if(!file.exists("data.csv")) {
#Download
url<-"https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url,"data.bz2",method="curl")
# Unzip
zz <- readLines(gzfile("data.bz2"))
zz <- iconv(zz, "latin1", "ASCII", sub="")
writeLines(zz, "data.csv")
rm(zz)
}
## Read data in
data<-read.csv("data.csv", sep=",", quote = "\"", header=TRUE)
# Add a new year column to the dataset
data<-data.frame(Year=format(as.Date(data$BGN_DATE,format="%m/%d/%Y"),"%Y"),data)
# Replace Thunderstorm winds, Thunderstorm wind with TTSM WIND
data$EVTYPE = sapply(data$EVTYPE,function(x) gsub("THUNDERSTORM WINDS|MARINE TSTM WIND|THUNDERSTORM WIND","TSTM WIND",x))
require(rCharts)
Loading required package: rCharts
dat = as.data.frame(table(data[,c("Year","EVTYPE")]))
a = sort(apply(table(data[,c("Year","EVTYPE")]),2,sum),decreasing=TRUE)[1:10]
dat = dat[dat$EVTYPE %in% names(a),]
dat$Year = paste0(dat$Year,"-01-01")
dat$Year = as.numeric(
as.POSIXct(dat$Year)
)
r2 <- Rickshaw$new()
r2$layer(
Freq ~ Year,
data = dat,
type = "line",
groups = "EVTYPE",
height = 240,
width = 600
)
#turn off all the nice built in features
#to match the sparse second example
r2$set(
hoverDetail = TRUE,
xAxis = TRUE,
yAxis = TRUE,
shelving = FALSE,
legend = TRUE,
slider = TRUE,
highlight = TRUE
)
r2$show('iframesrc', cdn = TRUE)
# r2$show(T)