METRICAS (eixo y da tratometria) ad - difusividade axial ADt - difusividade axial corrigida por água livre fa - anisotropia fracionada FAt - anisotropia fracionada corrigida por água livre FW - água livre md - difusividade média MDt - difusividade média corrigida por água livre rd - difusividade radial RDt - difusividade radial corrigida por água livre nufo - número de orientações de fibras afd_total - densidade de fibra aparente (para voxel) afd_fixel - densidade de fibra aparente (para fixel)
TBSS - Tract-Based Spatial Statistics (análise baseada no voxel)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ dplyr 1.0.7
## ✓ tibble 3.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ✓ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
## 'data.frame': 83 obs. of 48 variables:
## $ id : chr "AAM06101971" "ABA12011990" "ACC21111991" "ACD20031998" ...
## $ idade_x : int 49 30 28 22 46 39 40 30 56 52 ...
## $ grupo_moca : int 1 1 1 2 2 2 1 1 2 2 ...
## $ grupo_fadiga : chr "COVID.Fatigue+" NA "COVID.Fatigue+" "Control" ...
## $ escolaridade : int 16 14 18 13 15 15 16 13 17 11 ...
## $ gender : Factor w/ 2 levels "F","M": 1 2 1 1 2 2 1 2 2 2 ...
## $ cfq_11_mental_fatigue_score : int 8 NA 7 11 0 3 8 0 6 0 ...
## $ cfq_11_physical_fatigue_score: int 14 NA 13 15 0 0 12 0 7 0 ...
## $ pdcrs_relogio_total : int 8 9 10 10 10 10 10 10 10 10 ...
## $ cube_total_error_score : int 0 0 0 0 8 0 4 0 0 3 ...
## $ swmbe : int 25 10 21 14 23 0 30 0 22 31 ...
## $ af_l : num 0.266 0.267 0.251 0.254 0.263 ...
## $ af_r : num 0.28 0.285 0.274 0.262 0.256 ...
## $ cc_1 : num 0.255 0.219 0.231 0.231 0.229 ...
## $ cc_2a : num 0.239 0.229 0.218 0.209 0.225 ...
## $ cc_2b : num 0.254 0.254 0.239 0.231 0.245 ...
## $ cc_3 : num 0.278 0.282 0.259 0.256 0.265 ...
## $ cc_4 : num 0.29 0.3 0.285 0.274 0.289 ...
## $ cc_5 : num 0.293 0.31 0.302 0.294 0.304 ...
## $ cc_6 : num 0.283 0.299 0.287 0.278 0.297 ...
## $ cc_7 : num 0.289 0.294 0.29 0.281 0.295 ...
## $ cg_l : num 0.282 0.279 0.265 0.264 0.267 ...
## $ cg_r : num 0.281 0.285 0.266 0.269 0.275 ...
## $ cr_l : num 0.287 0.299 0.282 0.285 0.282 ...
## $ cr_r : num 0.291 0.317 0.305 0.294 0.283 ...
## $ cst_l : num 0.293 0.306 0.282 0.292 0.292 ...
## $ cst_r : num 0.298 0.324 0.306 0.298 0.291 ...
## $ ifof_l : num 0.272 0.264 0.249 0.246 0.256 ...
## $ ifof_r : num 0.277 0.271 0.27 0.259 0.252 ...
## $ ilf_l : num 0.266 0.257 0.243 0.242 0.26 ...
## $ ilf_r : num 0.276 0.269 0.263 0.256 0.247 ...
## $ mcp : num 0.294 0.306 0.285 0.269 0.259 ...
## $ or_l : num 0.269 0.265 0.254 0.248 0.264 ...
## $ or_r : num 0.281 0.285 0.281 0.276 0.263 ...
## $ scp_l : num 0.316 0.307 0.315 0.3 0.297 ...
## $ scp_r : num 0.33 0.321 0.344 0.31 0.295 ...
## $ slf_1_l : num 0.277 0.276 0.264 0.259 0.289 ...
## $ slf_1_r : num 0.28 0.288 0.278 0.273 0.285 ...
## $ slf_2_l : num 0.276 0.284 0.257 0.259 0.286 ...
## $ slf_2_r : num 0.286 0.299 0.278 0.27 0.269 ...
## $ slf_3_l : num 0.264 0.266 0.245 0.247 0.258 ...
## $ slf_3_r : num 0.269 0.28 0.263 0.253 0.251 ...
## $ uf_l : num 0.266 0.258 0.253 0.246 0.244 ...
## $ uf_r : num 0.259 0.255 0.257 0.24 0.252 ...
## $ grupo_moca_cat : Factor w/ 2 levels "control","covid": 2 2 2 1 1 1 2 2 1 1 ...
## $ grupo_fadiga_cat : Factor w/ 3 levels "Control","COVID.Fatigue-",..: 3 NA 3 1 1 1 3 2 1 1 ...
## $ sex : num 0 1 0 0 1 1 0 1 1 1 ...
## $ centered_age : num 11.51 -7.49 -9.49 -15.49 8.51 ...
## # A tibble: 4 × 8
## source term estimate std.error statistic p.value p.value.adj signf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 af_l grupo_moca 0.00662 0.00278 2.38 0.0197 0.0456 0.0456
## 2 cc_5 grupo_moca 0.00685 0.00289 2.37 0.0203 0.0462 0.0462
## 3 slf_1_l grupo_moca 0.00905 0.00291 3.11 0.00261 0.00906 0.0091
## 4 slf_2_l grupo_moca 0.00821 0.00282 2.91 0.00468 0.0147 0.0147
Obtemos os mesmos resultados usando o método de permutação abaixo:
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## # A tibble: 4 × 8
## source term estimate std.error statistic p.value p.value.adj signf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 af_l grupo_moca 0.00662 0.00278 2.38 0.0197 0.0456 0.0456
## 2 cc_5 grupo_moca 0.00685 0.00289 2.37 0.0203 0.0462 0.0462
## 3 slf_1_l grupo_moca 0.00905 0.00291 3.11 0.00261 0.00906 0.0091
## 4 slf_2_l grupo_moca 0.00821 0.00282 2.91 0.00468 0.0147 0.0147
## `summarise()` has grouped output by 'grupo_moca_cat'. You can override using the `.groups` argument.
## # A tibble: 4 × 4
## # Groups: grupo_moca_cat [2]
## grupo_moca_cat gender mean sd
## <fct> <fct> <dbl> <dbl>
## 1 control F 0.279 0.0202
## 2 control M 0.288 0.0196
## 3 covid F 0.272 0.0190
## 4 covid M 0.278 0.0166
## Registered S3 methods overwritten by 'parameters':
## method from
## as.double.parameters_kurtosis datawizard
## as.double.parameters_skewness datawizard
## as.double.parameters_smoothness datawizard
## as.numeric.parameters_kurtosis datawizard
## as.numeric.parameters_skewness datawizard
## as.numeric.parameters_smoothness datawizard
## print.parameters_distribution datawizard
## print.parameters_kurtosis datawizard
## print.parameters_skewness datawizard
## summary.parameters_kurtosis datawizard
## summary.parameters_skewness datawizard
## You can cite this package as:
## Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
## Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
## # A tibble: 4 × 8
## source term estimate std.error statistic p.value p.value.adj signf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 cc_5 grupo_fadigaCO… -0.0101 0.00336 -2.99 0.00372 0.0175 0.01…
## 2 cc_6 grupo_fadigaCO… -0.00792 0.00286 -2.77 0.00710 0.0286 0.02…
## 3 slf_1_l grupo_fadigaCO… -0.0110 0.00343 -3.20 0.00203 0.00984 0.00…
## 4 slf_2_l grupo_fadigaCO… -0.00867 0.00334 -2.59 0.0114 0.0399 0.03…
No método de permutação abaixo, somente duas variáveis SLF.1.L e SLF.2.L foram significativas.
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## [1] "Settings: unique SS : numeric variables centered"
## # A tibble: 2 × 8
## source term estimate std.error statistic p.value p.value.adj signf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 slf_1_l grupo_fadiga1 0.00593 0.00198 3.00 0.00371 0.0180 0.018
## 2 slf_2_l grupo_fadiga1 0.00549 0.00192 2.86 0.00551 0.0239 0.0239
## `summarise()` has grouped output by 'grupo_fadiga_cat'. You can override using the `.groups` argument.
## # A tibble: 6 × 4
## # Groups: grupo_fadiga_cat [3]
## grupo_fadiga_cat gender mean sd
## <fct> <fct> <dbl> <dbl>
## 1 Control F 0.281 0.0188
## 2 Control M 0.292 0.0179
## 3 COVID.Fatigue- F 0.279 0.0183
## 4 COVID.Fatigue- M 0.287 0.0134
## 5 COVID.Fatigue+ F 0.277 0.0157
## 6 COVID.Fatigue+ M 0.278 0.0126