Section 9 contains:
Data in the excel sheet 90 days outcome:
1.Re.admission.1,
2.Reason.for.re.admission,
3.ER.visits.1,
4.Mortality,
5.AKI,
6.Bleeding.2,
7.Blood.transfusion.2,
8.Stroke.3,
9.MI.3,
10.Stent.thrombosis.2,
11.Vascular.complications.2,
12.Re.cath.2,
13.CABG.3
Purpose of analysis is looking for relationships between
each risk factors variables in table 1(section 1-4) to outcome of PCI
library(dplyr)
library(survival)
library(survminer)
library(lubridate)
library(gtsummary)
#library(TMB)
library(broom)
library(kableExtra)
library(SemiCompRisks)
d <- read.csv("d:/UPWORK-SAAD/PCI-01.csv")
#---sec4
d1 <- d[,2:19]
d2 <- d[,21:31]
d01 <- cbind(d1,d2)
d3 <- d[,32:40]
d02 <- cbind(d01,d3)
#---sec9
d4 <- d[,74:88]
d05 <- cbind(d02,d4)
d05$Valvular.heart.disease <- as.numeric(d05$Valvular.heart.disease)
lm_dat <-
d05 %>%
filter(Age >= 30)
lm_dat <-
lm_dat %>%
mutate(
lm_T1 = Age - 30
)
lm_fit <- survfit(Surv(lm_T1, PCI)~
HTN + Dyslipidemia +
HF + Valvular.heart.disease + CKD + Malignancy +
Stroke + MI + atrial.fib + COPD + CABG + DM+
Clopidogrel+ Insulin+Diuretics+
Normal.BP.1.high.BP..more.than.140.90..2+
AKI+Bleeding.2+Stroke.3 +
MI.3+Stent.thrombosis.2+CABG.3,
data = lm_dat)
coxph(
Surv(Age, PCI)~
HTN + Dyslipidemia +
HF + Valvular.heart.disease + CKD + Malignancy +
Stroke + MI + atrial.fib + COPD + CABG + DM+
Clopidogrel+ Insulin+Diuretics+
Normal.BP.1.high.BP..more.than.140.90..2+
AKI+Bleeding.2+Stroke.3 +
MI.3+Stent.thrombosis.2+CABG.3,
subset = Age >= 30,
data = d05
) %>%
gtsummary::tbl_regression(exp = TRUE)
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| HTN | 0.66 | 0.45, 0.95 | 0.025 |
| Dyslipidemia | 1.48 | 1.10, 1.99 | 0.009 |
| HF | 0.91 | 0.59, 1.40 | 0.7 |
| Valvular.heart.disease | 0.33 | 0.18, 0.60 | <0.001 |
| CKD | 0.66 | 0.45, 0.98 | 0.040 |
| Malignancy | 0.66 | 0.37, 1.17 | 0.2 |
| Stroke | 1.10 | 0.61, 1.98 | 0.8 |
| MI | 1.96 | 1.44, 2.68 | <0.001 |
| atrial.fib | 0.41 | 0.17, 1.02 | 0.055 |
| COPD | 0.55 | 0.25, 1.20 | 0.13 |
| CABG | 0.93 | 0.56, 1.54 | 0.8 |
| DM | 0.75 | 0.53, 1.05 | 0.10 |
| Clopidogrel | 1.33 | 1.03, 1.73 | 0.031 |
| Insulin | 1.54 | 1.12, 2.12 | 0.008 |
| Diuretics | 0.80 | 0.59, 1.08 | 0.2 |
| Normal.BP.1.high.BP..more.than.140.90..2 | 0.77 | 0.59, 1.00 | 0.049 |
| AKI | 1.07 | 0.86, 1.34 | 0.5 |
| Bleeding.2 | 3.38 | 0.80, 14.3 | 0.10 |
| Stroke.3 | 10,231,315 | 0.00, Inf | >0.9 |
| MI.3 | 0.00 | 0.00, Inf | >0.9 |
| Stent.thrombosis.2 | |||
| CABG.3 | 0.00 | 0.00, Inf | >0.9 |
|
1
HR = Hazard Ratio, CI = Confidence Interval
|
|||
lm_fit1 <- survfit(Surv(lm_T1, PCI) ~ Stroke.3 +
Stent.thrombosis.2+CABG.3,
data = lm_dat)
ggsurvplot(lm_fit1)
ggsurvplot(
fit = survfit(Surv(lm_T1, PCI) ~ Stroke.3 , data = lm_dat), times = 60,
xlab = "Year",
ylab = "Survival probability")
ggsurvplot(
fit = survfit(Surv(lm_T1, PCI) ~ Stent.thrombosis.2, data = lm_dat), times = 60,
xlab = "Year",
ylab = "Survival probability")
ggsurvplot(
fit = survfit(Surv(lm_T1, PCI) ~ CABG.3, data = lm_dat), times = 60,
xlab = "Year",
ylab = "Survival probability")
In the table contains information:
1.Variable Dyslipidea Hazard Ratio 1.48 with Confident Interval 95%(1.10, 1.99) PV 0.009
2.Variable Valvular.heart.disease has Hazard Ratio 0.33, with Confident Interval 95%(0.18, 0.60) and PV 0.001,
3.Variable MI has Hazard Ratio 1.96 with Confident Interval 95%(1.96 1.44) and PV <0.001,
4.Variable Clopidogrel Hazard Ratio 1.33 with Confident Interval 95%(1.03, 1.73) and PV 0.031
5.Variable Insulin Hazard Ratio 1.54 with Confident Interval 95%(1.12, 2.12) with PV 0.008
The 5 variable important that statistically satify PValue <- 0.05, show those variables
have high influence of the PCI
In the probability survival:
1.Variable Stroke.3 with a survival probability of 1 until the age of 40, and continues
to decrease until over the age of 60
2.Variable CABG.3 with a survival probability of 1 until the age of 60, ande decrease over 60
3.Variable stent.trombosis.2 has a survival probability of 0 continues to decrease
with increasing age
4.Over hospital treatment 90 days, succes in suppressing the stroke and performing CABG,
but fail in stent.trombosis.2