#Diseño Factorial Completo en Arreglo Completamente al azar
set.seed(123)
#Peso inicial de cubos
pic = runif(120, 0.9, 1.3)
pic = round(sort.int(pic, 6), 2)
#Laboratorio
lab = gl(2, 10, 120, c('biol','alim'))
#Tiempo de Coccion
tiemp = gl(3, 40, 120, c(0, 10, 12))
#Vierdades
varie = gl(2, 20, 120, c('var1', 'var2'))
#Compuestos Fenolicos
cf = c(rnorm(40, 20, 1),
rnorm(40, 12, 1.2),
rnorm(40, 16, 1.15))
df = data.frame(lab, varie, tiemp, cf, pic)
head(df)
## lab varie tiemp cf pic
## 1 biol var1 0 20.37964 0.90
## 2 biol var1 0 19.49768 0.91
## 3 biol var1 0 19.66679 0.92
## 4 biol var1 0 18.98142 0.92
## 5 biol var1 0 18.92821 0.92
## 6 biol var1 0 20.30353 0.92
library(collapsibleTree)
collapsibleTreeSummary(
df,
hierarchy = c('lab','varie','tiemp', "cf"))
ANCOVA
mod1 = aov(cf ~ lab*varie + tiemp + pic, df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.1 0.1 0.067 0.7964
## varie 1 5.4 5.4 4.620 0.0337 *
## tiemp 2 1399.9 700.0 600.082 <2e-16 ***
## pic 1 0.5 0.5 0.467 0.4959
## lab:varie 1 0.1 0.1 0.056 0.8142
## Residuals 113 131.8 1.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANCOVA - Interacciones
mod2 = aov(cf ~ lab*varie + tiemp + pic, df)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.1 0.1 0.067 0.7964
## varie 1 5.4 5.4 4.620 0.0337 *
## tiemp 2 1399.9 700.0 600.082 <2e-16 ***
## pic 1 0.5 0.5 0.467 0.4959
## lab:varie 1 0.1 0.1 0.056 0.8142
## Residuals 113 131.8 1.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA 1
mod3 = aov(cf ~ tiemp*varie, df)
summary(mod3)
## Df Sum Sq Mean Sq F value Pr(>F)
## tiemp 2 1399.9 700.0 602.599 <2e-16 ***
## varie 1 5.4 5.4 4.639 0.0334 *
## tiemp:varie 2 0.1 0.0 0.033 0.9678
## Residuals 114 132.4 1.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA 2
mod4 = aov(cf ~ lab*varie + tiemp, df)
summary(mod4)
## Df Sum Sq Mean Sq F value Pr(>F)
## lab 1 0.1 0.1 0.067 0.7959
## varie 1 5.4 5.4 4.642 0.0333 *
## tiemp 2 1399.9 700.0 602.906 <2e-16 ***
## lab:varie 1 0.1 0.1 0.056 0.8127
## Residuals 114 132.4 1.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lattice::bwplot(df$cf ~ df$tiemp | df$varie)
Eficiencia de bloqueo
H = 0/132.4;H
## [1] 0