Introdução

Pacotes necessários

library(readxl)
library(forecast)
library(tidyverse)
library(xts)

Importação dos dados

dados <- read_excel("dados.xlsx")
head(dados)
## # A tibble: 6 x 4
##   Data                 Ouro   Boi Ferro
##   <dttm>              <dbl> <dbl> <dbl>
## 1 2021-08-01 00:00:00 1790.  124.  161.
## 2 2021-07-01 00:00:00 1813.  122.  212.
## 3 2021-06-01 00:00:00 1772.  122.  215.
## 4 2021-05-01 00:00:00 1905.  116.  206.
## 5 2021-04-01 00:00:00 1770.  116   180.
## 6 2021-03-01 00:00:00 1718.  121.  167.
# Colocando data em ordem crescente:
dados <- arrange(dados,Data)
head(dados)
## # A tibble: 6 x 4
##   Data                 Ouro   Boi Ferro
##   <dttm>              <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 1334.  109.  180.
## 2 2011-02-01 00:00:00 1409.  110.  187.
## 3 2011-03-01 00:00:00 1439.  122.  174 
## 4 2011-04-01 00:00:00 1556   117.  179.
## 5 2011-05-01 00:00:00 1536.  104.  169.
## 6 2011-06-01 00:00:00 1502.  113.  164

Análise geral

Gerar algumas visualizações

boi <- xts(dados$Boi,order.by = dados$Data)
ouro <- xts(dados$Ouro,order.by = dados$Data)
ferro <- xts(dados$Ferro,order.by = dados$Data)
dadosxts <- xts(dados[,-1],order.by = dados$Data )
plot(boi,main = "Preço fechamento mensal do Boi",
     col="blue")

plot(ouro,main = "Preço fechamento mensal do Ouro",
     col="blue")

plot(ferro,main = "Preço fechamento mensal do Min. Ferro",
     col="blue")

plot(dadosxts,legend.loc = "top",
     main = "Preço de todos")

Algumas estatísticas

summary(dados)
##       Data                          Ouro           Boi            Ferro       
##  Min.   :2011-01-01 00:00:00   Min.   :1121   Min.   : 90.0   Min.   : 39.58  
##  1st Qu.:2013-08-24 06:00:00   1st Qu.:1295   1st Qu.:112.9   1st Qu.: 68.35  
##  Median :2016-04-16 00:00:00   Median :1387   Median :121.4   Median : 92.59  
##  Mean   :2016-04-16 04:52:30   Mean   :1463   Mean   :123.8   Mean   :103.62  
##  3rd Qu.:2018-12-08 18:00:00   3rd Qu.:1622   3rd Qu.:129.2   3rd Qu.:135.57  
##  Max.   :2021-08-01 00:00:00   Max.   :2017   Max.   :169.5   Max.   :214.55
hist(dados$Ouro,main = "Histograma preço ouro",xlab="")

hist(dados$Boi,main = "Histograma preço boi",xlab="")

hist(dados$Ferro,main = "Histograma preço Min. Ferro",xlab="")

boxplot(dados$Ouro,main = "boxplot preço ouro",xlab="")

boxplot(dados$Boi,main = "boxplot preço boi",xlab="")

boxplot(dados$Ferro,main = "boxplot preço Min. Ferro",xlab="")

Gerando séries temporais

boi <- ts(dados$Boi,start = c(2011,1),frequency = 12)
ouro <- ts(dados$Ouro,start = c(2011,1),frequency = 12)
ferro <- ts(dados$Ferro,start = c(2011,1),frequency = 12)

Decomposição de série temporal

plot(decompose(boi))

plot(decompose(ouro))

plot(decompose(ferro))

Autoarima - Previsão

modelo_ouro <- auto.arima(ouro)
modelo_ferro <- auto.arima(ferro)
modelo_boi <- auto.arima(boi)

previsao_ouro <- forecast(modelo_ouro,h=24)
previsao_ouro
##          Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## Sep 2021        1790.15 1699.297 1881.003 1651.202 1929.098
## Oct 2021        1790.15 1661.665 1918.635 1593.648 1986.652
## Nov 2021        1790.15 1632.788 1947.512 1549.486 2030.814
## Dec 2021        1790.15 1608.444 1971.856 1512.255 2068.045
## Jan 2022        1790.15 1586.997 1993.303 1479.454 2100.846
## Feb 2022        1790.15 1567.607 2012.693 1449.799 2130.501
## Mar 2022        1790.15 1549.776 2030.524 1422.529 2157.771
## Apr 2022        1790.15 1533.179 2047.121 1397.147 2183.153
## May 2022        1790.15 1517.591 2062.709 1373.307 2206.993
## Jun 2022        1790.15 1502.848 2077.452 1350.759 2229.541
## Jul 2022        1790.15 1488.825 2091.475 1329.313 2250.987
## Aug 2022        1790.15 1475.426 2104.874 1308.821 2271.479
## Sep 2022        1790.15 1462.575 2117.725 1289.167 2291.133
## Oct 2022        1790.15 1450.209 2130.091 1270.256 2310.044
## Nov 2022        1790.15 1438.278 2142.022 1252.008 2328.292
## Dec 2022        1790.15 1426.738 2153.562 1234.360 2345.940
## Jan 2023        1790.15 1415.554 2164.746 1217.254 2363.046
## Feb 2023        1790.15 1404.694 2175.606 1200.645 2379.655
## Mar 2023        1790.15 1394.131 2186.169 1184.491 2395.809
## Apr 2023        1790.15 1383.843 2196.457 1168.757 2411.543
## May 2023        1790.15 1373.809 2206.491 1153.412 2426.888
## Jun 2023        1790.15 1364.012 2216.288 1138.428 2441.872
## Jul 2023        1790.15 1354.435 2225.865 1123.781 2456.519
## Aug 2023        1790.15 1345.063 2235.237 1109.449 2470.851
plot(previsao_ouro)

previsao_ferro <- forecast(modelo_ferro,h=24)
previsao_ferro
##          Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## Sep 2021       144.6144 132.59615 156.6326 126.23409 162.9946
## Oct 2021       144.1821 123.45643 164.9077 112.48493 175.8792
## Nov 2021       142.3083 115.57507 169.0416 101.42332 183.1934
## Dec 2021       140.2368 108.61749 171.8562  91.87922 188.5945
## Jan 2022       138.9383 103.09277 174.7837  84.11732 193.7592
## Feb 2022       137.6379  98.01445 177.2613  77.03909 198.2366
## Mar 2022       137.8976  94.82637 180.9688  72.02585 203.7693
## Apr 2022       135.1672  88.90446 181.4300  64.41443 205.9201
## May 2022       134.1070  84.85908 183.3550  58.78879 209.4253
## Jun 2022       135.9461  83.88387 188.0083  56.32379 215.5684
## Jul 2022       137.8769  83.14487 192.6089  54.17151 221.5822
## Aug 2022       148.0292  90.75179 205.3067  60.43094 235.6275
## Sep 2022       150.4230  91.11789 209.7280  59.72368 241.1223
## Oct 2022       149.4524  88.33741 210.5674  55.98509 242.9197
## Nov 2022       150.8859  88.01305 213.7587  54.73019 247.0415
## Dec 2022       159.5888  95.00600 224.1716  60.81792 258.3597
## Jan 2023       163.0755  96.82683 229.3242  61.75689 264.3942
## Feb 2023       162.5575  94.68380 230.4312  58.75363 266.3614
## Mar 2023       162.8737  93.41301 232.3344  56.64273 269.1047
## Apr 2023       166.6594  95.64711 237.6716  58.05550 275.2632
## May 2023       173.8506 101.32004 246.3813  62.92466 284.7766
## Jun 2023       176.0046 101.98681 250.0225  62.80414 289.2051
## Jul 2023       175.0697  99.59394 250.5454  59.63949 290.4999
## Aug 2023       159.8804  82.97439 236.7865  42.26280 277.4981
plot(previsao_ferro)

previsao_boi <- forecast(modelo_boi,h=24)
previsao_boi
##          Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
## Sep 2021       124.4645 116.01941 132.9096 111.54884 137.3802
## Oct 2021       125.1356 114.27594 135.9952 108.52720 141.7440
## Nov 2021       127.1802 114.18519 140.1753 107.30602 147.0545
## Dec 2021       128.1442 113.34666 142.9418 105.51331 150.7751
## Jan 2022       128.0152 111.60714 144.4233 102.92124 153.1092
## Feb 2022       126.4497 108.57648 144.3228  99.11499 153.7843
## Mar 2022       126.1963 106.96914 145.4234  96.79091 155.6016
## Apr 2022       123.6783 103.18655 144.1701  92.33886 155.0178
## May 2022       125.0507 103.36788 146.7335  91.88969 158.2117
## Jun 2022       124.9914 102.17961 147.8031  90.10381 159.8789
## Jul 2022       126.5217 102.63435 150.4091  89.98914 163.0543
## Aug 2022       127.1261 102.20945 152.0427  89.01939 165.2327
## Sep 2022       127.7376 101.41548 154.0597  87.48139 167.9938
## Oct 2022       127.4799  99.90466 155.0551  85.30721 169.6526
## Nov 2022       128.4202  99.63167 157.2087  84.39194 172.4485
## Dec 2022       128.9774  99.02736 158.9274  83.17278 174.7820
## Jan 2023       129.2568  98.18822 160.3254  81.74149 176.7721
## Feb 2023       128.7182  96.56997 160.8664  79.55175 177.8846
## Mar 2023       129.8043  96.61153 162.9970  79.04037 180.5681
## Apr 2023       128.6745  94.46919 162.8799  76.36197 180.9871
## May 2023       128.8840  93.69509 164.0728  75.06723 182.7007
## Jun 2023       129.8231  93.67750 165.9687  74.54317 185.1031
## Jul 2023       130.0157  92.93804 167.0934  73.31029 186.7212
## Aug 2023       130.4310  92.44406 168.4179  72.33501 188.5269
plot(previsao_boi)

Características do modelo arima

summary(modelo_ouro)
## Series: ouro 
## ARIMA(0,1,0) 
## 
## sigma^2 estimated as 5026:  log likelihood=-721.37
## AIC=1444.75   AICc=1444.78   BIC=1447.59
## 
## Training set error measures:
##                    ME     RMSE      MAE      MPE     MAPE      MASE      ACF1
## Training set 3.575655 70.61547 53.39362 0.122329 3.589525 0.3435969 -0.109594
summary(modelo_boi)
## Series: boi 
## ARIMA(1,1,0)(2,0,0)[12] 
## 
## Coefficients:
##           ar1    sar1    sar2
##       -0.1916  0.1656  0.1432
## s.e.   0.0885  0.0885  0.0945
## 
## sigma^2 estimated as 43.42:  log likelihood=-418.64
## AIC=845.29   AICc=845.62   BIC=856.66
## 
## Training set error measures:
##                     ME     RMSE      MAE         MPE     MAPE      MASE
## Training set 0.1443143 6.485973 4.788159 -0.01688264 3.970015 0.3605553
##                    ACF1
## Training set 0.01845741
summary(modelo_ferro)
## Series: ferro 
## ARIMA(0,1,1)(2,0,0)[12] 
## 
## Coefficients:
##          ma1     sar1    sar2
##       0.4050  -0.1257  0.2704
## s.e.  0.1012   0.1030  0.1124
## 
## sigma^2 estimated as 87.94:  log likelihood=-464.14
## AIC=936.28   AICc=936.61   BIC=947.66
## 
## Training set error measures:
##                      ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -0.1036045 9.230171 6.568188 -0.2270176 6.858008 0.2332703
##                     ACF1
## Training set -0.03931499