Bibliotecas
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(corrplot)
corrplot 0.90 loaded
library(rio)
Base de dados
library(readxl)
Questionario_Estresse <- read_excel("C:/Users/brenda/Downloads/Base_de_dados-master/Base_de_dados-master/Questionario_Estresse.xls")
View(Questionario_Estresse)
library(readr)
FifaData <- read_csv("C:/Users/brenda/Downloads/Base_de_dados-master/Base_de_dados-master/FifaData.csv")
Rows: 17588 Columns: 53
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (12): Name, Nationality, National_Position, Club, Club_Position, Club_Jo...
dbl (41): National_Kit, Club_Kit, Contract_Expiry, Rating, Age, Weak_foot, S...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(FifaData)
# A tibble: 6 x 53
Name Nationality National_Positi~ National_Kit Club Club_Position Club_Kit
<chr> <chr> <chr> <dbl> <chr> <chr> <dbl>
1 Cristi~ Portugal LS 7 Real~ LW 7
2 Lionel~ Argentina RW 10 FC B~ RW 10
3 Neymar Brazil LW 10 FC B~ LW 11
4 Luis S~ Uruguay LS 9 FC B~ ST 9
5 Manuel~ Germany GK 1 FC B~ GK 1
6 De Gea Spain GK 1 Manc~ GK 1
# ... with 46 more variables: Club_Joining <chr>, Contract_Expiry <dbl>,
# Rating <dbl>, Height <chr>, Weight <chr>, Preffered_Foot <chr>,
# Birth_Date <chr>, Age <dbl>, Preffered_Position <chr>, Work_Rate <chr>,
# Weak_foot <dbl>, Skill_Moves <dbl>, Ball_Control <dbl>, Dribbling <dbl>,
# Marking <dbl>, Sliding_Tackle <dbl>, Standing_Tackle <dbl>,
# Aggression <dbl>, Reactions <dbl>, Attacking_Position <dbl>,
# Interceptions <dbl>, Vision <dbl>, Composure <dbl>, Crossing <dbl>, ...
View(FifaData)
Passo 2 - Diagrama de dispersão
Duas variáveis quantitativas
par(bg="lightyellow")
plot(Questionario_Estresse$Desempenho, Questionario_Estresse$Horas_estudo,pch=19,col="black",
main = "Gráfico 1 - Questionário", ylab = "Horas de estudo",
xlab = "Desempenho")
# Correlação Positiva muito fraca
abline(a=NULL, b=NULL)
abline(lsfit(Questionario_Estresse$Desempenho,Questionario_Estresse$Horas_estudo),col="red")

cor(Questionario_Estresse$Horas_estudo,Questionario_Estresse$Desempenho)
[1] 0.2231532
Matriz de Correlação
names(Questionario_Estresse)
[1] "Aluno" "Turma" "Mora_pais" "RJ" "Namorado_a"
[6] "Trabalha" "Desempenho" "Estresse" "Créditos" "Horas_estudo"
Mc <- Questionario_Estresse %>% select(Desempenho,Estresse,
Horas_estudo) %>% cor()
Mc
Desempenho Estresse Horas_estudo
Desempenho 1.00000000 0.08257246 0.2231532
Estresse 0.08257246 1.00000000 0.3039170
Horas_estudo 0.22315316 0.30391699 1.0000000
par(bg="#cccaca")
corrplot(Mc)

corrplot.mixed(Mc)
