Alerta SIPA - Dataton 2021

David Chaupis Meza, Otto Proaño, Jackeline Garcia, Pamela Quispe

21/08, 2021

Desafio elegido:

Nuestro público objetivo:

Aquellas personas de riesgo basados en sus grupos etareos, siendo este el riesgo de presentar una infección por COVID-19 entre las personas suceptibles como lo son personas no infectadas.

We assume the mass vaccination plan is to offer vaccine to everyone who has no prior COVID-19 infection, where prior infection is confirmed through a positive molecular RT-PCR test.

Lee E et.al.(2021)

Strategies for Vaccine Prioritization and Mass Dispensing

El equipo de trabajo

  1. David Chaupis

  2. Otto Proaño

  3. Jackeline Garcia

  4. Pamela Quispe

Elementos mínimos para diseñar la solución

# Librerias para el uso de mapas interactivos

knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, cache = FALSE, tidy = TRUE, tidy.opts= list(blank = FALSE, width.cutoff = 60))
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.0.5
library(leaflet.extras)
## Warning: package 'leaflet.extras' was built under R version 4.0.5
library(sf)
## Warning: package 'sf' was built under R version 4.0.5
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.3     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'stringr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(rgdal)
## Warning: package 'rgdal' was built under R version 4.0.5
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.0.5
## rgdal: version: 1.5-23, (SVN revision 1121)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.2.1, released 2020/12/29
## Path to GDAL shared files: C:/Users/David/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/David/Documents/R/win-library/4.0/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.4-5
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
## Overwritten PROJ_LIB was C:/Users/David/Documents/R/win-library/4.0/rgdal/proj
library(raster)
## Warning: package 'raster' was built under R version 4.0.5
## 
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
## 
##     select
## The following object is masked from 'package:tidyr':
## 
##     extract
library(rasterVis)
## Warning: package 'rasterVis' was built under R version 4.0.5
## Loading required package: terra
## Warning: package 'terra' was built under R version 4.0.5
## terra version 1.3.4
## 
## Attaching package: 'terra'
## The following object is masked from 'package:rgdal':
## 
##     project
## The following object is masked from 'package:dplyr':
## 
##     src
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.0.5
## Loading required package: latticeExtra
## Warning: package 'latticeExtra' was built under R version 4.0.5
## 
## Attaching package: 'latticeExtra'
## The following object is masked from 'package:ggplot2':
## 
##     layer
library(rworldxtra)
## Warning: package 'rworldxtra' was built under R version 4.0.5
library(tidyverse)
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.0.5
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.0.5
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
options("kableExtra.html.bsTable" = T)

# install.packages("remotes")
remotes::install_github("rlesur/klippy")
## Skipping install of 'klippy' from a github remote, the SHA1 (378c247f) has not changed since last install.
##   Use `force = TRUE` to force installation

Modelo analítico y propuesta de visualización e interacción con el público

Basado en el desarrollo de un software capaz de monitorear el riesgo de forma continua a través de un sistema de vigilancia epidemiológica en tiempo real, potenciando el uso de los datos abiertos, para lograr análisis espacial de aquellas personas de riesgo según edades. Para lograrlo se necesita la integración de la data de instituciones comprometidas a la ciencia abierta.

Lo que aqui presentamos es una propuesta-solución para sectorizar el proceso de vacunación mediante la priorización automatizada basada en la vigilancia epidemiológica con un Sistema Integrado de Priorización Automatiizada capaz de emitir alertas diarías sobre los resultados (positicos | negativos) de las pruebas de diagnóstico para COVID-19, así poder advertir al MINSA donde implementar mas puntos de vacunación en base al nivel de suceptibilidad según grupo etareo.

# Según grupo etareo g_etareo = mapeo_casos$etareo %>%
# unique() %>% length()
# Según grupo resultados g_resultados =
# mapeo_casos$resultados %>% unique()
# Procedemos a colorear según grupos etareos
# colores =
# c('#feebe2','#fcc5c0','#fa9fb5','#f768a1','#dd3497','#ae017e','#7a0177')
# Generamos una pelata de colores según casos
# pali = colorFactor(colores, domain = g_resultados)
# Coloreamos según edad por cada centro vacunación
# leaflet() %>% addTiles() %>% addCircles(data =
# mapeo_casos, lat = ~latitude, lng = ~longitud, color =
# ~pali(etareo), fillOpacity = 1, label = ~resultados,
# popup = ~etareo, group = 'Mapeo')

Próximos pasos