```

Firstly we want to load in the files we will be using as well as combine the data as needed.

pedsql<- read_excel("C:/Users/burga/Downloads/PedsQL No PHI 2019.xlsx", 
    sheet = "Calculations ") #read pedsql data baseline sheet
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...7
## * `` -> ...11
fs2r <- read_excel("C:/Users/burga/Downloads/FS2R Scoring no PHI 2019.xlsx", 
    sheet = "Calculations") #read fs2r data baseline sheet
demographic.en <- read_csv("C:/Users/burga/Downloads/OAPEnglish_Dem_2019.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   gender_other = col_logical(),
##   other_related = col_character(),
##   guard_gender_other = col_character()
## )
## i Use `spec()` for the full column specifications.
## Warning: 1 parsing failure.
##  row          col           expected         actual                                               file
## 1039 gender_other 1/0/T/F/TRUE/FALSE X (Non-Binary) 'C:/Users/burga/Downloads/OAPEnglish_Dem_2019.csv'
demographic.sp <-read_csv("C:/Users/burga/Downloads/OAPSpanish_Dem_2019.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   gender_other = col_logical(),
##   other_related = col_logical(),
##   guard_gender_other = col_logical()
## )
## i Use `spec()` for the full column specifications.
#select only the need columns 

pedsql.clean<- pedsql[ -c(2:11,13,15) ]
fs2r.clean <- fs2r[-c(2:10,12)]
#data clean up 
 #we didn't collect unit every time so we are going to ignore those columns 

dem.clean.en <- demographic.en[ -c(2) ]
dem.clean.sp <-demographic.sp[ -c(5) ]
dem.merge <-rbind(dem.clean.en,dem.clean.sp)

# childgender
dem.merge$childgender <- as.factor(dem.merge$childgender)
levels (dem.merge$childgender) <-gsub("0","Male",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("1","Female",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("2","Other",levels(dem.merge$childgender))
levels (dem.merge$childgender) <-gsub("3","Prefer not to answer",levels(dem.merge$childgender))

#interviewlang
dem.merge$interviewlang <- as.factor(dem.merge$interviewlang)
levels (dem.merge$interviewlang) <-gsub("1","English",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("2","Spanish",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("3","Vietnamese",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("4","Russian",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("5","Chinese",levels(dem.merge$interviewlang))
levels (dem.merge$interviewlang) <-gsub("6","Somali",levels(dem.merge$interviewlang))

#interp_needed  
dem.merge$interp_needed<- as.factor(dem.merge$interp_needed)
levels (dem.merge$interp_needed) <-gsub("0","No",levels(dem.merge$interp_needed))
levels (dem.merge$interp_needed) <-gsub("1","Yes",levels(dem.merge$interp_needed))

#pq_method
dem.merge$pq_method<- as.factor(dem.merge$pq_method)
levels (dem.merge$pq_method) <-gsub("0","Self administered",levels(dem.merge$pq_method))
levels (dem.merge$pq_method) <-gsub("1","Via telephone interview",levels(dem.merge$pq_method))

#interviewlang_change   
dem.merge$interviewlang_change <- as.factor(dem.merge$interviewlang_change )
levels (dem.merge$interviewlang_change ) <-gsub("1","English",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("2","Spanish",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("3","Vietnamese",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("4","Russian",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("5","Chinese",levels(dem.merge$interviewlang_change ))
levels (dem.merge$interviewlang_change ) <-gsub("6","Somali",levels(dem.merge$interviewlang_change ))

#related    
dem.merge$related<- as.factor(dem.merge$related)
levels (dem.merge$related) <-gsub("1","Mother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("2","Father",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("3","Stepmother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("4","Stepfather",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("5","Grandmother",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("6","Grandfather",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("8","Aunt or Uncle",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("9","Older brother or sister",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("10","Other relative",levels(dem.merge$related))
levels (dem.merge$related) <-gsub("7","Other relative",levels(dem.merge$related))

#other_related  
#guard_gender   
dem.merge$guard_gender<- as.factor(dem.merge$guard_gender)
levels (dem.merge$guard_gender) <-gsub("0","Male",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("1","Female",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("2","Other",levels(dem.merge$guard_gender))
levels (dem.merge$guard_gender) <-gsub("3","Prefer not to answer",levels(dem.merge$guard_gender))

#guard_gender_other 
#parentage  
#dem.merge$parentage<- as.numeric(dem.merge$parentage)
#levels (dem.merge$parentage) <-gsub("1","18-24",levels(dem.merge$parentage)) 
#levels (dem.merge$parentage) <-gsub("2","25-34",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("3","35-44",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("4","45-54",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("5","55-64",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("6","65-74",levels(dem.merge$parentage))
#levels (dem.merge$parentage) <-gsub("7","75+",levels(dem.merge$parentage))
dem.merge$parentage<- as.factor(dem.merge$parentage)
#education
dem.merge$education<- as.factor(dem.merge$education)
levels (dem.merge$education) <-gsub("1","8th grade or less",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("2","Some high school, but did not graduate",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("3","high school grad or GED",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("4","Some college or 2 year degree (or trade or technical school)",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("5","4-year college graduate",levels(dem.merge$education))
levels (dem.merge$education) <-gsub("6","More than 4-year college degree",levels(dem.merge$education))

#race___1   race___2    race___3    race___4    race___5    race___6    race___7    
dem.merge$race___1<- as.factor(dem.merge$race___1)
levels (dem.merge$race___1) <-gsub("0","",levels(dem.merge$race___1))
levels (dem.merge$race___1) <-gsub("1","White",levels(dem.merge$race___1))

dem.merge$race___2<- as.factor(dem.merge$race___2)
levels (dem.merge$race___2) <-gsub("0","",levels(dem.merge$race___2))
levels (dem.merge$race___2) <-gsub("1","Black or African American",levels(dem.merge$race___2))

dem.merge$race___3<- as.factor(dem.merge$race___3)
levels (dem.merge$race___3) <-gsub("0","",levels(dem.merge$race___3))
levels (dem.merge$race___3) <-gsub("1","Latino or Hispanic",levels(dem.merge$race___3))

dem.merge$race___4<- as.factor(dem.merge$race___4)
levels (dem.merge$race___4) <-gsub("0","",levels(dem.merge$race___4))
levels (dem.merge$race___4) <-gsub("1","Asian",levels(dem.merge$race___4))

dem.merge$race___5<- as.factor(dem.merge$race___5)
levels (dem.merge$race___5) <-gsub("0","",levels(dem.merge$race___5))
levels (dem.merge$race___5) <-gsub("1","Native Hawaiian or other Pacific Islander",levels(dem.merge$race___5))

dem.merge$race___6<- as.factor(dem.merge$race___6)
levels (dem.merge$race___6) <-gsub("0","",levels(dem.merge$race___6))
levels (dem.merge$race___6) <-gsub("1","American Indian, or Alaskan Indian or Alaskan Native",levels(dem.merge$race___6))

dem.merge$race___7<- as.factor(dem.merge$race___7)
levels (dem.merge$race___7) <-gsub("0","",levels(dem.merge$race___7))
levels (dem.merge$race___7) <-gsub("1","Other or multiracial",levels(dem.merge$race___7))

dem.merge$race.ethnicity <- paste(dem.merge$race___1, dem.merge$race___2, dem.merge$race___3, dem.merge$race___4, dem.merge$race___5, dem.merge$race___6, dem.merge$race___7)

#childrace___1  childrace___2   childrace___3   childrace___4   childrace___5   childrace___6   childrace___7
dem.merge$childrace___1<- as.factor(dem.merge$childrace___1)
levels (dem.merge$childrace___1) <-gsub("0","",levels(dem.merge$childrace___1))
levels (dem.merge$childrace___1) <-gsub("1","White",levels(dem.merge$childrace___1))

dem.merge$childrace___2<- as.factor(dem.merge$childrace___2)
levels (dem.merge$childrace___2) <-gsub("0","",levels(dem.merge$childrace___2))
levels (dem.merge$childrace___2) <-gsub("1","Black or African American",levels(dem.merge$childrace___2))

dem.merge$childrace___3<- as.factor(dem.merge$childrace___3)
levels (dem.merge$childrace___3) <-gsub("0","",levels(dem.merge$childrace___3))
levels (dem.merge$childrace___3) <-gsub("1","Latino or Hispanic",levels(dem.merge$childrace___3))

dem.merge$childrace___4<- as.factor(dem.merge$childrace___4)
levels (dem.merge$childrace___4) <-gsub("0","",levels(dem.merge$childrace___4))
levels (dem.merge$childrace___4) <-gsub("1","Asian",levels(dem.merge$childrace___4))

dem.merge$childrace___5<- as.factor(dem.merge$childrace___5)
levels (dem.merge$childrace___5) <-gsub("0","",levels(dem.merge$childrace___5))
levels (dem.merge$childrace___5) <-gsub("1","Native Hawaiian or other Pacific Islander",levels(dem.merge$childrace___5))

dem.merge$childrace___6<- as.factor(dem.merge$childrace___6)
levels (dem.merge$childrace___6) <-gsub("0","",levels(dem.merge$childrace___6))
levels (dem.merge$childrace___6) <-gsub("1","American Indian, or Alaskan Indian or Alaskan Native",levels(dem.merge$childrace___6))

dem.merge$childrace___7<- as.factor(dem.merge$childrace___7)
levels (dem.merge$childrace___7) <-gsub("0","",levels(dem.merge$childrace___7))
levels (dem.merge$childrace___7) <-gsub("1","Other or multiracial",levels(dem.merge$childrace___7))

dem.merge$race.ethnicity.child <- paste(dem.merge$childrace___1, dem.merge$childrace___2, dem.merge$childrace___3, dem.merge$childrace___4, dem.merge$childrace___5, dem.merge$childrace___6, dem.merge$childrace___7)

dem.final <-dem.merge[ -c(4,10,12,15:28) ]

Next we want to get rid of any blanks and merge our data.

#get rid of blanks 
pedsql.final <- pedsql.clean %>% 
    mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>% 
    na.omit()
fs2r.final <- fs2r.clean %>% 
    mutate_all(~ifelse(. %in% c("N/A", "null", ""), NA, .)) %>% 
    na.omit()
#join data sets
  #there is a weird error going on in the joining so I just made a second pedsql.final 
join1 <- rbind(pedsql.final,fs2r.final) #join the scores of both data sets
join2 <- inner_join(join1,dem.final, by= "record_id") #join the scores and demographic data
QOL.Equity.Exploraton <- select(join2,-c()) #deleate any  possible doubles
qol_final <- QOL.Equity.Exploraton
qol_final$`Back to Baseline` <- as.factor(qol_final$`Back to Baseline`)
levels (qol_final$`Back to Baseline`) <-gsub("0","did not return to baseline",levels(qol_final$`Back to Baseline`))
levels (qol_final$`Back to Baseline`) <-gsub("1","returned to baseline",levels(qol_final$`Back to Baseline`))


#change American Indian, or Alaskan Indian or Alaskan Native to indiginous so that graphs dont look weird when factoring in r&e
qol_final$r.e.parent <- as.factor(qol_final$race.ethnicity)
levels (qol_final$r.e.parent) <-gsub("American Indian, or Alaskan Indian or Alaskan Native","Indigenous",levels(qol_final$r.e.parent))
qol_final$r.e.child <- as.factor(qol_final$race.ethnicity.child)
levels (qol_final$r.e.child) <-gsub("American Indian, or Alaskan Indian or Alaskan Native","Indigenous",levels(qol_final$r.e.child))

Our final data set is qol_final, now we just need to make the graphs and make some counts left NAs as they mean something here

#parent education and parent/child race and ethnicity
ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=education,color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Parent education", title = 'Parent Education and Child Race & Ethnicity effects on baseline',
caption = "")+
theme_classic()

ggplot(qol_final)+
geom_jitter(aes( x=r.e.parent, y=education,color=`Back to Baseline`))+
labs(x = "Parent race and ethnicity", y= "Parent education", title = 'Parent Education and Race & Ethicity effects on baseline',
caption = "")+
theme_classic()

table_1<-qol_final %>% count(education,r.e.parent,`Back to Baseline`, sort = TRUE)



#parent race and child race

ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=r.e.parent,color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Parent race and ethnicity", title = 'Parent and Child Race and Ethnicity effects on baseline',
caption = "")+
theme_classic()

table_2<-qol_final %>% count(r.e.child,r.e.parent,`Back to Baseline`, sort = TRUE)

#View(table_2)

#child gender and race
ggplot(qol_final)+
geom_jitter(aes(x=r.e.child, y=childgender, color=`Back to Baseline`))+
labs(x = "Child race and ethnicity", y= "Child Gender", title = 'Child Race and Ethnicity and Gender effects on baseline',
caption = "")+
theme_classic()

table_3<-qol_final %>% count(r.e.child,childgender,`Back to Baseline`, sort = TRUE)


#baseline and language 
ggplot(qol_final)+
geom_jitter(aes(x=interp_needed, y=interviewlang_change,color=`Back to Baseline`))+
labs(x = "Interpretor needed", y= "Survey Language", title = 'Interpretor need and language effects on baseline',
caption = "")+
theme_classic()

table_4<-qol_final %>% count(interp_needed,interviewlang_change,`Back to Baseline`, sort = TRUE)

Tables

tinytex::reinstall_tinytex()
## If reinstallation fails, try install_tinytex() again. Then install the following packages:
## 
## tinytex::tlmgr_install(c("amscls", "amsfonts", "amsmath", "atbegshi", "atveryend", "auxhook", "babel", "bibtex", "bigintcalc", "bitset", "booktabs", "cm", "dehyph", "dvipdfmx", "dvips", "ec", "epstopdf-pkg", "etex", "etexcmds", "etoolbox", "euenc", "everyshi", "fancyvrb", "filehook", "firstaid", "float", "fontspec", "framed", "geometry", "gettitlestring", "glyphlist", "graphics", "graphics-cfg", "graphics-def", "grffile", "helvetic", "hycolor", "hyperref", "hyph-utf8", "hyphen-base", "iftex", "inconsolata", "infwarerr", "intcalc", "knuth-lib", "kpathsea", "kvdefinekeys", "kvoptions", "kvsetkeys", "l3backend", "l3kernel", "l3packages", "latex", "latex-amsmath-dev", "latex-bin", "latex-fonts", "latex-tools-dev", "latexconfig", "latexmk", "letltxmacro", "lm", "lm-math", "ltxcmds", "lua-alt-getopt", "luahbtex", "lualatex-math", "lualibs", "luaotfload", "luatex", "mdwtools", "metafont", "mfware", "modes", "natbib", "pdfescape", "pdftex", "pdftexcmds", "plain", "psnfss", "refcount", "rerunfilecheck", "scheme-infraonly", "stringenc", "symbol", "tex", "tex-ini-files", "texlive-scripts", "texlive.infra", "times", "tipa", "tlgs", "tlperl", "tools", "unicode-data", "unicode-math", "uniquecounter", "url", "xcolor", "xetex", "xetexconfig", "xkeyval", "xunicode", "zapfding"))
## The directory C:\Users\burga\AppData\Roaming\TinyTeX/texmf-local is not empty. It will be backed up to C:\Users\burga\AppData\Local\Temp\Rtmp8gCz3T\file12e8494e23c0 and restored later.
kable(table_1,booktabs = T, col.names = c("Parent Education","Parent Race & Ethnicity","Baseline Status",  "n"), caption = " Table 1: Baseline Staus based on Parent education and race/ethnicity")%>%
  kableExtra::kable_styling(latex_options = c("striped","scale_down"))
Table 1: Baseline Staus based on Parent education and race/ethnicity
Parent Education Parent Race & Ethnicity Baseline Status n
Some college or 2 year degree (or trade or technical school) White returned to baseline 171
4-year college graduate White returned to baseline 160
More than 4-year college degree White returned to baseline 120
4-year college graduate White did not return to baseline 102
More than 4-year college degree White did not return to baseline 94
Some college or 2 year degree (or trade or technical school) White did not return to baseline 88
high school grad or GED White did not return to baseline 51
high school grad or GED White returned to baseline 51
Some college or 2 year degree (or trade or technical school) Latino or Hispanic returned to baseline 31
high school grad or GED Latino or Hispanic returned to baseline 29
4-year college graduate Asian returned to baseline 27
Some high school, but did not graduate Latino or Hispanic returned to baseline 25
More than 4-year college degree Asian did not return to baseline 22
Some college or 2 year degree (or trade or technical school) Black or African American returned to baseline 21
4-year college graduate Asian did not return to baseline 19
8th grade or less Latino or Hispanic returned to baseline 17
More than 4-year college degree Asian returned to baseline 16
Some college or 2 year degree (or trade or technical school) Other or multiracial returned to baseline 11
Some college or 2 year degree (or trade or technical school) Latino or Hispanic did not return to baseline 11
high school grad or GED Latino or Hispanic did not return to baseline 10
Some college or 2 year degree (or trade or technical school) Asian returned to baseline 9
Some college or 2 year degree (or trade or technical school) White Latino or Hispanic returned to baseline 9
4-year college graduate Latino or Hispanic returned to baseline 9
Some high school, but did not graduate White returned to baseline 8
Some college or 2 year degree (or trade or technical school) Asian did not return to baseline 8
Some college or 2 year degree (or trade or technical school) Black or African American did not return to baseline 8
high school grad or GED Black or African American returned to baseline 7
More than 4-year college degree Other or multiracial returned to baseline 7
More than 4-year college degree Black or African American returned to baseline 7
Some high school, but did not graduate Latino or Hispanic did not return to baseline 6
high school grad or GED Indigenous returned to baseline 6
Some college or 2 year degree (or trade or technical school) Native Hawaiian or other Pacific Islander returned to baseline 6
high school grad or GED Asian did not return to baseline 5
high school grad or GED Asian returned to baseline 5
4-year college graduate Latino or Hispanic did not return to baseline 5
4-year college graduate Black or African American returned to baseline 5
Some high school, but did not graduate White did not return to baseline 4
high school grad or GED Native Hawaiian or other Pacific Islander returned to baseline 4
high school grad or GED White Latino or Hispanic returned to baseline 4
Some college or 2 year degree (or trade or technical school) Indigenous returned to baseline 4
Some college or 2 year degree (or trade or technical school) White Black or African American returned to baseline 4
4-year college graduate Other or multiracial returned to baseline 4
More than 4-year college degree Latino or Hispanic did not return to baseline 4
high school grad or GED Other or multiracial did not return to baseline 3
Some college or 2 year degree (or trade or technical school) returned to baseline 3
Some college or 2 year degree (or trade or technical school) Other or multiracial did not return to baseline 3
Some college or 2 year degree (or trade or technical school) Black or African American Latino or Hispanic returned to baseline 3
Some college or 2 year degree (or trade or technical school) White Latino or Hispanic did not return to baseline 3
4-year college graduate returned to baseline 3
4-year college graduate Black or African American did not return to baseline 3
4-year college graduate White Asian returned to baseline 3
More than 4-year college degree Indigenous returned to baseline 3
More than 4-year college degree White Indigenous returned to baseline 3
More than 4-year college degree White Asian returned to baseline 3
NA Latino or Hispanic returned to baseline 3
8th grade or less Latino or Hispanic did not return to baseline 2
8th grade or less White returned to baseline 2
Some high school, but did not graduate Other or multiracial did not return to baseline 2
Some high school, but did not graduate Indigenous did not return to baseline 2
Some high school, but did not graduate White Latino or Hispanic returned to baseline 2
high school grad or GED Native Hawaiian or other Pacific Islander did not return to baseline 2
high school grad or GED White Native Hawaiian or other Pacific Islander returned to baseline 2
high school grad or GED White Black or African American did not return to baseline 2
Some college or 2 year degree (or trade or technical school) Native Hawaiian or other Pacific Islander did not return to baseline 2
Some college or 2 year degree (or trade or technical school) White Indigenous did not return to baseline 2
Some college or 2 year degree (or trade or technical school) White Indigenous returned to baseline 2
Some college or 2 year degree (or trade or technical school) White Asian returned to baseline 2
4-year college graduate White Asian did not return to baseline 2
4-year college graduate White Black or African American returned to baseline 2
More than 4-year college degree Other or multiracial did not return to baseline 2
More than 4-year college degree White Asian did not return to baseline 2
More than 4-year college degree White Latino or Hispanic did not return to baseline 2
More than 4-year college degree White Black or African American returned to baseline 2
NA White returned to baseline 2
8th grade or less did not return to baseline 1
8th grade or less Asian returned to baseline 1
8th grade or less Black or African American did not return to baseline 1
Some high school, but did not graduate Other or multiracial returned to baseline 1
Some high school, but did not graduate Native Hawaiian or other Pacific Islander did not return to baseline 1
Some high school, but did not graduate Asian did not return to baseline 1
Some high school, but did not graduate Asian returned to baseline 1
Some high school, but did not graduate Latino or Hispanic Indigenous returned to baseline 1
Some high school, but did not graduate Black or African American returned to baseline 1
Some high school, but did not graduate White Latino or Hispanic did not return to baseline 1
high school grad or GED did not return to baseline 1
high school grad or GED Other or multiracial returned to baseline 1
high school grad or GED Latino or Hispanic Asian did not return to baseline 1
high school grad or GED White Indigenous did not return to baseline 1
high school grad or GED White Asian returned to baseline 1
high school grad or GED White Black or African American returned to baseline 1
high school grad or GED White Black or African American Asian Indigenous did not return to baseline 1
Some college or 2 year degree (or trade or technical school) Indigenous did not return to baseline 1
Some college or 2 year degree (or trade or technical school) Native Hawaiian or other Pacific Islander Indigenous did not return to baseline 1
Some college or 2 year degree (or trade or technical school) Latino or Hispanic Other or multiracial returned to baseline 1
Some college or 2 year degree (or trade or technical school) Latino or Hispanic Indigenous returned to baseline 1
Some college or 2 year degree (or trade or technical school) White Other or multiracial did not return to baseline 1
Some college or 2 year degree (or trade or technical school) White Native Hawaiian or other Pacific Islander Other or multiracial returned to baseline 1
Some college or 2 year degree (or trade or technical school) White Asian did not return to baseline 1
Some college or 2 year degree (or trade or technical school) White Asian Native Hawaiian or other Pacific Islander did not return to baseline 1
Some college or 2 year degree (or trade or technical school) White Latino or Hispanic Indigenous returned to baseline 1
Some college or 2 year degree (or trade or technical school) White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander returned to baseline 1
Some college or 2 year degree (or trade or technical school) White Black or African American did not return to baseline 1
Some college or 2 year degree (or trade or technical school) White Black or African American Indigenous did not return to baseline 1
Some college or 2 year degree (or trade or technical school) White Black or African American Native Hawaiian or other Pacific Islander did not return to baseline 1
4-year college graduate did not return to baseline 1
4-year college graduate Other or multiracial did not return to baseline 1
4-year college graduate Native Hawaiian or other Pacific Islander did not return to baseline 1
4-year college graduate Asian Native Hawaiian or other Pacific Islander returned to baseline 1
4-year college graduate White Indigenous did not return to baseline 1
4-year college graduate White Asian Native Hawaiian or other Pacific Islander returned to baseline 1
More than 4-year college degree Indigenous did not return to baseline 1
More than 4-year college degree Native Hawaiian or other Pacific Islander did not return to baseline 1
More than 4-year college degree Asian Other or multiracial returned to baseline 1
More than 4-year college degree Asian Native Hawaiian or other Pacific Islander did not return to baseline 1
More than 4-year college degree Asian Native Hawaiian or other Pacific Islander returned to baseline 1
More than 4-year college degree Latino or Hispanic returned to baseline 1
More than 4-year college degree Latino or Hispanic Other or multiracial did not return to baseline 1
More than 4-year college degree Latino or Hispanic Other or multiracial returned to baseline 1
More than 4-year college degree Latino or Hispanic Indigenous did not return to baseline 1
More than 4-year college degree Latino or Hispanic Indigenous returned to baseline 1
More than 4-year college degree Black or African American did not return to baseline 1
More than 4-year college degree White Other or multiracial did not return to baseline 1
More than 4-year college degree White Indigenous did not return to baseline 1
More than 4-year college degree White Asian Native Hawaiian or other Pacific Islander returned to baseline 1
More than 4-year college degree White Latino or Hispanic returned to baseline 1
NA returned to baseline 1
NA Other or multiracial returned to baseline 1
NA Black or African American did not return to baseline 1
NA White did not return to baseline 1
NA White Asian returned to baseline 1
kable(table_2, col.names = c("Child Race & Ethnicity","Parent Race & Ethnicity","Baseline Status", "n"), caption = "Table 2: Baseline Staus based on Parent and Child race/ethnicity")%>%
  kableExtra::kable_styling(latex_options = c("striped","scale_down"))
Table 2: Baseline Staus based on Parent and Child race/ethnicity
Child Race & Ethnicity Parent Race & Ethnicity Baseline Status n
White White returned to baseline 433
White White did not return to baseline 286
Latino or Hispanic Latino or Hispanic returned to baseline 91
Asian Asian returned to baseline 47
Asian Asian did not return to baseline 45
Black or African American Black or African American returned to baseline 34
Latino or Hispanic Latino or Hispanic did not return to baseline 27
Other or multiracial Other or multiracial returned to baseline 20
Other or multiracial White returned to baseline 14
Black or African American Black or African American did not return to baseline 13
White Latino or Hispanic White Latino or Hispanic returned to baseline 13
White Black or African American White returned to baseline 11
Other or multiracial Other or multiracial did not return to baseline 10
Other or multiracial White did not return to baseline 10
Indigenous Indigenous returned to baseline 9
Asian White returned to baseline 9
Native Hawaiian or other Pacific Islander Native Hawaiian or other Pacific Islander returned to baseline 8
Latino or Hispanic White returned to baseline 8
White Latino or Hispanic returned to baseline 8
White Asian White returned to baseline 8
White Latino or Hispanic White did not return to baseline 8
White Latino or Hispanic White returned to baseline 8
White Black or African American White did not return to baseline 8
White Black or African American White Black or African American returned to baseline 8
White Asian Asian returned to baseline 7
Asian White did not return to baseline 6
Latino or Hispanic White did not return to baseline 6
White Asian White did not return to baseline 6
White Asian White Asian returned to baseline 6
White Latino or Hispanic Latino or Hispanic returned to baseline 6
Native Hawaiian or other Pacific Islander Native Hawaiian or other Pacific Islander did not return to baseline 5
Black or African American White returned to baseline 5
White Indigenous White returned to baseline 5
White Indigenous White Indigenous returned to baseline 5
White Latino or Hispanic White Latino or Hispanic did not return to baseline 5
Other or multiracial Asian did not return to baseline 4
Indigenous Indigenous did not return to baseline 4
Black or African American Latino or Hispanic Latino or Hispanic returned to baseline 4
White Other or multiracial White returned to baseline 4
White Latino or Hispanic Latino or Hispanic did not return to baseline 4
returned to baseline 3
Latino or Hispanic returned to baseline 3
Other or multiracial Asian returned to baseline 3
Other or multiracial Latino or Hispanic did not return to baseline 3
Other or multiracial Black or African American returned to baseline 3
Black or African American Latino or Hispanic Black or African American Latino or Hispanic returned to baseline 3
White Indigenous White did not return to baseline 3
White Indigenous White Indigenous did not return to baseline 3
did not return to baseline 2
White did not return to baseline 2
Indigenous Latino or Hispanic Indigenous returned to baseline 2
Native Hawaiian or other Pacific Islander White returned to baseline 2
Latino or Hispanic Indigenous Indigenous returned to baseline 2
Black or African American White did not return to baseline 2
Black or African American Other or multiracial Other or multiracial returned to baseline 2
White returned to baseline 2
White Other or multiracial returned to baseline 2
White Latino or Hispanic did not return to baseline 2
White White Latino or Hispanic returned to baseline 2
White Asian White Asian did not return to baseline 2
White Latino or Hispanic Asian White Asian did not return to baseline 2
White Black or African American Black or African American returned to baseline 2
White Black or African American Other or multiracial White returned to baseline 2
Native Hawaiian or other Pacific Islander returned to baseline 1
Asian did not return to baseline 1
White returned to baseline 1
Other or multiracial did not return to baseline 1
Other or multiracial Indigenous returned to baseline 1
Other or multiracial Latino or Hispanic Other or multiracial returned to baseline 1
Other or multiracial White Other or multiracial did not return to baseline 1
Other or multiracial White Black or African American returned to baseline 1
Indigenous Asian did not return to baseline 1
Indigenous Other or multiracial Indigenous returned to baseline 1
Native Hawaiian or other Pacific Islander White did not return to baseline 1
Native Hawaiian or other Pacific Islander White Native Hawaiian or other Pacific Islander returned to baseline 1
Native Hawaiian or other Pacific Islander Indigenous Native Hawaiian or other Pacific Islander Indigenous did not return to baseline 1
Asian returned to baseline 1
Asian Asian Native Hawaiian or other Pacific Islander returned to baseline 1
Asian Other or multiracial Asian Other or multiracial returned to baseline 1
Asian Native Hawaiian or other Pacific Islander Asian did not return to baseline 1
Asian Native Hawaiian or other Pacific Islander Asian Native Hawaiian or other Pacific Islander returned to baseline 1
Latino or Hispanic returned to baseline 1
Latino or Hispanic Latino or Hispanic Indigenous returned to baseline 1
Latino or Hispanic Other or multiracial Latino or Hispanic did not return to baseline 1
Latino or Hispanic Other or multiracial White returned to baseline 1
Latino or Hispanic Indigenous Other or multiracial Latino or Hispanic returned to baseline 1
Latino or Hispanic Native Hawaiian or other Pacific Islander Native Hawaiian or other Pacific Islander did not return to baseline 1
Latino or Hispanic Native Hawaiian or other Pacific Islander Native Hawaiian or other Pacific Islander returned to baseline 1
Latino or Hispanic Asian Latino or Hispanic returned to baseline 1
Latino or Hispanic Asian Latino or Hispanic Other or multiracial did not return to baseline 1
Latino or Hispanic Asian Latino or Hispanic Asian did not return to baseline 1
Black or African American Native Hawaiian or other Pacific Islander Black or African American returned to baseline 1
Black or African American Asian Asian did not return to baseline 1
Black or African American Asian Asian returned to baseline 1
Black or African American Latino or Hispanic Black or African American did not return to baseline 1
Black or African American Latino or Hispanic Black or African American returned to baseline 1
White Other or multiracial did not return to baseline 1
White Asian did not return to baseline 1
White Asian returned to baseline 1
White White Indigenous did not return to baseline 1
White White Asian returned to baseline 1
White Other or multiracial Latino or Hispanic Other or multiracial returned to baseline 1
White Other or multiracial White Other or multiracial did not return to baseline 1
White Native Hawaiian or other Pacific Islander Native Hawaiian or other Pacific Islander did not return to baseline 1
White Native Hawaiian or other Pacific Islander White returned to baseline 1
White Native Hawaiian or other Pacific Islander Other or multiracial White Native Hawaiian or other Pacific Islander Other or multiracial returned to baseline 1
White Asian Asian did not return to baseline 1
White Asian Other or multiracial Other or multiracial returned to baseline 1
White Asian Other or multiracial White returned to baseline 1
White Asian Other or multiracial White Asian returned to baseline 1
White Asian Indigenous White Asian did not return to baseline 1
White Asian Native Hawaiian or other Pacific Islander Asian Native Hawaiian or other Pacific Islander did not return to baseline 1
White Asian Native Hawaiian or other Pacific Islander White Asian returned to baseline 1
White Asian Native Hawaiian or other Pacific Islander White Asian Native Hawaiian or other Pacific Islander did not return to baseline 1
White Latino or Hispanic Other or multiracial White returned to baseline 1
White Latino or Hispanic Indigenous Latino or Hispanic Indigenous did not return to baseline 1
White Latino or Hispanic Indigenous White Latino or Hispanic did not return to baseline 1
White Latino or Hispanic Indigenous White Latino or Hispanic Indigenous returned to baseline 1
White Latino or Hispanic Native Hawaiian or other Pacific Islander Latino or Hispanic did not return to baseline 1
White Latino or Hispanic Native Hawaiian or other Pacific Islander Indigenous White did not return to baseline 1
White Latino or Hispanic Asian White Latino or Hispanic returned to baseline 1
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander White Asian Native Hawaiian or other Pacific Islander returned to baseline 1
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander returned to baseline 1
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander Indigenous White Asian Native Hawaiian or other Pacific Islander returned to baseline 1
White Black or African American White Black or African American did not return to baseline 1
White Black or African American Indigenous White Indigenous did not return to baseline 1
White Black or African American Indigenous White Native Hawaiian or other Pacific Islander returned to baseline 1
White Black or African American Indigenous White Black or African American Indigenous did not return to baseline 1
White Black or African American Native Hawaiian or other Pacific Islander White did not return to baseline 1
White Black or African American Native Hawaiian or other Pacific Islander White Black or African American did not return to baseline 1
White Black or African American Asian White Asian returned to baseline 1
White Black or African American Asian Indigenous White Black or African American Asian Indigenous did not return to baseline 1
White Black or African American Latino or Hispanic Latino or Hispanic returned to baseline 1
White Black or African American Latino or Hispanic White Black or African American did not return to baseline 1
White Black or African American Latino or Hispanic Native Hawaiian or other Pacific Islander White Black or African American Native Hawaiian or other Pacific Islander did not return to baseline 1
kable(table_3, col.names = c("Child Race & Ethnicity","Child Gender","Baseline Status","n"),caption = "Table 3: Baseline Staus based on Child race/ethnicity and Gender")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 3: Baseline Staus based on Child race/ethnicity and Gender
Child Race & Ethnicity Child Gender Baseline Status n
White Female returned to baseline 228
White Male returned to baseline 221
White Female did not return to baseline 154
White Male did not return to baseline 137
Latino or Hispanic Female returned to baseline 51
Latino or Hispanic Male returned to baseline 50
Asian Female returned to baseline 32
Other or multiracial Male returned to baseline 28
Asian Male did not return to baseline 28
Asian Male returned to baseline 26
Asian Female did not return to baseline 23
Black or African American Male returned to baseline 23
Other or multiracial Male did not return to baseline 19
Latino or Hispanic Female did not return to baseline 17
White Black or African American Male returned to baseline 17
Latino or Hispanic Male did not return to baseline 16
Black or African American Female returned to baseline 16
Other or multiracial Female returned to baseline 15
White Latino or Hispanic Female returned to baseline 14
White Latino or Hispanic Male returned to baseline 13
White Asian Female returned to baseline 12
Other or multiracial Female did not return to baseline 10
White Asian Male returned to baseline 9
White Latino or Hispanic Female did not return to baseline 9
Indigenous Female returned to baseline 8
Black or African American Male did not return to baseline 8
White Latino or Hispanic Male did not return to baseline 8
Native Hawaiian or other Pacific Islander Male returned to baseline 7
Black or African American Female did not return to baseline 7
White Black or African American Female did not return to baseline 7
White Indigenous Female returned to baseline 6
White Asian Male did not return to baseline 6
Male did not return to baseline 5
Male returned to baseline 4
Female returned to baseline 4
Indigenous Male did not return to baseline 4
Native Hawaiian or other Pacific Islander Male did not return to baseline 4
Native Hawaiian or other Pacific Islander Female returned to baseline 4
Black or African American Latino or Hispanic Male returned to baseline 4
Black or African American Latino or Hispanic Female returned to baseline 4
White Indigenous Male returned to baseline 4
White Indigenous Female did not return to baseline 4
White Black or African American Female returned to baseline 4
Indigenous Male returned to baseline 3
White Other or multiracial Male returned to baseline 3
White Asian Female did not return to baseline 3
Native Hawaiian or other Pacific Islander Female did not return to baseline 2
Latino or Hispanic Indigenous Male returned to baseline 2
White Other or multiracial Female returned to baseline 2
White Indigenous Male did not return to baseline 2
White Asian Other or multiracial Female returned to baseline 2
White Asian Native Hawaiian or other Pacific Islander Female did not return to baseline 2
White Latino or Hispanic Indigenous Male did not return to baseline 2
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander Female returned to baseline 2
White Black or African American Male did not return to baseline 2
White Black or African American Other or multiracial Male returned to baseline 2
White Black or African American Indigenous Female did not return to baseline 2
Indigenous Female did not return to baseline 1
Indigenous Other or multiracial Female returned to baseline 1
Native Hawaiian or other Pacific Islander Indigenous Male did not return to baseline 1
Asian Other or multiracial Male returned to baseline 1
Asian Native Hawaiian or other Pacific Islander Male did not return to baseline 1
Asian Native Hawaiian or other Pacific Islander Female returned to baseline 1
Latino or Hispanic Other or multiracial Male did not return to baseline 1
Latino or Hispanic Other or multiracial Male returned to baseline 1
Latino or Hispanic Indigenous Other or multiracial Female returned to baseline 1
Latino or Hispanic Native Hawaiian or other Pacific Islander Male did not return to baseline 1
Latino or Hispanic Native Hawaiian or other Pacific Islander Male returned to baseline 1
Latino or Hispanic Asian Male did not return to baseline 1
Latino or Hispanic Asian Female did not return to baseline 1
Latino or Hispanic Asian Female returned to baseline 1
Black or African American Other or multiracial Male returned to baseline 1
Black or African American Other or multiracial Female returned to baseline 1
Black or African American Native Hawaiian or other Pacific Islander Female returned to baseline 1
Black or African American Asian Female did not return to baseline 1
Black or African American Asian Female returned to baseline 1
Black or African American Latino or Hispanic Male did not return to baseline 1
White Other or multiracial Male did not return to baseline 1
White Native Hawaiian or other Pacific Islander Male returned to baseline 1
White Native Hawaiian or other Pacific Islander Female did not return to baseline 1
White Native Hawaiian or other Pacific Islander Other or multiracial Male returned to baseline 1
White Asian Other or multiracial Male returned to baseline 1
White Asian Indigenous Female did not return to baseline 1
White Asian Native Hawaiian or other Pacific Islander Male returned to baseline 1
White Latino or Hispanic Other or multiracial Female returned to baseline 1
White Latino or Hispanic Indigenous Female returned to baseline 1
White Latino or Hispanic Native Hawaiian or other Pacific Islander Male did not return to baseline 1
White Latino or Hispanic Native Hawaiian or other Pacific Islander Indigenous Male did not return to baseline 1
White Latino or Hispanic Asian Male did not return to baseline 1
White Latino or Hispanic Asian Male returned to baseline 1
White Latino or Hispanic Asian Female did not return to baseline 1
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander Indigenous Male returned to baseline 1
White Black or African American Indigenous Female returned to baseline 1
White Black or African American Native Hawaiian or other Pacific Islander Male did not return to baseline 1
White Black or African American Native Hawaiian or other Pacific Islander Female did not return to baseline 1
White Black or African American Asian Female returned to baseline 1
White Black or African American Asian Indigenous Female did not return to baseline 1
White Black or African American Latino or Hispanic Male did not return to baseline 1
White Black or African American Latino or Hispanic Male returned to baseline 1
White Black or African American Latino or Hispanic Native Hawaiian or other Pacific Islander Male did not return to baseline 1
kable(table_4,col.names = c("Interpretor Need","Language","Baseline Status","n"), caption = " Table 4:Baseline Staus based on Interpretor need and Language")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 4:Baseline Staus based on Interpretor need and Language
Interpretor Need Language Baseline Status n
No English returned to baseline 786
No English did not return to baseline 484
Yes Spanish returned to baseline 34
No Spanish returned to baseline 12
No Spanish did not return to baseline 6
Yes English returned to baseline 5
Yes Spanish did not return to baseline 5
Yes English did not return to baseline 3
No Vietnamese did not return to baseline 2
No Chinese returned to baseline 1
No Somali returned to baseline 1
Yes Vietnamese returned to baseline 1
Yes Chinese did not return to baseline 1
Yes Chinese returned to baseline 1
NA English did not return to baseline 1
NA English returned to baseline 1

Tables as instructed

Language

table.lan <-qol_final %>%
  tabyl(interviewlang_change, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.lan,col.names = c("Language","No return to baseline","Return to baseline","Totals"), caption = " Table 5:Language and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 5:Language and Baseline
Language No return to baseline Return to baseline Totals
English 38% (488) 62% (792) 100% (1280)
Spanish 19% (11) 81% (46) 100% (57)
Vietnamese 67% (2) 33% (1) 100% (3)
Chinese 33% (1) 67% (2) 100% (3)
Somali 0% (0) 100% (1) 100% (1)
Total 37% (502) 63% (842) 100% (1344)

Interpretor used

table.int <-qol_final %>%
  tabyl(interp_needed, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.int,col.names = c("Interpreter","No return to baseline","Return to baseline","Totals"), caption = " Table 6:Interpreter need and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 6:Interpreter need and Baseline
Interpreter No return to baseline Return to baseline Totals
No 38% (492) 62% (800) 100% (1292)
Yes 18% (9) 82% (41) 100% (50)
NA 50% (1) 50% (1) 100% (2)
Total 37% (502) 63% (842) 100% (1344)

Parent Education

table.edu <-qol_final %>%
  tabyl(education, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.edu,col.names = c("Education level","No return to baseline","Return to baseline","Totals"), caption = " Table 7: Education and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 7: Education and Baseline
Education level No return to baseline Return to baseline Totals
8th grade or less 17% (4) 83% (20) 100% (24)
Some high school, but did not graduate 30% (17) 70% (39) 100% (56)
high school grad or GED 41% (77) 59% (111) 100% (188)
Some college or 2 year degree (or trade or technical school) 32% (133) 68% (281) 100% (414)
4-year college graduate 39% (135) 61% (215) 100% (350)
More than 4-year college degree 44% (134) 56% (168) 100% (302)
NA 20% (2) 80% (8) 100% (10)
Total 37% (502) 63% (842) 100% (1344)

Parent R&E

table.pre <-qol_final %>%
  tabyl(r.e.parent, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.pre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 8:Parent Race and or Ethnicity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 8:Parent Race and or Ethnicity and Baseline
Race and or Ethnicity No return to baseline Return to baseline Totals
30% (3) 70% (7) 100% (10)
Other or multiracial 31% (11) 69% (25) 100% (36)
Indigenous 24% (4) 76% (13) 100% (17)
Native Hawaiian or other Pacific Islander 41% (7) 59% (10) 100% (17)
Native Hawaiian or other Pacific Islander Indigenous 100% (1) 0% (0) 100% (1)
Asian 48% (55) 52% (59) 100% (114)
Asian Other or multiracial 0% (0) 100% (1) 100% (1)
Asian Native Hawaiian or other Pacific Islander 33% (1) 67% (2) 100% (3)
Latino or Hispanic 25% (38) 75% (115) 100% (153)
Latino or Hispanic Other or multiracial 33% (1) 67% (2) 100% (3)
Latino or Hispanic Indigenous 25% (1) 75% (3) 100% (4)
Latino or Hispanic Asian 100% (1) 0% (0) 100% (1)
Black or African American 25% (14) 75% (41) 100% (55)
Black or African American Latino or Hispanic 0% (0) 100% (3) 100% (3)
White 40% (340) 60% (514) 100% (854)
White Other or multiracial 100% (2) 0% (0) 100% (2)
White Indigenous 50% (5) 50% (5) 100% (10)
White Native Hawaiian or other Pacific Islander 0% (0) 100% (2) 100% (2)
White Native Hawaiian or other Pacific Islander Other or multiracial 0% (0) 100% (1) 100% (1)
White Asian 33% (5) 67% (10) 100% (15)
White Asian Native Hawaiian or other Pacific Islander 33% (1) 67% (2) 100% (3)
White Latino or Hispanic 27% (6) 73% (16) 100% (22)
White Latino or Hispanic Indigenous 0% (0) 100% (1) 100% (1)
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander 0% (0) 100% (1) 100% (1)
White Black or African American 25% (3) 75% (9) 100% (12)
White Black or African American Indigenous 100% (1) 0% (0) 100% (1)
White Black or African American Native Hawaiian or other Pacific Islander 100% (1) 0% (0) 100% (1)
White Black or African American Asian Indigenous 100% (1) 0% (0) 100% (1)
Total 37% (502) 63% (842) 100% (1344)

Child R&E

table.cre <-qol_final %>%
  tabyl(r.e.child, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.cre,col.names = c("Race and or Ethnicity","No return to baseline","Return to baseline","Totals"), caption = " Table 9:Child Race and or Ethnicity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 9:Child Race and or Ethnicity and Baseline
Race and or Ethnicity No return to baseline Return to baseline Totals
38% (5) 62% (8) 100% (13)
Other or multiracial 40% (29) 60% (43) 100% (72)
Indigenous 31% (5) 69% (11) 100% (16)
Indigenous Other or multiracial 0% (0) 100% (1) 100% (1)
Native Hawaiian or other Pacific Islander 35% (6) 65% (11) 100% (17)
Native Hawaiian or other Pacific Islander Indigenous 100% (1) 0% (0) 100% (1)
Asian 47% (51) 53% (58) 100% (109)
Asian Other or multiracial 0% (0) 100% (1) 100% (1)
Asian Native Hawaiian or other Pacific Islander 50% (1) 50% (1) 100% (2)
Latino or Hispanic 25% (33) 75% (101) 100% (134)
Latino or Hispanic Other or multiracial 50% (1) 50% (1) 100% (2)
Latino or Hispanic Indigenous 0% (0) 100% (2) 100% (2)
Latino or Hispanic Indigenous Other or multiracial 0% (0) 100% (1) 100% (1)
Latino or Hispanic Native Hawaiian or other Pacific Islander 50% (1) 50% (1) 100% (2)
Latino or Hispanic Asian 67% (2) 33% (1) 100% (3)
Black or African American 28% (15) 72% (39) 100% (54)
Black or African American Other or multiracial 0% (0) 100% (2) 100% (2)
Black or African American Native Hawaiian or other Pacific Islander 0% (0) 100% (1) 100% (1)
Black or African American Asian 50% (1) 50% (1) 100% (2)
Black or African American Latino or Hispanic 11% (1) 89% (8) 100% (9)
White 39% (291) 61% (449) 100% (740)
White Other or multiracial 17% (1) 83% (5) 100% (6)
White Indigenous 38% (6) 63% (10) 100% (16)
White Native Hawaiian or other Pacific Islander 50% (1) 50% (1) 100% (2)
White Native Hawaiian or other Pacific Islander Other or multiracial 0% (0) 100% (1) 100% (1)
White Asian 30% (9) 70% (21) 100% (30)
White Asian Other or multiracial 0% (0) 100% (3) 100% (3)
White Asian Indigenous 100% (1) 0% (0) 100% (1)
White Asian Native Hawaiian or other Pacific Islander 67% (2) 33% (1) 100% (3)
White Latino or Hispanic 39% (17) 61% (27) 100% (44)
White Latino or Hispanic Other or multiracial 0% (0) 100% (1) 100% (1)
White Latino or Hispanic Indigenous 67% (2) 33% (1) 100% (3)
White Latino or Hispanic Native Hawaiian or other Pacific Islander 100% (1) 0% (0) 100% (1)
White Latino or Hispanic Native Hawaiian or other Pacific Islander Indigenous 100% (1) 0% (0) 100% (1)
White Latino or Hispanic Asian 67% (2) 33% (1) 100% (3)
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander 0% (0) 100% (2) 100% (2)
White Latino or Hispanic Asian Native Hawaiian or other Pacific Islander Indigenous 0% (0) 100% (1) 100% (1)
White Black or African American 30% (9) 70% (21) 100% (30)
White Black or African American Other or multiracial 0% (0) 100% (2) 100% (2)
White Black or African American Indigenous 67% (2) 33% (1) 100% (3)
White Black or African American Native Hawaiian or other Pacific Islander 100% (2) 0% (0) 100% (2)
White Black or African American Asian 0% (0) 100% (1) 100% (1)
White Black or African American Asian Indigenous 100% (1) 0% (0) 100% (1)
White Black or African American Latino or Hispanic 50% (1) 50% (1) 100% (2)
White Black or African American Latino or Hispanic Native Hawaiian or other Pacific Islander 100% (1) 0% (0) 100% (1)
Total 37% (502) 63% (842) 100% (1344)

Child Gender

table.cge<-qol_final %>%
  tabyl(childgender, `Back to Baseline`) %>%
  adorn_totals(c("row", "col")) %>%
  adorn_percentages("row") %>% 
  adorn_pct_formatting(rounding = "half up", digits = 0) %>%
  adorn_ns()

knitr::kable(table.cge,col.names = c("Gender Identity","No return to baseline","Return to baseline","Totals"), caption = " Table 10: Child Gender Identity and Baseline")%>%
  kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
Table 10: Child Gender Identity and Baseline
Gender Identity No return to baseline Return to baseline Totals
Male 37% (254) 63% (427) 100% (681)
Female 37% (248) 63% (415) 100% (663)
Other
100% (0)
Total 37% (502) 63% (842) 100% (1344)
Back to baseline numbers report

Univariable analysis

Summary Statistics For baseline actual number

x<-QOL.Equity.Exploraton$Baseline.Actual
#find mean
mean(x)
## [1] 8.723239
#find median
median(x)
## [1] 7.80506
#find range
max(x) - min(x)
## [1] 137.7259
#find interquartile range (spread of middle 50% of values)
IQR(x)
## [1] 18.47826
#find standard deviation
sd(x)
## [1] 16.72735

Charts

#frequency table
table(x)
## x
##  -55.5830039525692  -54.3478260869565  -51.2907608695652  -48.7154150197628 
##                  1                  1                  1                  1 
##  -47.6190476190476  -43.4782608695652  -42.8571428571429  -42.3076923076923 
##                  1                  1                  1                  1 
##  -40.0724637681159  -39.4736842105263  -39.2857142857143  -39.1304347826087 
##                  1                  1                  3                  1 
##  -38.4615384615385  -38.1578947368421  -36.9565217391304  -35.7142857142857 
##                  1                  1                  1                  2 
##  -35.3260869565217  -34.7826086956522  -34.2650103519669  -34.0301003344482 
##                  1                  1                  1                  1 
##   -33.695652173913  -32.1428571428572  -32.1428571428571  -31.6425120772947 
##                  1                  1                  2                  1 
##  -31.3186813186813  -30.4347826086957  -30.4347826086956  -30.2631578947368 
##                  1                  1                  1                  1 
##  -28.2608695652174  -28.0797101449275  -27.9150197628459  -27.7717391304348 
##                  1                  1                  1                  1 
##  -26.9230769230769  -25.5952380952381                -25  -24.7584541062802 
##                  1                  1                  8                  1 
##  -23.6842105263158  -22.3684210526316  -22.2222222222222  -21.7728758169935 
##                  1                  1                  1                  1 
##  -21.7391304347826  -21.4285714285714  -20.8333333333333  -20.7093821510298 
##                  3                  4                  1                  1 
##  -20.6521739130435  -19.3478260869565  -18.9538043478261  -18.9230343300111 
##                  1                  1                  1                  1 
##  -18.4782608695652  -18.1585677749361  -17.9606625258799  -17.8571428571429 
##                  3                  1                  1                  4 
##  -17.4242424242424  -17.3913043478261  -17.0454545454545  -16.5760869565217 
##                  1                  4                  1                  1 
##   -16.304347826087  -15.9722222222222  -15.8200734394125  -15.5555555555556 
##                  2                  1                  1                  1 
##  -15.3846153846154  -15.2173913043478                -15   -14.546783625731 
##                  1                  2                  1                  1 
##  -14.2857142857143  -14.2690058479532  -14.1304347826087  -13.9130434782609 
##                 10                  1                  2                  1 
##  -13.3333333333333  -13.0434782608696  -12.9795396419437  -12.9563492063492 
##                  1                  2                  1                  1 
##  -12.8811369509044   -12.796442687747  -12.0879120879121  -11.9565217391304 
##                  1                  1                  1                  2 
##  -11.8421052631579  -11.5384615384615  -11.3636363636364  -11.1111111111111 
##                  1                  1                  1                  1 
##  -10.8695652173913  -10.7193732193732  -10.7142857142857  -10.3260869565217 
##                  7                  1                 10                  1 
##  -9.78260869565218  -9.78260869565217  -9.72222222222221  -9.53557312252964 
##                  1                  2                  1                  1 
##  -9.44444444444444  -9.33794466403162  -9.23913043478261  -9.21052631578947 
##                  1                  1                  1                  1 
##  -9.17874396135266  -9.09090909090909  -9.05797101449276  -8.69565217391305 
##                  1                  1                  1                  2 
##  -8.69565217391304  -8.53535353535354  -8.53174603174602  -8.40909090909091 
##                  1                  1                  1                  1 
##  -8.31202046035806  -8.01435406698565  -7.95454545454545  -7.69230769230769 
##                  1                  1                  1                  1 
##  -7.60869565217391  -7.50517598343686  -7.22222222222223  -7.14285714285715 
##                  4                  1                  1                  3 
##  -7.14285714285714  -6.94444444444446   -6.8840579710145  -6.81818181818183 
##                 11                  1                  1                  1 
##  -6.81818181818181  -6.78571428571429  -6.64682539682541  -6.52173913043478 
##                  1                  1                  1                  3 
##  -6.40096618357488  -6.34057971014494  -6.32411067193676  -6.28019323671498 
##                  1                  1                  1                  1 
##              -6.25  -6.15942028985506   -6.1212814645309  -5.94629156010231 
##                  2                  1                  1                  1 
##  -5.93434343434343  -5.68181818181819  -5.43478260869566  -5.37439613526571 
##                  1                  1                  4                  1 
##  -5.26315789473684   -5.2197802197802  -5.09153318077803                 -5 
##                  1                  1                  1                  2 
##  -4.86111111111111  -4.78632478632478  -4.53964194373401  -4.34782608695653 
##                  4                  1                  1                  3 
##  -4.34782608695652  -4.16666666666667  -3.94736842105263  -3.92512077294685 
##                  5                  1                  1                  1 
##  -3.88888888888889  -3.84615384615385  -3.73641304347827  -3.57142857142858 
##                  1                  1                  1                  2 
##  -3.57142857142857  -3.47222222222221  -3.44202898550724  -3.40909090909091 
##                 10                  1                  1                  1 
##  -3.33333333333333  -3.30882352941177  -3.26086956521739  -3.07971014492755 
##                  1                  1                  4                  1 
##  -2.94486215538846  -2.93650793650794  -2.77777777777779  -2.77777777777777 
##                  1                  1                  2                  2 
##  -2.65700483091787  -2.63157894736842  -2.63157894736841  -2.53623188405797 
##                  1                  2                  2                  1 
##  -2.47584541062802  -2.47252747252747   -2.3989898989899  -2.29468599033817 
##                  1                  1                  1                  1 
##  -2.27272727272727   -2.1978021978022  -2.17391304347827  -2.17391304347825 
##                  2                  1                  4                  1 
##   -2.0933014354067  -2.08333333333334  -2.03349282296651  -1.97368421052632 
##                  1                  2                  1                  1 
##  -1.94805194805195  -1.93236714975845  -1.65441176470588  -1.55502392344498 
##                  1                  1                  1                  1 
##  -1.47058823529412  -1.38888888888889  -1.31578947368421  -1.23306233062331 
##                  1                  5                  2                  1 
##  -1.13636363636364  -1.11111111111111  -1.08695652173914  -1.08695652173913 
##                  2                  1                  2                  4 
##  -1.07142857142857 -0.905797101449281 -0.889328063241109 -0.793650793650784 
##                  1                  2                  2                  1 
## -0.785024154589372 -0.694444444444457 -0.694444444444443 -0.642292490118578 
##                  1                  1                  1                  1 
## -0.555555555555557 -0.538277511961724  -0.47846889952153  -0.30193236714976 
##                  2                  1                  1                  1 
##  -0.27472527472527 -0.232919254658384 -0.181159420289855 -0.179425837320565 
##                  1                  1                  1                  1 
## -0.155279503105589                  0  0.120772946859901   0.27472527472527 
##                  1                 46                  1                  1 
##  0.296442687747039  0.345849802371546  0.418660287081352  0.494071146245062 
##                  1                  1                  1                  1 
##  0.549450549450555  0.694444444444443  0.839920948616594  0.877192982456151 
##                  1                  3                  1                  1 
##  0.938086303939954   0.93873517786561  0.988142292490124   1.07655502392345 
##                  1                  1                  1                  1 
##   1.08695652173913   1.08695652173914   1.11111111111111   1.13636363636363 
##                  9                  4                  2                  2 
##   1.13636363636364   1.21564482029599   1.31578947368421   1.31578947368422 
##                  6                  1                  1                  3 
##   1.38888888888889    1.3888888888889   1.58862876254182   1.60183066361556 
##                  3                  1                  1                  1 
##   1.74603174603175   1.87908496732027   1.94805194805195   2.08333333333333 
##                  1                  1                  1                  4 
##   2.08333333333334   2.09030100334448   2.17391304347825   2.17391304347827 
##                  1                  1                  4                  7 
##   2.19298245614036   2.22222222222221   2.23429951690821   2.27272727272727 
##                  1                  3                  2                  2 
##   2.27272727272728   2.39234449760767   2.47252747252747   2.53968253968254 
##                  2                  1                  1                  1 
##   2.56410256410257   2.63157894736842   2.66798418972331   2.74725274725274 
##                  1                  8                  1                  1 
##   2.76679841897233   2.77777777777777   2.77777777777779   2.80320366132723 
##                  1                  1                  2                  1 
##   3.11004784688995   3.21146245059288   3.26086956521739   3.28282828282829 
##                  1                  1                 14                  1 
##   3.33333333333333   3.40909090909091   3.40909090909092   3.43253968253968 
##                  2                  4                  3                  1 
##   3.47222222222221   3.47222222222223    3.5024154589372   3.57142857142857 
##                  1                  2                  1                 11 
##   3.57142857142858   3.66161616161615   3.84615384615384   3.84615384615385 
##                  2                  1                  1                  2 
##   3.88888888888889   3.92512077294685   3.94385026737968   3.94736842105263 
##                  1                  1                  1                  2 
##   4.12087912087912   4.16666666666666   4.16666666666667   4.20190274841437 
##                  1                  1                  1                  1 
##   4.22705314009661   4.25064599483204   4.26065162907268   4.34782608695652 
##                  1                  1                  1                 11 
##   4.34782608695653   4.36507936507937   4.43722943722943   4.44444444444444 
##                  5                  1                  1                  1 
##   4.54545454545455   4.63709677419355    4.8611111111111   4.86111111111111 
##                  3                  1                  1                  1 
##    4.9641148325359   4.97835497835498   5.20594965675058   5.22875816993465 
##                  1                  1                  1                  1 
##   5.26315789473685   5.41666666666667   5.43478260869565   5.43478260869566 
##                  1                  1                  1                  8 
##   5.55555555555556    5.6159420289855   5.68181818181817   5.68181818181819 
##                  5                  1                  3                  6 
##   5.74494949494949   5.97826086956522    6.1111111111111   6.11111111111111 
##                  1                  1                  1                  2 
##   6.11918604651163   6.13095238095238   6.21980676328502               6.25 
##                  1                  1                  1                  1 
##   6.31868131868131   6.42857142857143   6.52173913043478   6.52173913043479 
##                  1                  1                  9                  1 
##   6.57894736842105    6.5934065934066   6.62055335968378   6.63875598086124 
##                  4                  2                  1                  1 
##   6.64961636828644   6.65760869565217     6.781045751634   6.81818181818181 
##                  1                  1                  1                  6 
##   6.87799043062201   6.90359477124183   6.94444444444444   7.03282828282829 
##                  1                  1                  2                  1 
##   7.10702341137123   7.14285714285714   7.14285714285715   7.22222222222221 
##                  1                 15                  5                  1 
##   7.22222222222223   7.32323232323233   7.38636363636364   7.57575757575758 
##                  1                  1                  1                  1 
##   7.60869565217391   7.60869565217392   7.63888888888889    7.6388888888889 
##                 11                  2                  3                  1 
##   7.69230769230769   7.70025839793281   7.79761904761904             7.8125 
##                  2                  1                  1                  1 
##   7.86749482401657   7.89473684210526   7.89473684210527   7.91316526610645 
##                  1                  1                  1                  1 
##   7.95454545454545   8.03140096618357   8.09178743961353   8.24175824175825 
##                  5                  1                  1                  1 
##   8.24808184143224   8.33333333333333   8.33333333333334   8.42013888888889 
##                  1                  3                  2                  1 
##   8.44861660079051   8.58123569794051   8.69565217391303   8.69565217391305 
##                  1                  1                  3                 14 
##   8.79120879120877   8.88888888888889    8.8888888888889   8.97129186602871 
##                  1                  1                  1                  1 
##   9.02777777777777   9.02777777777779   9.04933481152993   9.06593406593407 
##                  2                  1                  1                  1 
##   9.09090909090909    9.1183574879227   9.21052631578948   9.25324675324676 
##                  4                  1                  2                  1 
##   9.26587301587301   9.35990338164251   9.52380952380952   9.59079283887468 
##                  1                  1                  1                  1 
##   9.72222222222223   9.78260869565217   9.78260869565219   9.86842105263158 
##                  3                  9                  1                  1 
##   9.88142292490119                 10    10.024154589372   10.0296442687747 
##                  1                  4                  1                  1 
##   10.1648351648352   10.2272727272727   10.4166666666667   10.4395604395605 
##                  1                  5                  2                  1 
##    10.479797979798   10.5263157894737   10.5555555555556   10.7142857142857 
##                  1                  2                  3                 14 
##   10.8695652173913   10.8766233766234   10.9431524547804    10.997442455243 
##                  7                  1                  1                  1 
##   11.1111111111111   11.2723214285714    11.292270531401   11.3636363636364 
##                  1                  1                  1                  2 
##   11.5079365079365   11.5338164251208   11.5384615384615   11.5451388888889 
##                  1                  1                  1                  1 
##   11.6600790513834   11.8055555555556   11.8181818181818   11.8421052631579 
##                  1                  1                  1                  3 
##   11.8589743589744   11.9318181818182   11.9565217391304   12.0879120879121 
##                  1                  1                 16                  2 
##   12.1411483253588   12.1753246753247   12.1825396825397   12.2222222222222 
##                  1                  1                  1                  2 
##    12.266081871345   12.3188405797101   12.4368686868687   12.4396135265701 
##                  1                  1                  1                  1 
##               12.5   12.5286041189931   12.6811594202898   12.7415458937198 
##                  9                  1                  1                  1 
##    12.796442687747   12.9032258064516   12.9551820728291   12.9940711462451 
##                  1                  1                  1                  1 
##   13.0434782608696   13.1944444444444   13.1944444444445   13.3333333333333 
##                  8                  1                  1                  2 
##   13.4615384615385   13.5265700483092   13.6363636363636    13.656330749354 
##                  1                  1                  5                  1 
##   13.6742424242424   13.8198757763975   13.8383838383838   13.8888888888889 
##                  1                  1                  1                  2 
##   14.1304347826087   14.2857142857143   14.4736842105263   14.5604395604396 
##                 12                 19                  1                  1 
##   14.6135265700483   14.7727272727273   14.9154589371981                 15 
##                  1                  6                  1                  2 
##   15.2173913043478   15.2777777777778   15.3846153846154   15.3968253968254 
##                  7                  3                  1                  1 
##   15.5555555555556   15.7296650717703   15.7894736842105   15.9090909090909 
##                  1                  1                  2                  2 
##   15.9722222222222   16.0714285714286   16.1111111111111   16.2008281573499 
##                  1                  1                  3                  1 
##   16.2087912087912    16.304347826087   16.4835164835165   16.6501976284585 
##                  2                  2                  2                  1 
##   16.6666666666667   17.0454545454545   17.0480549199085   17.0652173913043 
##                  5                  1                  1                  1 
##   17.1052631578947   17.1195652173913   17.2846889952153   17.3611111111111 
##                  2                  1                  1                  4 
##   17.3913043478261   17.4901185770751   17.5271739130435   17.5724637681159 
##                  7                  1                  1                  1 
##   17.7536231884058   17.7865612648221   17.8571428571428   17.8571428571429 
##                  1                  2                  2                 11 
##   18.0555555555556   18.1266149870801   18.1818181818182   18.2312252964427 
##                  5                  1                  1                  1 
##   18.3333333333333   18.4065934065934   18.4210526315789    18.421052631579 
##                  2                  1                  1                  2 
##   18.4782608695652   18.5326086956522   18.8888888888889    18.968253968254 
##                 14                  1                  1                  1 
##   19.2307692307692   19.4246031746032   19.4444444444444   19.4444444444445 
##                  1                  1                  4                  1 
##   19.5054945054945   19.5652173913043   19.7463768115942   19.9007936507937 
##                  1                  4                  1                  1 
##                 20   20.0549450549451   20.1298701298701    20.137299771167 
##                  2                  2                  1                  1 
##   20.1388888888889   20.1612903225807   20.2597402597403   20.2751196172249 
##                  2                  1                  1                  1 
##   20.4545454545455   20.5917874396135   20.6521739130435   20.6766917293233 
##                  4                  1                  7                  1 
##   20.7729468599034   20.8333333333333   21.0144927536232   21.0227272727273 
##                  1                  3                  1                  1 
##   21.2301587301587   21.2466124661247   21.4285714285714   21.4975845410628 
##                  1                  1                 10                  1 
##   21.5079365079365   21.5277777777778   21.5615615615616   21.5909090909091 
##                  1                  1                  1                  2 
##   21.6666666666667   21.7391304347826   21.8599033816425   22.1230158730159 
##                  1                  9                  1                  1 
##   22.1825396825397   22.2222222222222   22.3684210526316   22.4120082815735 
##                  1                  5                  1                  1 
##   22.6190476190476   22.6982097186701   22.7717391304348   22.7777777777778 
##                  1                  1                  1                  1 
##    22.790404040404   22.8260869565217   23.1547619047619   23.2213438735178 
##                  1                  8                  1                  1 
##   23.3333333333333   23.3893557422969   23.4989648033126   23.6111111111111 
##                  2                  1                  1                  1 
##   23.6413043478261    23.792270531401   23.8142292490119   23.8888888888889 
##                  1                  1                  1                  1 
##   23.9130434782609   24.1071428571429   24.3055555555556   24.3961352657005 
##                 10                  1                  1                  2 
##   24.4444444444444   24.4617224880383   24.5426829268293   24.5454545454545 
##                  1                  2                  1                  1 
##   24.7529644268775   24.7961956521739                 25   25.3342245989305 
##                  1                  1                 12                  1 
##   25.5494505494506   25.5555555555556   25.6944444444444   26.0869565217391 
##                  1                  2                  4                  3 
##   26.1111111111111   26.1363636363636   26.3888888888889   26.4414414414414 
##                  1                  1                  2                  1 
##   26.7460317460317   26.8280632411067   27.0289855072464   27.1739130434783 
##                  1                  1                  1                  3 
##   27.2222222222222   27.2727272727273    27.328431372549   27.6315789473684 
##                  1                  1                  1                  1 
##   27.7777777777778    28.021978021978   28.2608695652174   28.2967032967033 
##                  2                  1                  4                  1 
##   28.3333333333333   28.4722222222222   28.5479797979798   28.5714285714286 
##                  1                  1                  1                  4 
##   28.8398692810458   29.1208791208791   29.1666666666667   29.3478260869565 
##                  1                  1                  1                  4 
##   29.3650793650794   29.5893719806763   29.6620046620047   29.7430830039526 
##                  1                  1                  1                  1 
##   29.8214285714286   29.8611111111111   30.3661616161616   30.4347826086956 
##                  1                  1                  1                  1 
##   30.4347826086957   30.5555555555556   30.7264957264957   30.9009009009009 
##                  1                  1                  1                  1 
##   31.1076604554865   31.1111111111111   31.1274509803922   31.2799043062201 
##                  1                  1                  1                  1 
##   31.3664596273292   31.4285714285714   31.5217391304348   31.7768199233716 
##                  1                  1                  2                  1 
##   31.8181818181818   31.9444444444444   32.1428571428571               32.5 
##                  1                  2                  5                  1 
##   32.6086956521739   32.6604554865424   32.8557312252964   32.9545454545455 
##                  6                  1                  1                  3 
##   33.2417582417582   33.3333333333333   33.5240274599542    33.695652173913 
##                  1                  2                  1                  3 
##   33.8768115942029   34.0277777777778   34.6153846153846   34.7222222222222 
##                  1                  1                  2                  1 
##   34.7826086956522    34.963768115942   35.0931677018634   35.1010101010101 
##                  2                  2                  1                  1 
##   35.2941176470588   35.6280193236715   35.7142857142857   35.8695652173913 
##                  1                  1                  1                  2 
##   36.3636363636364   36.9565217391304   37.2122762148338   37.4505928853755 
##                  1                  2                  1                  1 
##    37.593984962406    37.598814229249   37.7717391304348   38.0434782608696 
##                  1                  2                  1                  1 
##   38.2748538011696   38.4615384615385   39.1304347826087   39.2156862745098 
##                  1                  1                  2                  1 
##   39.2857142857143   40.2173913043478   40.3409090909091   40.9090909090909 
##                  2                  1                  1                  1 
##   41.1067193675889    41.304347826087   41.6666666666667    42.032967032967 
##                  1                  1                  1                  1 
##   42.0454545454545   42.3913043478261   42.4812030075188   42.8571428571429 
##                  1                  3                  1                  1 
##   43.0357142857143   43.4782608695652   43.5770750988142   44.0476190476191 
##                  1                  5                  1                  1 
##   44.4444444444444   44.7463768115942                 45   45.1470588235294 
##                  1                  1                  1                  1 
##   45.4545454545455   45.6521739130435   46.4285714285714   46.4371980676329 
##                  1                  1                  2                  1 
##   46.5909090909091   47.9166666666667   48.2707509881423   48.3585858585859 
##                  1                  1                  1                  1 
##   48.7698412698413   48.9130434782609                 50   50.5847953216374 
##                  1                  2                  3                  1 
##   51.6983695652174   51.9246031746032   52.1739130434783   53.2608695652174 
##                  1                  1                  1                  2 
##   54.8015873015873   57.1428571428571   60.7142857142857   63.0434782608696 
##                  1                  1                  1                  1 
##                 80   82.1428571428571 
##                  1                  1
#boxplot
boxplot(x)

#histogram
hist(x)

#density curve
plot(density(x))