library(readxl)
Ejercicio_Parcelas_divididas <- read_excel("Ejercicio Parcelas divididas.xlsx",
sheet = "Hoja2")
df=Ejercicio_Parcelas_divididas
Nivel=Ejercicio_Parcelas_divididas$Nitrogeno
Nivel=as.factor(Nivel)
variedad=Ejercicio_Parcelas_divididas$Variedad
repet=Ejercicio_Parcelas_divididas$Repeticion
repet = as.factor(repet)
rend=Ejercicio_Parcelas_divididas$Rendimiento
library(collapsibleTree)
collapsibleTreeSummary(df, hierarchy = c('Nitrogeno','Variedad', 'Repeticion', 'Rendimiento'))
library(lattice)
bwplot(rend~variedad|Nivel+repet,Ejercicio_Parcelas_divididas,xlab="",pch=16)

medias = tapply(rend, list(variedad,Nivel),mean); medias
## 0 60 90 120 150 180
## C4-63 3.183333 5.442667 5.994 6.014000 6.687333 6.065333
## IR5 4.306000 5.982000 6.259 6.895000 6.950667 6.540333
## IR8 4.252667 5.672000 6.400 6.732667 7.563333 8.700667
## Peta 4.481333 4.816000 4.812 3.816000 2.046667 1.880667
desv = tapply(rend, list(variedad,Nivel),sd); desv
## 0 60 90 120 150 180
## C4-63 0.2624525 0.6257454 0.2605763 0.3114290 0.3806328 0.9168737
## IR5 0.8844275 0.4704211 0.3369822 0.2972087 0.6334172 0.7415891
## IR8 0.3495445 0.6701313 0.3144773 0.3004818 0.2791726 0.2154654
## Peta 0.3550005 0.3265088 0.8315455 1.1414570 0.6801539 0.4490984
cv = (desv*100)/medias; cv
## 0 60 90 120 150 180
## C4-63 8.244582 11.497037 4.347285 5.178400 5.691847 15.116625
## IR5 20.539422 7.863943 5.383962 4.310496 9.113042 11.338704
## IR8 8.219418 11.814727 4.913709 4.463043 3.691132 2.476424
## Peta 7.921760 6.779668 17.280664 29.912394 33.232275 23.879742
Mod_pd= aov(rend ~ variedad*Nivel + Error(Repeticion:variedad),data = Ejercicio_Parcelas_divididas)
## Warning in aov(rend ~ variedad * Nivel + Error(Repeticion:variedad), data =
## Ejercicio_Parcelas_divididas): Error() model is singular
summary(Mod_pd)
##
## Error: Repeticion:variedad
## Df Sum Sq Mean Sq F value Pr(>F)
## variedad 3 89.89 29.963 106.6 8.66e-07 ***
## Residuals 8 2.25 0.281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Nivel 5 30.43 6.086 18.96 1.25e-09 ***
## variedad:Nivel 15 69.34 4.623 14.40 1.21e-11 ***
## Residuals 40 12.84 0.321
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mod_pd2 = aov(rend ~ variedad*Nivel + Repeticion:variedad,data = Ejercicio_Parcelas_divididas)
summary(Mod_pd2)
## Df Sum Sq Mean Sq F value Pr(>F)
## variedad 3 89.89 29.963 93.359 < 2e-16 ***
## Nivel 5 30.43 6.086 18.962 1.25e-09 ***
## variedad:Nivel 15 69.34 4.623 14.404 1.21e-11 ***
## variedad:Repeticion 8 2.25 0.281 0.876 0.545
## Residuals 40 12.84 0.321
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Evaluación de supuestos
TukeyHSD(Mod_pd2, "Nivel")
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = rend ~ variedad * Nivel + Repeticion:variedad, data = Ejercicio_Parcelas_divididas)
##
## $Nivel
## diff lwr upr p adj
## 60-0 1.422333333 0.7302935 2.1143732 0.0000042
## 90-0 1.810416667 1.1183768 2.5024565 0.0000000
## 120-0 1.808583333 1.1165435 2.5006232 0.0000000
## 150-0 1.756166667 1.0641268 2.4482065 0.0000000
## 180-0 1.740916667 1.0488768 2.4329565 0.0000001
## 90-60 0.388083333 -0.3039565 1.0801232 0.5537702
## 120-60 0.386250000 -0.3057898 1.0782898 0.5588036
## 150-60 0.333833333 -0.3582065 1.0258732 0.7008666
## 180-60 0.318583333 -0.3734565 1.0106232 0.7398849
## 120-90 -0.001833333 -0.6938732 0.6902065 1.0000000
## 150-90 -0.054250000 -0.7462898 0.6377898 0.9998948
## 180-90 -0.069500000 -0.7615398 0.6225398 0.9996448
## 150-120 -0.052416667 -0.7444565 0.6396232 0.9999112
## 180-120 -0.067666667 -0.7597065 0.6243732 0.9996883
## 180-150 -0.015250000 -0.7072898 0.6767898 0.9999998
shapiro.test(Mod_pd2$residuals)
##
## Shapiro-Wilk normality test
##
## data: Mod_pd2$residuals
## W = 0.96954, p-value = 0.07792
plot(Mod_pd2,1)

plot(Mod_pd2,2)
