Santiago Escuder
25/08/2021
El codigo Shiny de esta App se encuentra en https://support.rstudio.com/hc/en-us/articles/200486468.
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
library(shiny) shinyUI(fluidPage( titlePanel(“Prediccion Iris”), sidebarLayout( sidebarPanel( sliderInput(“sliderPL”, “Tamano Petalo”, 0, 10, value = 20), checkboxInput(“showModel1”, “Recta”, value = TRUE), submitButton(“Actualizar”) ), mainPanel( plotOutput(“plot1”), h3(“Prediccion:”), textOutput(“pred1”), h4(“Se trata de un analisis de la base Iris. Por mas informacion ver: https://rpubs.com/moeransm/intro-iris ”) ) ) ))
library(shiny) shinyServer(function(input, output) { model1 <- lm(Sepal.Length ~ Petal.Length, data = iris) model1pred <- reactive({ PLInput <- input$sliderPL predict(model1, newdata = data.frame(Petal.Length = PLInput)) })
output$plot1 <- renderPlot({ PLInput <- input$sliderPL plot(iris$Petal.Length, iris$Sepal.Length, xlab = “Tamano petalo”, ylab = “Tamano tallo”, bty = “n”, pch = 16, xlim = c(0, 10), ylim = c(0, 10)) if(input$showModel1){ abline(model1, col = “red”, lwd = 2) }
legend(25, 250, c(“Model 1 Prediction”), pch = 16, col = c(“red”, “blue”), bty = “n”, cex = 1.2) points(PLInput, model1pred(), col = “red”, pch = 16, cex = 2) })
output$pred1 <- renderText({ model1pred() })
})