks', 'covid_n95_face_masks', 'covid_protective_gow', 'covid_aprons',
'covid_eye_protection', 'covid_gumboots_or_clogs', 'covid_hair_cover')
# define score vars
score_var=c('PIP_SARA_score','PIP_SARAExtra_score')
# combine both sara and non-sara
all_var=unique(c(aggr_var,other_var))
# indicator calculations
pip.df = data%>%mutate(
# Step 0: clean daata
#neonatal_bag_and_mask_been_unavailable=replace_na(neonatal_bag_and_mask_been_unavailable, 0),
# Step 1: aggregate SARA components
sharp_waste_final_disposal = if_else( sharp_waste_disposal%in%(c( 5, 7, 9, 10, 11)) |
(iincinerator_used%in%(c( 2,3) ) & incinerator_functioning==1 & fuel_for_the_incinerator==1), 1,0),
infectious_waste_disposal = if_else( (medical_waste_disposal==1 & sharp_waste_final_disposal==1 ) | medical_waste_disposal%in%(c( 5, 7, 9, 10, 11)) |
(medical_waste_disposal%in%(c( 2,3) ) & incinerator_functioning==1 & fuel_for_the_incinerator==1), 1,0),
# We will use OPD as a proxy for storage of sharps, indicative of other departmens and areas
sharps_safety_box= if_else( safety_box_for_sharps%in%(c(1,2)),1,0), # WHY NOT NON_OPD
# Count if available in all
waste_receptacle_bin = if_else( does_the_waste_receptacle%in%(c(1,2)) & waste_receptacle_bin_with%in%(c(1,2)) # OPD
& oes_the_waste_receptacle%in%(c(1,2)) & waste_receptacle_bin_wit%in%(c(1,2)) # INFECTIOUS AND COMMUNICABLE DISEASES
#& infectious_waste%in%(c(1,2)) & plastic_bin%in%(c(1,2)) #DELIVERY AND NEWBORN CARE SERVICES
#& biological_waste%in%(c(1,2))& receptacle_bin_with%in%(c(1,2))#DELIVERY AND NEWBORN CARE SERVICES
#& s_doe_receptacl%in%(c(1,2)) & s_wacle_bin_wit%in%(c(1,2)) #23. EMERGENCY (AMBULANCE OR WALK-IN) SERVICES
#& dreceptacle%in%(c(1,2)) & wastbin_with%in%(c(1,2)) #23. EMERGENCY (AMBULANCE OR WALK-IN) SERVICES
& r_bin%in%(c(1,2)) & eeceptacle_bin_with%in%(c(1,2)) #25 SURGICAL SERVICES
& the_waste_receptacle%in%(c(1,2)) & e_waste_receptacle%in%(c(1,2)) #25 SURGICAL SERVICES
,1,0),
# Count if available in any: TODO: Confirm
disinfectant = if_else( environmental_disinfectant%in%(c(1,2)) | envronmental_disinfectant%in%(c(1,2)) |
disinfectants%in%(c(1,2))
,1,0),
# Count If it is available in any department/section TODO: I'm including also Emergency, e.t.c
single_use_syringe = if_else( disposable_syringes%in%(c(1,2)) | disposable_syringes_with_d%in%(c(1,2)) |
diposable_syringes_with_d%in%(c(1,2)) | disposable_syringes_needle%in%(c(1,2)) |
disp_syringes_with_d%in%(c(1,2)) | diringes_with_d%in%(c(1,2)) |
auto_disable_syring%in%(c(1,2)) | auto_disable_syringes%in%(c(1,2)) | aut_disable_syringes%in%(c(1,2)) |
s_auto_disable_syringes_an%in%(c(1,2)) | auto_syringes%in%(c(1,2)) | ausyringes%in%(c(1,2))
,1,0),
# Must be available in all the 4 departments (OPD, HIV, Obs and Newborn, Surgery area) TODO: I'm including also Emergency, e.t.c
soap_water_alcohol = if_else( (clean_running_water%in%(c(1,2)) & (soap_bar_or_liquid%in%(c(1,2)) | alcohol_based_hand%in%(c(1,2)) ) ) &
(clean_running_water_piped%in%(c(1,2)) & (soap_bar_or_liquid_for_han%in%(c(1,2)) | alcohol_based_hand_rub_han%in%(c(1,2)) ) ) &
(lean_running_water_piped%in%(c(1,2)) & (sap_bar_or_liquid_for_han%in%(c(1,2)) | acohol_based_handrub_hand%in%(c(1,2)) ) ) &
(running_water%in%(c(1,2)) & (soap%in%(c(1,2)) | hand_sanitizer%in%(c(1,2)) ) ) &
(er_piped%in%(c(1,2)) & (p_or_liqui%in%(c(1,2)) | alcndrub%in%(c(1,2)) ) ) &
(c_running_water_piped%in%(c(1,2)) & (s_or_liquid_for_han%in%(c(1,2)) | abased_handrub%in%(c(1,2)) ) )
,1,0),
# Must be available in all the 4 departments (OPD, HIV, Obs and Newborn, Surgery area) TODO: I'm including also Emergency, e.t.c
latex_glove = if_else( (disposable_latex_gloves_no%in%(c(1,2)) |disposable_latex_gloves_st%in%(c(1,2))) &
(s_isposable_latex_gloves%in%(c(1,2))| isposable_latex_gloves_st%in%(c(1,2))) &
(gloves_nonsterile%in%(c(1,2))| latex_gloves_steril%in%(c(1,2))) &
(s_diatex_gloves%in%(c(1,2))| dispo_gloves_st%in%(c(1,2))) &
(d_latex_gloves_no%in%(c(1,2))| d_latex_gloves_st%in%(c(1,2))) &
(disposable_latex_glove%in%(c(1,2)) |disposable_latex_gloves%in%(c(1,2)))
,1,0),
#guidelines_precautions = NA, # Missing TODO --> Need
# Step 2: aggregate non-SARA components
# We do not hava NON SARA
# TODO : We should consider COvid PPE here
covid_surgical_masks= if_else( surgical_respiratory_masks%in%(c(1,2)) | surratory_masks%in%(c(1,2)) |
respiratory_masks%in%(c(1,2)) | surgical_respiratory%in%(c(1,2)) |
surgical_masks_pharm%in%(c(1,2))
,1,0),
covid_n95_face_masks= if_else( n95_face_masks%in%(c(1,2)) | n95%in%(c(1,2)) |
n95_masks%in%(c(1,2)) | n95_face_mask%in%(c(1,2)) |
n95_face_masks_pharm%in%(c(1,2))
,1,0),
covid_protective_gow= if_else( non_sterile_protective_gow%in%(c(1,2)) | non_tective_gow%in%(c(1,2)) |
ste%in%(c(1,2)) | sterile_gowns%in%(c(1,2)) |
non_s_protective_gow%in%(c(1,2)) | gowns%in%(c(1,2)) |
non_sterile_protective%in%(c(1,2)) | sterile_gown%in%(c(1,2)) |
non_sterile_protect_pharm%in%(c(1,2)) | sterile_gowns_pharm%in%(c(1,2))
,1,0),
covid_aprons= if_else( aprons%in%(c(1,2)) | as%in%(c(1,2)) |
apron%in%(c(1,2)) | overolls%in%(c(1,2)) |
aprons_pharm%in%(c(1,2))
,1,0),
covid_eye_protection= if_else( eye_protection_goggles_fac%in%(c(1,2)) | tion_goggles_fac%in%(c(1,2)) |
eye_protect%in%(c(1,2)) | eye_protection_goggles%in%(c(1,2)) |
eye_protect_goggle_pharm%in%(c(1,2))
,1,0),
covid_gumboots_or_clogs= if_else( gumboots_or_clogs%in%(c(1,2)) | gr_clogs%in%(c(1,2)) |
clogs%in%(c(1,2)) | gumboots_or_clog%in%(c(1,2)) |
gumboots_pharm%in%(c(1,2))
,1,0),
covid_hair_cover= if_else( hair_cover%in%(c(1,2)) | har%in%(c(1,2)) |
hair_covr%in%(c(1,2)) | hair_cover_protective%in%(c(1,2)) |
hair_cover_pharm%in%(c(1,2))
,1,0)
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
PIP_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) ),
PIP_SARAExtra_score=as.numeric( round((select(.,all_var) %>% rowMeans(na.rm=T))*100,1))
)%>%mutate_at( all_var, to_YesNo)| facility_name.factor | facility_type.factor | level | sharp_waste_final_disposal | infectious_waste_disposal | sharps_safety_box | waste_receptacle_bin | disinfectant | single_use_syringe | soap_water_alcohol | latex_glove | PIP_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | 62.5 |
| Bulwani | Dispensary | Level 2 | Yes | No | Yes | No | Yes | Yes | No | No | 50.0 |
| Mukhobola | Health Centre | Level 3 | No | Yes | Yes | No | Yes | Yes | No | No | 50.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | Yes | No | Yes | Yes | No | Yes | 75.0 |
| Rukala | Health Centre | Level 3 | Yes | No | Yes | No | Yes | Yes | No | No | 50.0 |
| Sisenye | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | 62.5 |
| Osieko | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | 62.5 |
| Khajula | Dispensary | Level 2 | Yes | No | Yes | No | Yes | Yes | No | No | 50.0 |
| Busagwa | Dispensary | Level 2 | Yes | No | No | No | Yes | Yes | No | No | 37.5 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
sharp_waste_final_disposal | 0.3 | ||||
No | 1 (11%) | 0 (0%) | 1 (50%) | 0 (0%) | |
Yes | 8 (89%) | 6 (100%) | 1 (50%) | 1 (100%) | |
infectious_waste_disposal | >0.9 | ||||
No | 4 (44%) | 3 (50%) | 1 (50%) | 0 (0%) | |
Yes | 5 (56%) | 3 (50%) | 1 (50%) | 1 (100%) | |
sharps_safety_box | >0.9 | ||||
No | 1 (11%) | 1 (17%) | 0 (0%) | 0 (0%) | |
Yes | 8 (89%) | 5 (83%) | 2 (100%) | 1 (100%) | |
waste_receptacle_bin | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
disinfectant | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
single_use_syringe | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
soap_water_alcohol | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
latex_glove | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
PIP_SARA_score | 0.2 | ||||
Median (IQR) | 50 (50, 62) | 56 (50, 62) | 50 (50, 50) | 75 (75, 75) | |
Mean (SD) | 56 (11) | 54 (10) | 50 (0) | 75 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
| facility_name.factor | facility_type.factor | level | sharp_waste_final_disposal | infectious_waste_disposal | sharps_safety_box | waste_receptacle_bin | disinfectant | single_use_syringe | soap_water_alcohol | latex_glove | covid_surgical_masks | covid_n95_face_masks | covid_protective_gow | covid_aprons | covid_eye_protection | covid_gumboots_or_clogs | covid_hair_cover | PIP_SARAExtra_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | No | No | No | Yes | No | Yes | No | 46.7 |
| Bulwani | Dispensary | Level 2 | Yes | No | Yes | No | Yes | Yes | No | No | No | No | Yes | Yes | No | Yes | No | 46.7 |
| Mukhobola | Health Centre | Level 3 | No | Yes | Yes | No | Yes | Yes | No | No | Yes | No | Yes | Yes | No | Yes | Yes | 60.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | Yes | No | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 86.7 |
| Rukala | Health Centre | Level 3 | Yes | No | Yes | No | Yes | Yes | No | No | Yes | No | Yes | Yes | No | Yes | No | 53.3 |
| Sisenye | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | No | No | No | Yes | No | Yes | No | 46.7 |
| Osieko | Dispensary | Level 2 | Yes | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes | No | Yes | No | Yes | No | 60.0 |
| Khajula | Dispensary | Level 2 | Yes | No | Yes | No | Yes | Yes | No | No | No | No | Yes | Yes | No | No | No | 40.0 |
| Busagwa | Dispensary | Level 2 | Yes | No | No | No | Yes | Yes | No | No | No | No | No | Yes | No | Yes | No | 33.3 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
sharp_waste_final_disposal | 0.3 | ||||
No | 1 (11%) | 0 (0%) | 1 (50%) | 0 (0%) | |
Yes | 8 (89%) | 6 (100%) | 1 (50%) | 1 (100%) | |
infectious_waste_disposal | >0.9 | ||||
No | 4 (44%) | 3 (50%) | 1 (50%) | 0 (0%) | |
Yes | 5 (56%) | 3 (50%) | 1 (50%) | 1 (100%) | |
sharps_safety_box | >0.9 | ||||
No | 1 (11%) | 1 (17%) | 0 (0%) | 0 (0%) | |
Yes | 8 (89%) | 5 (83%) | 2 (100%) | 1 (100%) | |
waste_receptacle_bin | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
disinfectant | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
single_use_syringe | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
soap_water_alcohol | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
latex_glove | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
covid_surgical_masks | 0.048 | ||||
No | 5 (56%) | 5 (83%) | 0 (0%) | 0 (0%) | |
Yes | 4 (44%) | 1 (17%) | 2 (100%) | 1 (100%) | |
covid_n95_face_masks | 0.2 | ||||
No | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
Yes | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
covid_protective_gow | 0.3 | ||||
No | 4 (44%) | 4 (67%) | 0 (0%) | 0 (0%) | |
Yes | 5 (56%) | 2 (33%) | 2 (100%) | 1 (100%) | |
covid_aprons | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
covid_eye_protection | 0.11 | ||||
No | 8 (89%) | 6 (100%) | 2 (100%) | 0 (0%) | |
Yes | 1 (11%) | 0 (0%) | 0 (0%) | 1 (100%) | |
covid_gumboots_or_clogs | >0.9 | ||||
No | 1 (11%) | 1 (17%) | 0 (0%) | 0 (0%) | |
Yes | 8 (89%) | 5 (83%) | 2 (100%) | 1 (100%) | |
covid_hair_cover | 0.083 | ||||
No | 7 (78%) | 6 (100%) | 1 (50%) | 0 (0%) | |
Yes | 2 (22%) | 0 (0%) | 1 (50%) | 1 (100%) | |
PIP_SARAExtra_score | 0.11 | ||||
Median (IQR) | 47 (47, 60) | 47 (42, 47) | 57 (55, 58) | 87 (87, 87) | |
Mean (SD) | 53 (15) | 46 (9) | 57 (5) | 87 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
Challenges
"1.) the KHFA survey does not take into account the level of facility and does not correspond with the Kenya Essential Medication list by level of facility
2.) The Kenya UHC tracer drugs which are of interst to the MOH were not all included in the KHFA survey
3.)The KHFA response categories for each drug are many (5 options) making summary and interpretation complex –> how do we dichotomize the responses? What do we care about for measurement? indictor/drug present: response options 1, 3, drug out of stock/not available: 2, 4, 5,
4.) Unclear if part b. of the question (was there a stock out in the last 3 months data was collected.) - in the form only a few have these boxes empty…. was this intentional or an error in survey design?
- Some drugs have multiple formulations asked about - how to handle coding of missing/out of stock if one formulation is"
Way forward
"1. Create coding that incorporates level of facility and if drug is supposed to be in that level (and higher facilities) based on KEML, so that when out of stock drugs are indicated, it is appropriate for that level fo facility. Note KEML lists the lowest level of facility a drug should be available at, but also indicates that drug should be available at all higher level facilities as well
- create a secondary analysis of stock levels based on UHC tracer drugs (of the ones that were included in KHFA), also incorporating level of facility into if it is out of stock or not
- combine response categories as follows: 0= not available or expired (responses 2, 4, 5) 1= available (reported OR observed) (responses 1, 3) what to do with response category 5 "“never available”"? guessing this means it is not stocked due to level of facility?
- Lots of missing data on stock out question - this seems like a data collection problem and we should omit this from analysis
- Would include drug as being in stock if any formulation is in stock (ie liquid or tablet should count as that drug being in stock)
- excluding the drugs that are not on KEML (ie not procured) from the drug drug score indicator (crossed off ones)"
# define on SARA
aggr_var=c('calcium_channel_blocker', 'amoxicillin', 'ampicillin_powder', 'aspirin', 'beta_blocker','carbamazepine_tablet','ceftriaxone_injection','diazepam_injection',
'enalapril_tablet','fluoxetine_capsule','gentamycin_injection','haloperidol_tablet',
'insulin_injection_regular','magnesium_sulphate_inj','metformin_tab_cap','omeprazole_tablet' ,
'oral_rehydration','oxytocin_injection','salbutamol_inhaler','simvastatin',
'thiazide','zinc_sulphate'
)
# define non-SARA (UHC tracer)
other_var=c('calcium_channel_blocker', 'amoxicillin', 'gentamycin_injection', 'oral_rehydration',
'oxytocin_injection','zinc_sulphate', 'hydrocortisone_injection', 'tetracycline','chlorhexidine',
"benzylpenicillin", "paracetamol", "artemether_lumefrantrine",
"infusion_normal_saline","adrenaline","cotrimoxazole","metronidazole"
)
# define score vars
score_var=c('EM_SARA_score','EM_SARAExtra_score','EM_UHC_Tracer_score')
# combine both sara and non-sara (UHC tracer)
all_var=unique(c(aggr_var,other_var))
# indicator calculations
essential_medicines.df = data%>%mutate(
# Step 0: clean daata
#neonatal_bag_and_mask_been_unavailable=replace_na(neonatal_bag_and_mask_been_unavailable, 0),
# Step 1: aggregate SARA components
calcium_channel_blocker = if_else(level_num>=3, # validate level
if_else( calcium_channel_blocker1_e%in%(c(1,3)),1,0),
NA_real_),
amoxicillin = if_else(level_num>=2, # validate level
if_else( (amoxicillin_suspension_or___1==1 | amoxicillin_suspension_or___3==1 |
amoxicillin_capsule_500_mg___1 | amoxicillin_capsule_500_mg___3 |
amoxicillin_capsule_250_mg___1 | amoxicillin_capsule_250_mg___3
),1,0),
NA_real_),
ampicillin_powder = if_else(level_num>=4, # validate level
if_else( (ampicillin_powder_for_inje___1==1 | ampicillin_powder_for_inje___3==1
),1,0),
NA_real_),
aspirin = if_else(level_num>=2, # validate level
if_else( (acetylsalicylic_acid1_aspi==1 ),1,0),
NA_real_),
beta_blocker = if_else(level_num>=4, # validate level
if_else( beta_blocker1_e_g_bisoprol%in%(c(1,3)),1,0),
NA_real_),
carbamazepine_tablet= if_else(level_num>=4, # validate level
if_else( carbamazepine_tablet1%in%(c(1,3)),1,0),
NA_real_),
ceftriaxone_injection = if_else(level_num>=2, # validate level
if_else( (ceftriaxone_injection1_2_3___1==1 | ceftriaxone_injection1_2_3___3==1
),1,0),
NA_real_),
diazepam_injection = if_else(level_num>=4, # validate level
if_else( diazepam_injection1%in%(c(1,3)),1,0),
NA_real_),
enalapril_tablet= if_else(level_num>=3, # validate level
if_else( enalapril_tablet%in%(c(1,3)),1,0),
NA_real_),
fluoxetine_capsule = if_else(level_num>=3, # validate level
if_else( fluoxetine_capsule1%in%(c(1,3)),1,0),
NA_real_),
gentamycin_injection = if_else(level_num>=2, # validate level
if_else( (gentamycin_injection1_2_3___1==1 | gentamycin_injection1_2_3___3==1
),1,0),
NA_real_),
haloperidol_tablet = if_else(level_num>=3, # validate level
if_else( haloperidol_tablet1%in%(c(1,3)),1,0),
NA_real_),
insulin_injection_regular = if_else(level_num>=3, # validate level
if_else( insulin_injection_regular1%in%(c(1,3)),1,0),
NA_real_),
insulin_injection_other_th= if_else(level_num>=4, # validate level
if_else( insulin_injection_other_th%in%(c(1,3)),1,0),
NA_real_),
magnesium_sulphate_inj= if_else(level_num>=2, # validate level
if_else( (magnesium_sulphate_inj_mch___1==1 | magnesium_sulphate_inj_mch___3==1
),1,0),
NA_real_),
metformin_tab_cap= if_else(level_num>=3, # validate level
if_else( metformin_tab_cap1%in%(c(1,3)),1,0),
NA_real_),
omeprazole_tablet= if_else(level_num>=3, # validate level
if_else( omeprazole_tablet1%in%(c(1,3)),1,0),
NA_real_),
oral_rehydration= if_else(level_num>=1, # validate level
if_else( oral_rehydration_salts1_2%in%(c(1,3)),1,0),
NA_real_),
oxytocin_injection= if_else(level_num>=2, # validate level
if_else( (oxytocin_injection1_2_3___1==1 | oxytocin_injection1_2_3___3==1
),1,0),
NA_real_),
salbutamol_inhaler= if_else(level_num>=4, # validate level
if_else( salbutamol_inhaler1%in%(c(1,3)),1,0),
NA_real_),
simvastatin= if_else(level_num>=4, # validate level
if_else( statin1_e_g_simvastatin_ta%in%(c(1,3)),1,0),
NA_real_),
thiazide= if_else(level_num>=3, # validate level
if_else( thiazide_diurtetic%in%(c(1,3)),1,0),
NA_real_),
zinc_sulphate = if_else(level_num>=2, # validate level
if_else( zinc_sulphate_tablet2_3%in%(c(1,3)) | zinc_sulphate_syrup_or_dis%in%(c(1,3)) ,1,0),
NA_real_),
# Step 2: aggregate non-SARA components
hydrocortisone_injection= if_else(level_num>=2, # validate level
if_else( hydrocortisone_injection%in%(c(1,3)) ,1,0),
NA_real_),
tetracycline= if_else(level_num>=4, # validate level
if_else( (eye_cream_for_newborn_or_f___1==1 | eye_cream_for_newborn_or_f___3==1
),1,0),
NA_real_),
chlorhexidine= if_else(level_num>=2, # validate level
if_else( (chlorhexidine_solution_for___1==1 | chlorhexidine_solution_for___3==1
),1,0),
NA_real_),
benzylpenicillin= if_else(level_num>=2, # validate level
if_else( (procaine_benzylpenicillin___1==1 | procaine_benzylpenicillin___3==1
),1,0),
NA_real_),
paracetamol= if_else(level_num>=2, # validate level
if_else( acetaminophen_paracetamol%in%(c(1,3)) ,1,0),
NA_real_),
artemether_lumefrantrine= if_else(level_num>=1, # validate level
if_else( (lufrantrine6___1==1 | lufrantrine6___3==1 |
mether_lumefrantrine12___1==1 | mether_lumefrantrine12___3==1 |
artelumefrantrine18___1==1 | artelumefrantrine18___3==1 |
artefrantrine24___1==1 | artefrantrine24___3==1
),1,0),
NA_real_),
infusion_normal_saline= if_else(level_num>=1, # validate level
if_else( (sodium_chloride_normal_sal___1==1 | sodium_chloride_normal_sal___3==1 |
dextrose_5_and_normal_sali___1==1 | dextrose_5_and_normal_sali___3==1
),1,0),
NA_real_),
adrenaline= if_else(level_num>=2, # validate level
if_else( adrenaline_or_epinephrine%in%(c(1,3)) ,1,0),
NA_real_),
cotrimoxazole= if_else(level_num>=2, # validate level
if_else( (cotrimoxazole_cap_tab___1==1 | cotrimoxazole_cap_tab___3==1
),1,0),
NA_real_),
metronidazole= if_else(level_num>=2, # validate level
if_else( (metronidazole_cap_tab___1==1 | metronidazole_cap_tab___3==1
),1,0),
NA_real_)
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
EM_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) ),
EM_UHC_Tracer_score=as.numeric( round((select(.,other_var) %>% rowMeans(na.rm=T))*100,1) ),
EM_SARAExtra_score=as.numeric( round((select(.,all_var) %>% rowMeans(na.rm=T))*100,1))
)%>%mutate_at( all_var, to_YesNo)| facility_name.factor | facility_type.factor | level | calcium_channel_blocker | amoxicillin | ampicillin_powder | aspirin | beta_blocker | carbamazepine_tablet | ceftriaxone_injection | diazepam_injection | enalapril_tablet | fluoxetine_capsule | gentamycin_injection | haloperidol_tablet | insulin_injection_regular | magnesium_sulphate_inj | metformin_tab_cap | omeprazole_tablet | oral_rehydration | oxytocin_injection | salbutamol_inhaler | simvastatin | thiazide | zinc_sulphate | EM_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | NA | No | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | 50.0 |
| Bulwani | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | Yes | NA | NA | Yes | Yes | NA | NA | NA | Yes | 75.0 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | NA | Yes | NA | NA | Yes | NA | Yes | No | Yes | No | Yes | Yes | No | No | Yes | Yes | NA | NA | Yes | Yes | 75.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | No | No | Yes | Yes | No | Yes | No | No | Yes | No | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | 54.5 |
| Rukala | Health Centre | Level 3 | Yes | No | NA | No | NA | NA | No | NA | Yes | No | No | No | No | Yes | Yes | No | Yes | Yes | NA | NA | Yes | Yes | 50.0 |
| Sisenye | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | 50.0 |
| Osieko | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | 62.5 |
| Khajula | Dispensary | Level 2 | NA | Yes | NA | NA | NA | NA | Yes | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | No | NA | NA | NA | Yes | 57.1 |
| Busagwa | Dispensary | Level 2 | NA | Yes | NA | Yes | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | 75.0 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
calcium_channel_blocker | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
amoxicillin | 0.6 | ||||
No | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
Yes | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
ampicillin_powder | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
aspirin | >0.9 | ||||
No | 6 (75%) | 4 (80%) | 1 (50%) | 1 (100%) | |
Yes | 2 (25%) | 1 (20%) | 1 (50%) | 0 (0%) | |
Unknown | 1 | 1 | 0 | 0 | |
beta_blocker | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
carbamazepine_tablet | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
ceftriaxone_injection | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
diazepam_injection | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
enalapril_tablet | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
fluoxetine_capsule | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
gentamycin_injection | 0.7 | ||||
No | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
Yes | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
haloperidol_tablet | 0.3 | ||||
No | 2 (67%) | 0 (NA%) | 2 (100%) | 0 (0%) | |
Yes | 1 (33%) | 0 (NA%) | 0 (0%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
insulin_injection_regular | >0.9 | ||||
No | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Yes | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Unknown | 6 | 6 | 0 | 0 | |
magnesium_sulphate_inj | 0.048 | ||||
No | 5 (56%) | 5 (83%) | 0 (0%) | 0 (0%) | |
Yes | 4 (44%) | 1 (17%) | 2 (100%) | 1 (100%) | |
metformin_tab_cap | >0.9 | ||||
No | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Yes | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
omeprazole_tablet | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
oral_rehydration | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxytocin_injection | 0.2 | ||||
No | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
Yes | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
salbutamol_inhaler | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
simvastatin | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
thiazide | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
zinc_sulphate | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
EM_SARA_score | >0.9 | ||||
Median (IQR) | 57 (50, 75) | 60 (52, 72) | 62 (56, 69) | 54 (54, 54) | |
Mean (SD) | 61 (11) | 62 (11) | 62 (18) | 54 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
| facility_name.factor | facility_type.factor | level | calcium_channel_blocker | amoxicillin | ampicillin_powder | aspirin | beta_blocker | carbamazepine_tablet | ceftriaxone_injection | diazepam_injection | enalapril_tablet | fluoxetine_capsule | gentamycin_injection | haloperidol_tablet | insulin_injection_regular | magnesium_sulphate_inj | metformin_tab_cap | omeprazole_tablet | oral_rehydration | oxytocin_injection | salbutamol_inhaler | simvastatin | thiazide | zinc_sulphate | hydrocortisone_injection | tetracycline | chlorhexidine | benzylpenicillin | paracetamol | artemether_lumefrantrine | infusion_normal_saline | adrenaline | cotrimoxazole | metronidazole | EM_UHC_Tracer_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | NA | No | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | No | NA | No | No | No | No | Yes | No | No | No | 35.7 |
| Bulwani | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | Yes | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | 92.9 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | NA | Yes | NA | NA | Yes | NA | Yes | No | Yes | No | Yes | Yes | No | No | Yes | Yes | NA | NA | Yes | Yes | No | NA | Yes | No | Yes | Yes | Yes | No | Yes | No | 73.3 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | No | No | Yes | Yes | No | Yes | No | No | Yes | No | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | 75.0 |
| Rukala | Health Centre | Level 3 | Yes | No | NA | No | NA | NA | No | NA | Yes | No | No | No | No | Yes | Yes | No | Yes | Yes | NA | NA | Yes | Yes | No | NA | No | No | Yes | Yes | Yes | Yes | No | Yes | 60.0 |
| Sisenye | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | No | NA | Yes | No | Yes | No | Yes | Yes | No | Yes | 64.3 |
| Osieko | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | No | Yes | Yes | 85.7 |
| Khajula | Dispensary | Level 2 | NA | Yes | NA | NA | NA | NA | Yes | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | No | NA | NA | NA | Yes | No | NA | No | No | No | No | Yes | No | Yes | Yes | 42.9 |
| Busagwa | Dispensary | Level 2 | NA | Yes | NA | Yes | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | No | No | Yes | 78.6 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
calcium_channel_blocker | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
amoxicillin | 0.6 | ||||
No | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
Yes | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
ampicillin_powder | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
aspirin | >0.9 | ||||
No | 6 (75%) | 4 (80%) | 1 (50%) | 1 (100%) | |
Yes | 2 (25%) | 1 (20%) | 1 (50%) | 0 (0%) | |
Unknown | 1 | 1 | 0 | 0 | |
beta_blocker | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
carbamazepine_tablet | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
ceftriaxone_injection | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
diazepam_injection | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
enalapril_tablet | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
fluoxetine_capsule | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
gentamycin_injection | 0.7 | ||||
No | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
Yes | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
haloperidol_tablet | 0.3 | ||||
No | 2 (67%) | 0 (NA%) | 2 (100%) | 0 (0%) | |
Yes | 1 (33%) | 0 (NA%) | 0 (0%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
insulin_injection_regular | >0.9 | ||||
No | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Yes | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Unknown | 6 | 6 | 0 | 0 | |
magnesium_sulphate_inj | 0.048 | ||||
No | 5 (56%) | 5 (83%) | 0 (0%) | 0 (0%) | |
Yes | 4 (44%) | 1 (17%) | 2 (100%) | 1 (100%) | |
metformin_tab_cap | >0.9 | ||||
No | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Yes | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
omeprazole_tablet | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
oral_rehydration | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxytocin_injection | 0.2 | ||||
No | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
Yes | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
salbutamol_inhaler | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
simvastatin | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
thiazide | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
zinc_sulphate | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
hydrocortisone_injection | 0.4 | ||||
No | 5 (56%) | 3 (50%) | 2 (100%) | 0 (0%) | |
Yes | 4 (44%) | 3 (50%) | 0 (0%) | 1 (100%) | |
tetracycline | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
chlorhexidine | >0.9 | ||||
No | 3 (33%) | 2 (33%) | 1 (50%) | 0 (0%) | |
Yes | 6 (67%) | 4 (67%) | 1 (50%) | 1 (100%) | |
benzylpenicillin | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
paracetamol | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
artemether_lumefrantrine | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
infusion_normal_saline | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
adrenaline | >0.9 | ||||
No | 6 (67%) | 4 (67%) | 1 (50%) | 1 (100%) | |
Yes | 3 (33%) | 2 (33%) | 1 (50%) | 0 (0%) | |
cotrimoxazole | >0.9 | ||||
No | 4 (44%) | 3 (50%) | 1 (50%) | 0 (0%) | |
Yes | 5 (56%) | 3 (50%) | 1 (50%) | 1 (100%) | |
metronidazole | 0.6 | ||||
No | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
Yes | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
EM_UHC_Tracer_score | 0.8 | ||||
Median (IQR) | 73 (60, 79) | 71 (48, 84) | 67 (63, 70) | 75 (75, 75) | |
Mean (SD) | 68 (19) | 67 (23) | 67 (9) | 75 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
| facility_name.factor | facility_type.factor | level | calcium_channel_blocker | amoxicillin | ampicillin_powder | aspirin | beta_blocker | carbamazepine_tablet | ceftriaxone_injection | diazepam_injection | enalapril_tablet | fluoxetine_capsule | gentamycin_injection | haloperidol_tablet | insulin_injection_regular | magnesium_sulphate_inj | metformin_tab_cap | omeprazole_tablet | oral_rehydration | oxytocin_injection | salbutamol_inhaler | simvastatin | thiazide | zinc_sulphate | hydrocortisone_injection | tetracycline | chlorhexidine | benzylpenicillin | paracetamol | artemether_lumefrantrine | infusion_normal_saline | adrenaline | cotrimoxazole | metronidazole | EM_SARA_score |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | NA | No | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | No | NA | No | No | No | No | Yes | No | No | No | 50.0 |
| Bulwani | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | Yes | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | 75.0 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | NA | Yes | NA | NA | Yes | NA | Yes | No | Yes | No | Yes | Yes | No | No | Yes | Yes | NA | NA | Yes | Yes | No | NA | Yes | No | Yes | Yes | Yes | No | Yes | No | 75.0 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | No | No | Yes | Yes | No | Yes | No | No | Yes | No | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | 54.5 |
| Rukala | Health Centre | Level 3 | Yes | No | NA | No | NA | NA | No | NA | Yes | No | No | No | No | Yes | Yes | No | Yes | Yes | NA | NA | Yes | Yes | No | NA | No | No | Yes | Yes | Yes | Yes | No | Yes | 50.0 |
| Sisenye | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | No | NA | Yes | No | Yes | No | Yes | Yes | No | Yes | 50.0 |
| Osieko | Dispensary | Level 2 | NA | Yes | NA | No | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | No | Yes | Yes | 62.5 |
| Khajula | Dispensary | Level 2 | NA | Yes | NA | NA | NA | NA | Yes | NA | NA | NA | No | NA | NA | No | NA | NA | Yes | No | NA | NA | NA | Yes | No | NA | No | No | No | No | Yes | No | Yes | Yes | 57.1 |
| Busagwa | Dispensary | Level 2 | NA | Yes | NA | Yes | NA | NA | No | NA | NA | NA | Yes | NA | NA | No | NA | NA | Yes | Yes | NA | NA | NA | Yes | Yes | NA | Yes | No | Yes | Yes | Yes | No | No | Yes | 75.0 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
calcium_channel_blocker | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
amoxicillin | 0.6 | ||||
No | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
Yes | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
ampicillin_powder | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
aspirin | >0.9 | ||||
No | 6 (75%) | 4 (80%) | 1 (50%) | 1 (100%) | |
Yes | 2 (25%) | 1 (20%) | 1 (50%) | 0 (0%) | |
Unknown | 1 | 1 | 0 | 0 | |
beta_blocker | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
carbamazepine_tablet | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
ceftriaxone_injection | 0.2 | ||||
No | 6 (67%) | 5 (83%) | 1 (50%) | 0 (0%) | |
Yes | 3 (33%) | 1 (17%) | 1 (50%) | 1 (100%) | |
diazepam_injection | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
enalapril_tablet | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
fluoxetine_capsule | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
gentamycin_injection | 0.7 | ||||
No | 4 (44%) | 2 (33%) | 1 (50%) | 1 (100%) | |
Yes | 5 (56%) | 4 (67%) | 1 (50%) | 0 (0%) | |
haloperidol_tablet | 0.3 | ||||
No | 2 (67%) | 0 (NA%) | 2 (100%) | 0 (0%) | |
Yes | 1 (33%) | 0 (NA%) | 0 (0%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
insulin_injection_regular | >0.9 | ||||
No | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Yes | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Unknown | 6 | 6 | 0 | 0 | |
magnesium_sulphate_inj | 0.048 | ||||
No | 5 (56%) | 5 (83%) | 0 (0%) | 0 (0%) | |
Yes | 4 (44%) | 1 (17%) | 2 (100%) | 1 (100%) | |
metformin_tab_cap | >0.9 | ||||
No | 1 (33%) | 0 (NA%) | 1 (50%) | 0 (0%) | |
Yes | 2 (67%) | 0 (NA%) | 1 (50%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
omeprazole_tablet | |||||
No | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
oral_rehydration | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
oxytocin_injection | 0.2 | ||||
No | 2 (22%) | 1 (17%) | 0 (0%) | 1 (100%) | |
Yes | 7 (78%) | 5 (83%) | 2 (100%) | 0 (0%) | |
salbutamol_inhaler | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
simvastatin | |||||
No | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
thiazide | |||||
Yes | 3 (100%) | 0 (NA%) | 2 (100%) | 1 (100%) | |
Unknown | 6 | 6 | 0 | 0 | |
zinc_sulphate | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
hydrocortisone_injection | 0.4 | ||||
No | 5 (56%) | 3 (50%) | 2 (100%) | 0 (0%) | |
Yes | 4 (44%) | 3 (50%) | 0 (0%) | 1 (100%) | |
tetracycline | |||||
Yes | 1 (100%) | 0 (NA%) | 0 (NA%) | 1 (100%) | |
Unknown | 8 | 6 | 2 | 0 | |
chlorhexidine | >0.9 | ||||
No | 3 (33%) | 2 (33%) | 1 (50%) | 0 (0%) | |
Yes | 6 (67%) | 4 (67%) | 1 (50%) | 1 (100%) | |
benzylpenicillin | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
paracetamol | >0.9 | ||||
No | 2 (22%) | 2 (33%) | 0 (0%) | 0 (0%) | |
Yes | 7 (78%) | 4 (67%) | 2 (100%) | 1 (100%) | |
artemether_lumefrantrine | 0.6 | ||||
No | 3 (33%) | 3 (50%) | 0 (0%) | 0 (0%) | |
Yes | 6 (67%) | 3 (50%) | 2 (100%) | 1 (100%) | |
infusion_normal_saline | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
adrenaline | >0.9 | ||||
No | 6 (67%) | 4 (67%) | 1 (50%) | 1 (100%) | |
Yes | 3 (33%) | 2 (33%) | 1 (50%) | 0 (0%) | |
cotrimoxazole | >0.9 | ||||
No | 4 (44%) | 3 (50%) | 1 (50%) | 0 (0%) | |
Yes | 5 (56%) | 3 (50%) | 1 (50%) | 1 (100%) | |
metronidazole | 0.6 | ||||
No | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
Yes | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
EM_SARAExtra_score | >0.9 | ||||
Median (IQR) | 62 (52, 71) | 62 (46, 71) | 60 (56, 64) | 62 (62, 62) | |
Mean (SD) | 59 (16) | 58 (20) | 60 (11) | 62 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
maternity servies: resposes of Yes (1) to any 4500 OR 4501 OR 4502 OR 4504 OR KEN4504
routine delivery practice: resposes of Yes (1) to 4510-01 AND A4510-02 AND 4510-03
blood transfusions: resposes of Yes (1) to 6000 AND 6003!=1
cesarian section services resposes of Yes (1) t 5030 AND 5031 AND 5032 AND 5033
drugs and commoditiies for maternal care to count for this indicator, must have in stock IV infusion set(4571-16 AND eitehr dextrose (17), OR Sodum Choride (18) OR other plasma expander (19(
Scoring: Domain score = Mean score of items as percentage: mean*100
# define on SARA
aggr_var=c('maternity_servies', 'routine_delivery', 'blood_transfusions', 'cesarian_section', 'maternal_care_drugs')
# define non-SARA
other_var=c()
# define score vars
score_var=c('MH_SARA_score')
# combine both sara and non-sara
all_var=unique(c(aggr_var,other_var))
# indicator calculations
marternal_health.df = data%>%mutate(
# Step 0: clean data
offer_blood_transfusion=replace_na(offer_blood_transfusion, 9999),
have_there_been_any_interr=replace_na(have_there_been_any_interr, 9999),
facility_conduct_cs=replace_na(facility_conduct_cs, 9999),
professional_for_cs=replace_na(professional_for_cs, 9999),
profesional_cs_in_today=replace_na(profesional_cs_in_today, 9999),
have_anaesthetist=replace_na(have_anaesthetist, 9999),
# Step 1: aggregate SARA components
maternity_servies = if_else((offer_delivery_services==1 | bemoc==1 | cemoc==1 | wholeday_delivery_service==1 | basic_maternity_care%in%c(1,2)) ,1,0),
routine_delivery = if_else((active_management_of_third==1 & administration_of_oxytocin==1 & monitor_and_manage_labour==1 ) ,1,0),
blood_transfusions = if_else((offer_blood_transfusion==1 & have_there_been_any_interr!=1 ) ,1,0),
cesarian_section= if_else((facility_conduct_cs==1 & professional_for_cs==1 & profesional_cs_in_today==1 & have_anaesthetist==1) ,1,0),
maternal_care_drugs = if_else(((antic_eye_ointment_fo___1==1 | antic_eye_ointment_fo___3==1) & ( maium_sulphate_injecti___1==1 | maium_sulphate_injecti___3==1) &
(skinsinfectant___1==1 | skinsinfectant___3==1 ) & (intra_infusion_set___1==1 | intra_infusion_set___3==1) &
(dse_and_water_5_d5w_i___1==1 | dse_and_water_5_d5w_i___3==1 | sochloride_09ns_intra___1==1| sochloride_09ns_intra___3==1
| other_a_expander_such___1==1| other_a_expander_such___3==1)
) ,1,0)
# Step 2: aggregate non-SARA components
# No non-sara for amenities
)%>%select(c(base_var, all_var))%>%mutate(
# Step 3: generate scores
MH_SARA_score=as.numeric( round((select(.,aggr_var) %>% rowMeans(na.rm=T))*100,1) )
)%>%mutate_at( all_var, to_YesNo)Issue 2: routine delivery practice –> is it OR / AND : admn of oxytocin after birth, use of a partograph * Issue 3: what did we say about =REPORTED AVAILABLE BUT NOT SEEN
Issue 5: have there bee ninterruptions on availability of blood during past 3 months –> fails for all
Issue 5: professional to doc C-section avaialble 24 hrs? –> fails for all
| facility_name.factor | facility_type.factor | level | maternity_servies | routine_delivery | blood_transfusions | cesarian_section | maternal_care_drugs | MH_SARA_score |
|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | Yes | Yes | No | No | No | 40 |
| Bulwani | Dispensary | Level 2 | Yes | Yes | No | No | Yes | 60 |
| Mukhobola | Health Centre | Level 3 | Yes | Yes | No | No | No | 40 |
| Port Victoria | Sub County Hospital | Level 4 | Yes | Yes | No | No | No | 40 |
| Rukala | Health Centre | Level 3 | Yes | Yes | No | No | Yes | 60 |
| Sisenye | Dispensary | Level 2 | Yes | Yes | No | No | No | 40 |
| Osieko | Dispensary | Level 2 | Yes | Yes | No | No | No | 40 |
| Khajula | Dispensary | Level 2 | Yes | Yes | No | No | No | 40 |
| Busagwa | Dispensary | Level 2 | Yes | Yes | No | No | No | 40 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
maternity_servies | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
routine_delivery | |||||
Yes | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
blood_transfusions | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
cesarian_section | |||||
No | 9 (100%) | 6 (100%) | 2 (100%) | 1 (100%) | |
maternal_care_drugs | 0.6 | ||||
No | 7 (78%) | 5 (83%) | 1 (50%) | 1 (100%) | |
Yes | 2 (22%) | 1 (17%) | 1 (50%) | 0 (0%) | |
MH_SARA_score | 0.6 | ||||
Median (IQR) | 40 (40, 40) | 40 (40, 40) | 50 (45, 55) | 40 (40, 40) | |
Mean (SD) | 44 (9) | 43 (8) | 50 (14) | 40 (NA) | |
1n (%); c("Median (IQR)", "Mean (SD)") | |||||
2Fisher's exact test; Kruskal-Wallis rank sum test | |||||
We do not have
| facility_name.factor | facility_type.factor | level | BE_SARA_score | BA_SARA_score | MH_SARA_score | DC_SARA_score | EM_SARA_score | Overall_SARA_score |
|---|---|---|---|---|---|---|---|---|
| Budalangi | Dispensary | Level 2 | 66.7 | 28.6 | 40 | 37.5 | 50.0 | 44.6 |
| Bulwani | Dispensary | Level 2 | 16.7 | 28.6 | 60 | 75.0 | 75.0 | 51.1 |
| Mukhobola | Health Centre | Level 3 | 100.0 | 71.4 | 40 | 100.0 | 75.0 | 77.3 |
| Port Victoria | Sub County Hospital | Level 4 | 66.7 | 71.4 | 40 | 100.0 | 54.5 | 66.5 |
| Rukala | Health Centre | Level 3 | 83.3 | 57.1 | 60 | 50.0 | 50.0 | 60.1 |
| Sisenye | Dispensary | Level 2 | 66.7 | 28.6 | 40 | 50.0 | 50.0 | 47.1 |
| Osieko | Dispensary | Level 2 | 100.0 | 42.9 | 40 | 25.0 | 62.5 | 54.1 |
| Khajula | Dispensary | Level 2 | 0.0 | 57.1 | 40 | 50.0 | 57.1 | 40.8 |
| Busagwa | Dispensary | Level 2 | 66.7 | 28.6 | 40 | 50.0 | 75.0 | 52.1 |
| Facility Level |
| |||
Variable | Overall, N = 91 | Level 2, N = 6 | Level 3, N = 2 | Level 4, N = 1 | p-value2 |
BE_SARA_score | 0.2 | ||||
Median (IQR) | 67 (67, 83) | 67 (29, 67) | 92 (87, 96) | 67 (67, 67) | |
Mean (SD) | 63 (34) | 53 (37) | 92 (12) | 67 (NA) | |
BA_SARA_score | 0.066 | ||||
Median (IQR) | 43 (29, 57) | 29 (29, 39) | 64 (61, 68) | 71 (71, 71) | |
Mean (SD) | 46 (19) | 36 (12) | 64 (10) | 71 (NA) | |
MH_SARA_score | 0.6 | ||||
Median (IQR) | 40 (40, 40) | 40 (40, 40) | 50 (45, 55) | 40 (40, 40) | |
Mean (SD) | 44 (9) | 43 (8) | 50 (14) | 40 (NA) | |
DC_SARA_score | 0.2 | ||||
Median (IQR) | 50 (50, 75) | 50 (41, 50) | 75 (62, 88) | 100 (100, 100) | |
Mean (SD) | 60 (26) | 48 (17) | 75 (35) | 100 (NA) | |
EM_SARA_score | >0.9 | ||||
Median (IQR) | 57 (50, 75) | 60 (52, 72) | 62 (56, 69) | 54 (54, 54) | |
Mean (SD) | 61 (11) | 62 (11) | 62 (18) | 54 (NA) | |
Overall_SARA_score | 0.067 | ||||
Median (IQR) | 52 (47, 60) | 49 (45, 52) | 69 (64, 73) | 66 (66, 66) | |
Mean (SD) | 55 (11) | 48 (5) | 69 (12) | 66 (NA) | |
1c("Median (IQR)", "Mean (SD)") | |||||
2Kruskal-Wallis rank sum test | |||||