library(ggtext)
## Warning: package 'ggtext' was built under R version 4.0.5
library(tidyselect)
library(ggplot2)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.0.5     v dplyr   1.0.3
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(gridtext)
## Warning: package 'gridtext' was built under R version 4.0.5
data <- read_csv("grossperheadUK.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   region = col_character(),
##   `2006` = col_double(),
##   `2007` = col_double(),
##   `2008` = col_double(),
##   `2009` = col_double(),
##   `2010` = col_double()
## )
data
## # A tibble: 13 x 6
##    region                   `2006` `2007` `2008` `2009` `2010`
##    <chr>                     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 North Est                 14901  15530  15673  15304  15744
##  2 North West                16382  17165  17344  16884  17381
##  3 Yorkshire and The Humber  16227  16900  17012  16512  16917
##  4 East Midlands             17013  17806  17952  17519  18090
##  5 West Midlands             16365  17098  17143  16602  17060
##  6 East of England           18514  19337  19294  18536  18966
##  7 London                    31714  33721  34964  34779  35026
##  8 South East                20472  21593  21859  21257  21924
##  9 South West                17576  18383  18606  18184  18669
## 10 Wales                     14407  14042  15122  14664  14145
## 11 Scotland                  18484  19492  19991  19755  20220
## 12 Northen Ireland           15359  16013  15928  15249  15651
## 13 United Kingdom            19542  20539  20911  20341  20849
df <- data %>%
  pivot_longer(cols = ! region,
               names_to = "year",
               values_to = "value") %>%
  mutate(region = as.factor(region),
         year= as.numeric(year))
ggplot() +
  geom_line(data = df,
            aes(x = year, y=  value, color = region)) +
  ylim(c(0, 40000))

Problem : The relative position of each area appears to change only mrginally over time.

We should look at the last year of data and examen each area relative to the overall average for the United Kingdom.

df2010 <- df %>% 
  filter(year == 2010) %>% 
  mutate(UK100 = round(value/20849*100,0))

df2010
## # A tibble: 13 x 4
##    region                    year value UK100
##    <fct>                    <dbl> <dbl> <dbl>
##  1 North Est                 2010 15744    76
##  2 North West                2010 17381    83
##  3 Yorkshire and The Humber  2010 16917    81
##  4 East Midlands             2010 18090    87
##  5 West Midlands             2010 17060    82
##  6 East of England           2010 18966    91
##  7 London                    2010 35026   168
##  8 South East                2010 21924   105
##  9 South West                2010 18669    90
## 10 Wales                     2010 14145    68
## 11 Scotland                  2010 20220    97
## 12 Northen Ireland           2010 15651    75
## 13 United Kingdom            2010 20849   100
ggplot() +
  geom_bar(data = filter(df2010, region != "United Kingdom"),
           stat = "identity",
           aes(x = reorder(region, value), y = UK100),
           fill = "#215968") +
  
  geom_hline(yintercept = 100, color ="red") +
  
  
  scale_y_continuous(limits = c(0, 200),
                     breaks = seq(0, 200, by = 25)) +
  
  # annotate("text", x = 13,  y = 100, label = "United Kingdom Average", color = "red", hjust = 0.5) +
  
  geom_label(aes(x = 1, y = 100, label = 'United Kingdom Average = 100'), 
             fill = '#dddddd', lineheight = 2, hjust = -0.05, color= "red") +
  
  labs(title = "Relative Gross Values Added per head, 2010\n",
       y= "United Kingdom = 100")+
  

  coord_flip() +
  
  theme(plot.title = element_markdown(size=18, hjust =5.5, lineheight = 6),
        plot.subtitle = element_markdown(size=12,face="bold", color="#777B7E"),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank(),
        axis.text.y = element_text(color ="#777B7E", face="bold", size = 12),
        axis.title.x = element_markdown(hjust = 0,size = 12),
        axis.text.x = element_text(color ="#777B7E", face="bold", size = 12),
        axis.line.x = element_line(color="grey", size = 1),
        axis.ticks.x = element_line(color="#a9a9a9"),
        legend.position = "none",
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.background = element_blank(),
        plot.margin = unit(c(0.5,0,0.5,0.5), "cm")) # margin(t = 2, r = 0, b = 0, l = 0, unit = "pt"))

library(gapminder)
df <- gapminder
df %>% 
  filter(country %in% c("Canada", "Mexico","United States"),
         year >= 1980 ) %>% 
  select(country, year, pop)
## # A tibble: 18 x 3
##    country        year       pop
##    <fct>         <int>     <int>
##  1 Canada         1982  25201900
##  2 Canada         1987  26549700
##  3 Canada         1992  28523502
##  4 Canada         1997  30305843
##  5 Canada         2002  31902268
##  6 Canada         2007  33390141
##  7 Mexico         1982  71640904
##  8 Mexico         1987  80122492
##  9 Mexico         1992  88111030
## 10 Mexico         1997  95895146
## 11 Mexico         2002 102479927
## 12 Mexico         2007 108700891
## 13 United States  1982 232187835
## 14 United States  1987 242803533
## 15 United States  1992 256894189
## 16 United States  1997 272911760
## 17 United States  2002 287675526
## 18 United States  2007 301139947
df %>% 
  filter(country %in% c("Canada", "Mexico","United States", 
                        "Norway","Denmark","Sweden"),
         year >= 1987 ) %>% 
  select(country, year, pop) %>% 
  mutate(Year = factor(year)) %>% 
  ggplot() +
  geom_line(aes(x= Year, y = pop, group = country, color = country), size= 1.5)