Table 4 SECTION 7 Hospital course contains variable: Discharge.day, In-Hospital.mortality, Bleeding, Blood.transfusion,
Stroke,MI, Stent.thrombosis, Vascular.complications, Re-cath, CABG. Looking for statistical relationship between risk factor to PCI
library(dplyr)
library(survival)
library(survminer)
library(lubridate)
library(gtsummary)
#library(TMB)
library(broom)
library(kableExtra)
library(SemiCompRisks)
d <- read.csv("d:/UPWORK-SAAD/PCI-01.csv")
#---tb1
#Secsion 1-4
d1 <- d[,2:19]
d2 <- d[,21:31]
d01 <- cbind(d1,d2)
d3 <- d[,32:40]
d02 <- cbind(d01,d3)
#---Section 7
d4 <- d[,54:63]
d04 <- cbind(d02,d4)
d04$Valvular.heart.disease <- as.numeric(d04$Valvular.heart.disease)
## Warning: NAs introduced by coercion
lm_dat <-
d04 %>%
filter(Age >= 30)
lm_dat <-
lm_dat %>%
mutate(
lm_T1 = Age - 30
)
lm_fit <- survfit(Surv(Age, PCI)~
HTN + Dyslipidemia +
HF + Valvular.heart.disease + CKD + Malignancy +
Stroke + MI + atrial.fib + COPD + CABG + DM+
Clopidogrel+ Insulin+Diuretics+
Normal.BP.1.high.BP..more.than.140.90..2+
Bleeding+ Stroke.1+CABG.1,
data = lm_dat)
coxph(
Surv(Age, PCI)~
HTN + Dyslipidemia +
HF + Valvular.heart.disease + CKD + Malignancy +
Stroke + MI + atrial.fib + COPD + CABG + DM+
Clopidogrel+ Insulin+Diuretics+
Normal.BP.1.high.BP..more.than.140.90..2+
Bleeding+ Stroke.1+CABG.1,
subset = Age >= 30,
data = d04
) %>%
gtsummary::tbl_regression(exp = TRUE)
| Characteristic | HR1 | 95% CI1 | p-value |
|---|---|---|---|
| HTN | 0.65 | 0.45, 0.93 | 0.020 |
| Dyslipidemia | 1.48 | 1.10, 1.99 | 0.009 |
| HF | 0.92 | 0.60, 1.41 | 0.7 |
| Valvular.heart.disease | 0.31 | 0.17, 0.56 | <0.001 |
| CKD | 0.68 | 0.46, 1.01 | 0.054 |
| Malignancy | 0.63 | 0.35, 1.13 | 0.12 |
| Stroke | 1.06 | 0.59, 1.92 | 0.8 |
| MI | 2.03 | 1.49, 2.77 | <0.001 |
| atrial.fib | 0.42 | 0.17, 1.05 | 0.064 |
| COPD | 0.51 | 0.24, 1.11 | 0.089 |
| CABG | 0.97 | 0.58, 1.61 | >0.9 |
| DM | 0.78 | 0.55, 1.09 | 0.14 |
| Clopidogrel | 1.38 | 1.06, 1.79 | 0.016 |
| Insulin | 1.53 | 1.12, 2.10 | 0.008 |
| Diuretics | 0.81 | 0.60, 1.09 | 0.2 |
| Normal.BP.1.high.BP..more.than.140.90..2 | 0.79 | 0.60, 1.02 | 0.072 |
| Bleeding | 1.85 | 0.84, 4.08 | 0.13 |
| Stroke.1 | 1.65 | 0.22, 12.3 | 0.6 |
| CABG.1 | 0.68 | 0.33, 1.40 | 0.3 |
|
1
HR = Hazard Ratio, CI = Confidence Interval
|
|||
lm_fit1 <- survfit(Surv(lm_T1, PCI) ~ Stroke.1+Stent.thrombosis+
Vascular.complications+CABG,
data = lm_dat)
ggsurvplot(lm_fit1)
From the above table found the variables important influence the PCI outcome indicated by Pvalue < 0.05 :HTN, Dislipidea,Valvular hert desease, MI,Clopidogril and Insulin. From the Plot survival probability can be seen that CABG has survival probability Age 40-50.