學習筆記
- Statistical Learning 統計學習
2.Statistical Learning
3.Linear
4.Classification
5.Resampling Method
6.Linear Model Selection and Regularization
7.Moving Beyond Linearity
8.Tree-Based Methods
9.Support Vector Machines
10.Unsupervised Learning
Chapter 7 Lab:Non-linear modeling
1.Best Subset Selection
###Polynomial Regression and Step Function
Polynomial Regression and Step Functions
fit=lm(wage~poly(age,4),data=Wage)
#coef(summary(fit))
fit2=lm(wage~poly(age,4,raw=T),data=Wage)
coef(summary(fit2))## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.841542e+02 6.004038e+01 -3.067172 0.0021802539
## poly(age, 4, raw = T)1 2.124552e+01 5.886748e+00 3.609042 0.0003123618
## poly(age, 4, raw = T)2 -5.638593e-01 2.061083e-01 -2.735743 0.0062606446
## poly(age, 4, raw = T)3 6.810688e-03 3.065931e-03 2.221409 0.0263977518
## poly(age, 4, raw = T)4 -3.203830e-05 1.641359e-05 -1.951938 0.0510386498
## (Intercept) age I(age^2) I(age^3) I(age^4)
## -1.841542e+02 2.124552e+01 -5.638593e-01 6.810688e-03 -3.203830e-05
fit2b=lm(wage~cbind(age,age^2,age^3,age^4),data=Wage)
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit,newdata=list(age=age.grid),se=TRUE)
#standard error of predict
#standard error band:上下兩個標準差
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)
#matlines:繪製信賴區間## [1] 7.81597e-11
fit.1=lm(wage~age,data=Wage)
fit.2=lm(wage~poly(age,2),data=Wage)
fit.3=lm(wage~poly(age,3),data=Wage)
fit.4=lm(wage~poly(age,4),data=Wage)
fit.5=lm(wage~poly(age,5),data=Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.70361 0.7287647 153.2780243 0.000000e+00
## poly(age, 5)1 447.06785 39.9160847 11.2001930 1.491111e-28
## poly(age, 5)2 -478.31581 39.9160847 -11.9830341 2.367734e-32
## poly(age, 5)3 125.52169 39.9160847 3.1446392 1.679213e-03
## poly(age, 5)4 -77.91118 39.9160847 -1.9518743 5.104623e-02
## poly(age, 5)5 -35.81289 39.9160847 -0.8972045 3.696820e-01
## [1] 143.5923
fit.1=lm(wage~education+age,data=Wage)
fit.2=lm(wage~education+poly(age,2),data=Wage)
fit.3=lm(wage~education+poly(age,3),data=Wage)
anova(fit.1,fit.2,fit.3)## Analysis of Variance Table
##
## Model 1: wage ~ education + age
## Model 2: wage ~ education + poly(age, 2)
## Model 3: wage ~ education + poly(age, 3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2994 3867992
## 2 2993 3725395 1 142597 114.6969 <2e-16 ***
## 3 2992 3719809 1 5587 4.4936 0.0341 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit=glm(I(wage>250)~poly(age,4),data=Wage,family=binomial)
preds=predict(fit,newdata=list(age=age.grid),se=T)
pfit=exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit = cbind(preds$fit+2*preds$se.fit, preds$fit-2*preds$se.fit)
se.bands = exp(se.bands.logit)/(1+exp(se.bands.logit))
preds=predict(fit,newdata=list(age=age.grid),type="response",se=T)
plot(age,I(wage>250),xlim=agelims,type="n",ylim=c(0,.2))
points(jitter(age), I((wage>250)/5),cex=.5,pch="|",col="darkgrey")
lines(age.grid,pfit,lwd=2, col="blue")
matlines(age.grid,se.bands,lwd=1,col="blue",lty=3)##
## (17.9,33.5] (33.5,49] (49,64.5] (64.5,80.1]
## 750 1399 779 72
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 94.158392 1.476069 63.789970 0.000000e+00
## cut(age, 4)(33.5,49] 24.053491 1.829431 13.148074 1.982315e-38
## cut(age, 4)(49,64.5] 23.664559 2.067958 11.443444 1.040750e-29
## cut(age, 4)(64.5,80.1] 7.640592 4.987424 1.531972 1.256350e-01
Splines
library(splines)
fit=lm(wage~bs(age,knots=c(25,40,60)),data=Wage)
pred=predict(fit,newdata=list(age=age.grid),se=T)
plot(age,wage,col="gray")
lines(age.grid,pred$fit,lwd=2)
lines(age.grid,pred$fit+2*pred$se,lty="dashed")
lines(age.grid,pred$fit-2*pred$se,lty="dashed")
dim(bs(age,knots=c(25,40,60)))## [1] 3000 6
## [1] 3000 6
## 25% 50% 75%
## 33.75 42.00 51.00
#nature spline
fit2=lm(wage~ns(age,df=4),data=Wage)
pred2=predict(fit2,newdata=list(age=age.grid),se=T)
lines(age.grid, pred2$fit,col="red",lwd=2)plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Smoothing Spline")
fit=smooth.spline(age,wage,df=16)
fit2=smooth.spline(age,wage,cv=TRUE)
fit2$df## [1] 6.794596
lines(fit,col="red",lwd=2)
lines(fit2,col="blue",lwd=2)
legend("topright",legend=c("16 DF","6.8 DF"),col=c("red","blue"),lty=1,lwd=2,cex=.8)plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Local Regression")
fit=loess(wage~age,span=.2,data=Wage)
fit2=loess(wage~age,span=.5,data=Wage)
lines(age.grid,predict(fit,data.frame(age=age.grid)),col="red",lwd=2)
lines(age.grid,predict(fit2,data.frame(age=age.grid)),col="blue",lwd=2)
legend("topright",legend=c("Span=0.2","Span=0.5"),col=c("red","blue"),lty=1,lwd=2,cex=.8)GAMs
gam1=lm(wage~ns(year,4)+ns(age,5)+education,data=Wage)
library(gam)
#General additive model
#適用情況:can not be expressed 簡單函數
gam.m3=gam(wage~s(year,4)+s(age,5)+education,data=Wage)
par(mfrow=c(1,3))
plot(gam.m3, se=TRUE,col="blue")gam.m1=gam(wage~s(age,5)+education,data=Wage)
gam.m2=gam(wage~year+s(age,5)+education,data=Wage)
anova(gam.m1,gam.m2,gam.m3,test="F")## Analysis of Deviance Table
##
## Model 1: wage ~ s(age, 5) + education
## Model 2: wage ~ year + s(age, 5) + education
## Model 3: wage ~ s(year, 4) + s(age, 5) + education
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 2990 3711731
## 2 2989 3693842 1 17889.2 14.4771 0.0001447 ***
## 3 2986 3689770 3 4071.1 1.0982 0.3485661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Call: gam(formula = wage ~ s(year, 4) + s(age, 5) + education, data = Wage)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -119.43 -19.70 -3.33 14.17 213.48
##
## (Dispersion Parameter for gaussian family taken to be 1235.69)
##
## Null Deviance: 5222086 on 2999 degrees of freedom
## Residual Deviance: 3689770 on 2986 degrees of freedom
## AIC: 29887.75
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(year, 4) 1 27162 27162 21.981 2.877e-06 ***
## s(age, 5) 1 195338 195338 158.081 < 2.2e-16 ***
## education 4 1069726 267432 216.423 < 2.2e-16 ***
## Residuals 2986 3689770 1236
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## s(year, 4) 3 1.086 0.3537
## s(age, 5) 4 32.380 <2e-16 ***
## education
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
gam.lo=gam(wage~s(year,df=4)+lo(age,span=0.7)+education,data=Wage)
par(mfrow=c(1,3))
plot.Gam(gam.lo, se=TRUE, col="green")#logistic regression:I()+binomial
gam.lr=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage)##
## education FALSE TRUE
## 1. < HS Grad 268 0
## 2. HS Grad 966 5
## 3. Some College 643 7
## 4. College Grad 663 22
## 5. Advanced Degree 381 45
gam.lr.s=gam(I(wage>250)~year+s(age,df=5)+education,family=binomial,data=Wage,subset=(education!="1. < HS Grad"))
plot(gam.lr.s,se=T,col="green")