Problema tomado de: Wayne W. Daniel y Chad L. Cross, Biostatistics: A Foundation for Analysis in the Health Sciences, 10° edition, Wiley.

EXAMPLE 7.9.1

Suppose we have a variable whose values yield a population standard deviation of 3.6. From the population we select a simple random sample of size \(n = 100\). We select a value of a \(\alpha\) :05 for the following hypotheses:

\[H_0: \mu = 17.5, H_A: \mu \not= 17.5\]

TABLE 7.9.1 Values of \(\beta\) and \(1-\beta\) for Selected Alternative Values of \(\mu_1\).
Possible Values of \(\mu\) Under \(H_A\) When \(H_0\) is false \(\beta\) \(1-\beta\)
16.0 0.0143 0.9857
16.5 0.2090 0.7910
17.0 0.7190 0.2810
18.0 0.7190 0.2810
18.5 0.2090 0.7910
19.0 0.0143 0.9857
Reproducción de gráfica:

En la tabla anterior se nos proporcionan algunos puntos de la gráfica. Podemos gráficar directamente estos puntos. Para esto, simplemente cargamos los datos y graficamos:

library(latex2exp)
mu = c(16.0, 16.5, 17.0, 18.0, 18.5, 19.0)
uno.menos.beta = c(0.9857, 0.7910, 0.2810, 0.2810, 0.7910, 0.9857)

plot(mu, uno.menos.beta, type = 'b', main = 'Power curve', 
     xlab = TeX('Alternative values of $\\mu$'), ylim = c(0,1), col = 'blue',
     ylab = TeX('1- $\\beta$'))

legend("top", c("Datos proporcioandos"), fill=c("blue"))
grid()

Pero para graficarla también podemos recurrir a su forma analítica y no a estos datos proporcionados, sabiendo que \(1-\beta\) corresponde con el área bajo la curva de las colas externas de una distribución normal estandar para ciertas cotas \(z_U\) y \(z_L\). Sabemos del problema que \(\sigma = 3.6\), \(n=100\) y además se selccionó un \(\alpha = 0.05\). Por lo tanto:


# Creamos arreglo de puntos en intervalo de interés.
data = c(seq(15, 19, length.out=100))

# Datos del problema
mu = 16.5
std = 3.6
n = 100

# Valores ya calculados de cotas de H_0
mu_u = 18.21
mu_l = 16.79

# Función para calcular 1 - beta

probability.beta <- function(x){
  # Cotas
  zu <- (mu_u-x)/(std/sqrt(n))
  zl <- (mu_l-x)/(std/sqrt(n))

  # Valor de colas
  R <- 1 - pnorm(zu) + pnorm(zl)
  return(R)
}
 # Obtenemos todos los valores
y_data = probability.beta(data)

library(latex2exp)
mu = c(16.0, 16.5, 17.0, 18.0, 18.5, 19.0)
uno.menos.beta = c(0.9857, 0.7910, 0.2810, 0.2810, 0.7910, 0.9857)

plot(mu, uno.menos.beta, type = 'b', main = 'Power curve', 
     xlab = TeX('Alternative values of $\\mu$'), ylim = c(0,1), col = 'blue',
     ylab = TeX('1- $\\beta$'))
lines(data, y_data, col = 'red', type = 'l')

legend("top", c("Datos proporcioandos", "Forma analítica"), fill=c("blue", "red"))
grid()

Podemos notar que el valor mínimo se encuentra en \(\mu = 17.5\) con un valor de:

probability.beta(17.5)
[1] 0.04858424
LS0tDQp0aXRsZTogIjcuOSBUaGUgdHlwZSBJSSBlcnJvciBhbmQgdGhlIHBvd2VyIG9mIGEgdGVzdC4iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmF1dGhvcjogIkxhdXJhLCBFc3RlZmFuw61hIFZlZ2EsIEpvbmF0aGFuLCBHYWJyaWVsIE1pc3NhZWwgQmFyY28iDQpkYXRlOiAiMjQvMDgvMjAyMSINCi0tLQ0KUHJvYmxlbWEgdG9tYWRvIGRlOiAqKldheW5lIFcuIERhbmllbCoqIHkgKipDaGFkIEwuIENyb3NzKiosICpCaW9zdGF0aXN0aWNzOiBBIEZvdW5kYXRpb24gZm9yIEFuYWx5c2lzIGluIHRoZSBIZWFsdGggU2NpZW5jZXMqLCAxMMKwIGVkaXRpb24sIFdpbGV5Lg0KDQojIyMgRVhBTVBMRSA3LjkuMQ0KDQpTdXBwb3NlIHdlIGhhdmUgYSB2YXJpYWJsZSB3aG9zZSB2YWx1ZXMgeWllbGQgYSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiBvZiAzLjYuDQpGcm9tIHRoZSBwb3B1bGF0aW9uIHdlIHNlbGVjdCBhIHNpbXBsZSByYW5kb20gc2FtcGxlIG9mIHNpemUgJG4gPSAxMDAkLiBXZSBzZWxlY3QgYSB2YWx1ZQ0Kb2YgYSAkXGFscGhhJCA6MDUgZm9yIHRoZSBmb2xsb3dpbmcgaHlwb3RoZXNlczoNCg0KJCRIXzA6IFxtdSA9IDE3LjUsIEhfQTogXG11IFxub3Q9IDE3LjUkJA0KDQojIyMjIyBUQUJMRSA3LjkuMSBWYWx1ZXMgb2YgJFxiZXRhJCBhbmQgJDEtXGJldGEkIGZvciBTZWxlY3RlZCBBbHRlcm5hdGl2ZSBWYWx1ZXMgb2YgJFxtdV8xJC4NCg0KfCBQb3NzaWJsZSBWYWx1ZXMgb2YgJFxtdSQgVW5kZXIgJEhfQSQgV2hlbiAkSF8wJCBpcyBmYWxzZSB8ICRcYmV0YSQgfCAkMS1cYmV0YSQgfA0KfCA6LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tOiB8IDotLS0tLTogfCA6LS0tLS0tLTogfA0KfDE2LjAgfCAwLjAxNDMgfCAwLjk4NTcgfA0KfDE2LjUgfCAwLjIwOTAgfCAwLjc5MTAgfA0KfDE3LjAgfCAwLjcxOTAgfCAwLjI4MTAgfA0KfDE4LjAgfCAwLjcxOTAgfCAwLjI4MTAgfA0KfDE4LjUgfCAwLjIwOTAgfCAwLjc5MTAgfA0KfDE5LjAgfCAwLjAxNDMgfCAwLjk4NTcgfA0KDQojIyMjIyAqKlJlcHJvZHVjY2nDs24gZGUgZ3LDoWZpY2EqKjoNCkVuIGxhIHRhYmxhIGFudGVyaW9yIHNlIG5vcyBwcm9wb3JjaW9uYW4gYWxndW5vcyBwdW50b3MgZGUgbGEgZ3LDoWZpY2EuIFBvZGVtb3MgZ3LDoWZpY2FyIGRpcmVjdGFtZW50ZSBlc3RvcyBwdW50b3MuIFBhcmEgZXN0bywgc2ltcGxlbWVudGUgY2FyZ2Ftb3MgbG9zIGRhdG9zIHkgZ3JhZmljYW1vczogDQoNCmBgYHtyfQ0KbGlicmFyeShsYXRleDJleHApDQptdSA9IGMoMTYuMCwgMTYuNSwgMTcuMCwgMTguMCwgMTguNSwgMTkuMCkNCnVuby5tZW5vcy5iZXRhID0gYygwLjk4NTcsIDAuNzkxMCwgMC4yODEwLCAwLjI4MTAsIDAuNzkxMCwgMC45ODU3KQ0KDQpwbG90KG11LCB1bm8ubWVub3MuYmV0YSwgdHlwZSA9ICdiJywgbWFpbiA9ICdQb3dlciBjdXJ2ZScsIA0KICAgICB4bGFiID0gVGVYKCdBbHRlcm5hdGl2ZSB2YWx1ZXMgb2YgJFxcbXUkJyksIHlsaW0gPSBjKDAsMSksIGNvbCA9ICdibHVlJywNCiAgICAgeWxhYiA9IFRlWCgnMS0gJFxcYmV0YSQnKSkNCg0KbGVnZW5kKCJ0b3AiLCBjKCJEYXRvcyBwcm9wb3JjaW9hbmRvcyIpLCBmaWxsPWMoImJsdWUiKSkNCmdyaWQoKQ0KYGBgDQoNCg0KUGVybyBwYXJhIGdyYWZpY2FybGEgdGFtYmnDqW4gcG9kZW1vcyByZWN1cnJpciBhIHN1ICoqZm9ybWEgYW5hbMOtdGljYSoqIHkgbm8gYSBlc3RvcyBkYXRvcyBwcm9wb3JjaW9uYWRvcywgc2FiaWVuZG8gcXVlICQxLVxiZXRhJCBjb3JyZXNwb25kZSBjb24gZWwgw6FyZWEgYmFqbyBsYSBjdXJ2YSBkZSBsYXMgY29sYXMgZXh0ZXJuYXMgZGUgdW5hIGRpc3RyaWJ1Y2nDs24gbm9ybWFsIGVzdGFuZGFyIHBhcmEgY2llcnRhcyBjb3RhcyAkel9VJCB5ICR6X0wkLiBTYWJlbW9zIGRlbCBwcm9ibGVtYSBxdWUgJFxzaWdtYSA9IDMuNiQsICRuPTEwMCQgeSBhZGVtw6FzIHNlIHNlbGNjaW9uw7MgdW4gJFxhbHBoYSA9IDAuMDUkLiBQb3IgbG8gdGFudG86DQoNCmBgYHtyfQ0KDQojIENyZWFtb3MgYXJyZWdsbyBkZSBwdW50b3MgZW4gaW50ZXJ2YWxvIGRlIGludGVyw6lzLg0KZGF0YSA9IGMoc2VxKDE1LCAxOSwgbGVuZ3RoLm91dD0xMDApKQ0KDQojIERhdG9zIGRlbCBwcm9ibGVtYQ0KbXUgPSAxNi41DQpzdGQgPSAzLjYNCm4gPSAxMDANCg0KIyBWYWxvcmVzIHlhIGNhbGN1bGFkb3MgZGUgY290YXMgZGUgSF8wDQptdV91ID0gMTguMjENCm11X2wgPSAxNi43OQ0KDQojIEZ1bmNpw7NuIHBhcmEgY2FsY3VsYXIgMSAtIGJldGENCg0KcHJvYmFiaWxpdHkuYmV0YSA8LSBmdW5jdGlvbih4KXsNCiAgIyBDb3Rhcw0KICB6dSA8LSAobXVfdS14KS8oc3RkL3NxcnQobikpDQogIHpsIDwtIChtdV9sLXgpLyhzdGQvc3FydChuKSkNCg0KICAjIFZhbG9yIGRlIGNvbGFzDQogIFIgPC0gMSAtIHBub3JtKHp1KSArIHBub3JtKHpsKQ0KICByZXR1cm4oUikNCn0NCiAjIE9idGVuZW1vcyB0b2RvcyBsb3MgdmFsb3Jlcw0KeV9kYXRhID0gcHJvYmFiaWxpdHkuYmV0YShkYXRhKQ0KDQpsaWJyYXJ5KGxhdGV4MmV4cCkNCm11ID0gYygxNi4wLCAxNi41LCAxNy4wLCAxOC4wLCAxOC41LCAxOS4wKQ0KdW5vLm1lbm9zLmJldGEgPSBjKDAuOTg1NywgMC43OTEwLCAwLjI4MTAsIDAuMjgxMCwgMC43OTEwLCAwLjk4NTcpDQoNCnBsb3QobXUsIHVuby5tZW5vcy5iZXRhLCB0eXBlID0gJ2InLCBtYWluID0gJ1Bvd2VyIGN1cnZlJywgDQogICAgIHhsYWIgPSBUZVgoJ0FsdGVybmF0aXZlIHZhbHVlcyBvZiAkXFxtdSQnKSwgeWxpbSA9IGMoMCwxKSwgY29sID0gJ2JsdWUnLA0KICAgICB5bGFiID0gVGVYKCcxLSAkXFxiZXRhJCcpKQ0KbGluZXMoZGF0YSwgeV9kYXRhLCBjb2wgPSAncmVkJywgdHlwZSA9ICdsJykNCg0KbGVnZW5kKCJ0b3AiLCBjKCJEYXRvcyBwcm9wb3JjaW9hbmRvcyIsICJGb3JtYSBhbmFsw610aWNhIiksIGZpbGw9YygiYmx1ZSIsICJyZWQiKSkNCmdyaWQoKQ0KYGBgDQoNClBvZGVtb3Mgbm90YXIgcXVlIGVsICoqdmFsb3IgbcOtbmltbyoqIHNlIGVuY3VlbnRyYSBlbiAkXG11ID0gMTcuNSQgY29uIHVuIHZhbG9yIGRlOg0KDQpgYGB7cn0NCnByb2JhYmlsaXR5LmJldGEoMTcuNSkNCmBgYA0KDQo=