Copy and run Copy and run the following code chunk:
by_country <- group_by(tb_long, country)
by_country
## # A tibble: 157,820 x 7
## # Groups: country [219]
## country iso3 year type sex age_group count
## <chr> <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 Afghanistan AFG 1980 new_sp m 04 NA
## 2 Afghanistan AFG 1981 new_sp m 04 NA
## 3 Afghanistan AFG 1982 new_sp m 04 NA
## 4 Afghanistan AFG 1983 new_sp m 04 NA
## 5 Afghanistan AFG 1984 new_sp m 04 NA
## 6 Afghanistan AFG 1985 new_sp m 04 NA
## 7 Afghanistan AFG 1986 new_sp m 04 NA
## 8 Afghanistan AFG 1987 new_sp m 04 NA
## 9 Afghanistan AFG 1988 new_sp m 04 NA
## 10 Afghanistan AFG 1989 new_sp m 04 NA
## # ... with 157,810 more rows
Output matches expected output provided
summarise(by_country,
min = min(count, na.rm = TRUE),
first_quartile = quantile(count, 0.25, na.rm = TRUE),
median = median(count, na.rm = TRUE),
third_quartile = quantile(count, 0.75, na.rm = TRUE),
max = max(count, na.rm = TRUE))
## # A tibble: 219 x 6
## country min first_quartile median third_quartile max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Afghanistan 0 139 419 772. 2449
## 2 Albania 0 2 10 19 43
## 3 Algeria 0 243. 378. 825. 1982
## 4 American Samoa 0 0 0 0 2
## 5 Andorra 0 0 0 0 6
## 6 Angola 0 386. 684. 1592. 3792
## 7 Anguilla 0 0 0 0 1
## 8 Antigua and Barbuda 0 0 0 0 3
## 9 Argentina 1 130 294. 466. 682
## 10 Armenia 0 2 11 36 170
## # ... with 209 more rows
Output matches expected output provided
max_cases <- filter(by_country, count == max(count, na.rm = TRUE)) %>%
arrange((country))
max_cases
## # A tibble: 364 x 7
## # Groups: country [219]
## country iso3 year type sex age_group count
## <chr> <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 Afghanistan AFG 2008 new_sp f 2534 2449
## 2 Albania ALB 1997 new_sp m 2534 43
## 3 Algeria DZA 1997 new_sp m 2534 1982
## 4 American Samoa ASM 2004 new_sp m 5564 2
## 5 American Samoa ASM 2005 new_sp f 4554 2
## 6 American Samoa ASM 2006 new_sp f 4554 2
## 7 Andorra AND 1997 new_sp m 65 6
## 8 Angola AGO 2011 new_sp m 2534 3792
## 9 Anguilla AIA 2010 new_sp m 65 1
## 10 Anguilla AIA 2003 new_sp f 3544 1
## # ... with 354 more rows
Output does not match expected output. Expected output is
## # A tibble: 364 x 7
## # Groups: country [219]
## country iso3 year type sex age_group count
## <chr> <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 Afghanistan AFG 2008 new_sp f 2534 2449
## 2 Albania ALB 1997 new_sp m 2534 43
## 3 Algeria DZA 1997 new_sp m 2534 1982
## 4 American Samoa ASM 2004 new_sp m 5564 2
## 5 American Samoa ASM 2005 new_sp f 4554 2
## 6 American Samoa ASM 2006 new_sp f 4554 2
## 7 Andorra AND 1997 new_sp m 65 6
## 8 Angola AGO 2011 new_sp m 2534 3792
## 9 Anguilla AIA 2003 new_sp f 3544 1
## 10 Anguilla AIA 2010 new_sp m 65 1
## # … with 354 more rows
max_cases <- filter(by_country, count == max(count, na.rm = TRUE)) %>%
arrange(country)
max_cases
## # A tibble: 364 x 7
## # Groups: country [219]
## country iso3 year type sex age_group count
## <chr> <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 Afghanistan AFG 2008 new_sp f 2534 2449
## 2 Albania ALB 1997 new_sp m 2534 43
## 3 Algeria DZA 1997 new_sp m 2534 1982
## 4 American Samoa ASM 2004 new_sp m 5564 2
## 5 American Samoa ASM 2005 new_sp f 4554 2
## 6 American Samoa ASM 2006 new_sp f 4554 2
## 7 Andorra AND 1997 new_sp m 65 6
## 8 Angola AGO 2011 new_sp m 2534 3792
## 9 Anguilla AIA 2010 new_sp m 65 1
## 10 Anguilla AIA 2003 new_sp f 3544 1
## # ... with 354 more rows
```