This essay represents the vision of Divyosmi Goswami, a data reporter, who has sought to develop a research agenda in response to the massive Indian unemployment crisis that has been evoked by the COVID-19 pandemic. The research agenda includes exploring how this unemployment crisis may differ from previous unemployment periods; predicting the trajectory of unemployment in different states of India; How better/worse the scenario shall be in the coming years; Ask some of the most intriguing questions.
Keywords: Unemployment, Precarious work, Work-family interface, Inequality, Youth unemployment, COVID-19, Unemployment intervention, Unemployment in India, Poverty.
The following are the results of my research. It is disheartening to see that though the world is advancing into greater and wider ranges of technologies, people still suffer from hunger, poverty, gender inequality and unemployment. Children suffer from child labour. I am making this for the people to know and for people to drive changes. Let us see how the economy will be scaling up, we need to prepare ourselves accordingly. If my report does not match with any other report or government records then i have nothing to do than showing regret. Thank you.
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'stringr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(waffle)
## Warning: package 'waffle' was built under R version 4.0.5
library(mlbench)
## Warning: package 'mlbench' was built under R version 4.0.5
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.5
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.0.5
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
urt_uemp = read.csv(url("https://bit.ly/haesunemp"))
head(urt_uemp)
## Region Date Frequency Estimated.Unemployment.Rate....
## 1 Andhra Pradesh 31-01-2016 M 17.91
## 2 Andhra Pradesh 29-02-2016 M 9.98
## 3 Andhra Pradesh 31-03-2016 M 10.72
## 4 Andhra Pradesh 30-04-2016 M 5.51
## 5 Andhra Pradesh 31-05-2016 M 6.29
## 6 Andhra Pradesh 30-06-2016 M 4.51
## Estimated.Employed Estimated.Labour.Participation.Rate....
## 1 20626291 62.67
## 2 19334918 53.50
## 3 19646970 54.73
## 4 18929583 49.76
## 5 21163390 56.02
## 6 18431598 47.81
urt_uemp$unemp.rate = urt_uemp[,4]
urt_uemp$employed = urt_uemp[,5]
urt_uemp$part.rate = urt_uemp[,6]
modeld = urt_uemp[,c(1,2,7,8,9)]
viz_data = urt_uemp[,c(1,2,7,8,9)]
rm(urt_uemp)
p <- function(..., sep='') {
paste(..., sep=sep, collapse=sep)
}
ind = c(67,134,201,268,335,401,468,535,602,668,735,802,869,936,1004,1046,1113,1180,1247,1314,1346,1412,1480,1526,1593,1660,1727)#hard-coded
c = 1
head(viz_data)
## Region Date unemp.rate employed part.rate
## 1 Andhra Pradesh 31-01-2016 17.91 20626291 62.67
## 2 Andhra Pradesh 29-02-2016 9.98 19334918 53.50
## 3 Andhra Pradesh 31-03-2016 10.72 19646970 54.73
## 4 Andhra Pradesh 30-04-2016 5.51 18929583 49.76
## 5 Andhra Pradesh 31-05-2016 6.29 21163390 56.02
## 6 Andhra Pradesh 30-06-2016 4.51 18431598 47.81
for(eind in ind){
if(c == 1){
reg = viz_data[c(1:eind),]
c = c+1
}
else{
reg = viz_data[c(((ind[[c-1]]+1):eind)),]
c = c+1
}
p1 = ggplot(data = reg, aes(x = Date, y = unemp.rate,group=1))+
geom_line()+
geom_point()+
labs(x = "Date",
y = "Estimated Unemployment Rate",
title = p("Estimated Unemployment Rate of ",reg[1,1]),
subtitle = p(reg[1,1],"; 2016-21"))
p2 = ggplot(data = reg, aes(x = Date, y = employed,group=1))+
geom_point()+
geom_line()+
labs(x = "Date",
y = "Estimated employed",
title = p("Estimated employed of ",reg[1,1]),
subtitle = p(reg[1,1]," ; 2016-21"))
p3 = ggplot(data = reg, aes(x = Date, y = part.rate,group=2))+
geom_line()+
geom_point()+
labs(x = "Date",
y = "Estimated participation rate",
title = p("Estimated participaton rate of ",reg[1,1]),
subtitle = p(reg[1,1]," ; 2016-21"))
print(p1+theme_dark()+theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 1)))
print(p2+theme_dark()+theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 1)))
print(p3+theme_dark()+theme(axis.text.x = element_text(angle = 90, hjust = 1,vjust = 1)))
print(head(reg))
rm(reg)
}
## Region Date unemp.rate employed part.rate
## 1 Andhra Pradesh 31-01-2016 17.91 20626291 62.67
## 2 Andhra Pradesh 29-02-2016 9.98 19334918 53.50
## 3 Andhra Pradesh 31-03-2016 10.72 19646970 54.73
## 4 Andhra Pradesh 30-04-2016 5.51 18929583 49.76
## 5 Andhra Pradesh 31-05-2016 6.29 21163390 56.02
## 6 Andhra Pradesh 30-06-2016 4.51 18431598 47.81
## Region Date unemp.rate employed part.rate
## 68 Assam 31-01-2016 5.89 11359949 51.38
## 69 Assam 29-02-2016 12.68 11099822 54.01
## 70 Assam 31-03-2016 4.31 10185318 45.13
## 71 Assam 30-04-2016 0.65 10034857 42.74
## 72 Assam 31-05-2016 3.78 10742464 47.15
## 73 Assam 30-06-2016 10.23 10091196 47.38
## Region Date unemp.rate employed part.rate
## 135 Bihar 31-01-2016 4.36 28057185 41.53
## 136 Bihar 29-02-2016 6.71 30498497 46.19
## 137 Bihar 31-03-2016 3.46 27221171 39.75
## 138 Bihar 30-04-2016 6.38 29658522 44.57
## 139 Bihar 31-05-2016 14.02 28478123 46.50
## 140 Bihar 30-06-2016 9.85 30522107 47.43
## Region Date unemp.rate employed part.rate
## 202 Chhattisgarh 31-01-2016 2.38 8062186 41.83
## 203 Chhattisgarh 29-02-2016 4.90 8160104 43.37
## 204 Chhattisgarh 31-03-2016 3.07 8964452 46.64
## 205 Chhattisgarh 30-04-2016 3.09 8310606 43.15
## 206 Chhattisgarh 31-05-2016 5.41 8584637 45.56
## 207 Chhattisgarh 30-06-2016 4.60 8525708 44.77
## Region Date unemp.rate employed part.rate
## 269 Delhi 31-01-2016 10.61 5482637 44.00
## 270 Delhi 29-02-2016 10.84 4829996 38.78
## 271 Delhi 31-03-2016 11.05 5513829 44.26
## 272 Delhi 30-04-2016 6.30 5954845 45.28
## 273 Delhi 31-05-2016 17.30 5523948 47.48
## 274 Delhi 30-06-2016 15.68 5029744 42.30
## Region Date unemp.rate employed part.rate
## 336 Goa 31-01-2016 12.31 597685 56.13
## 337 Goa 29-02-2016 10.75 582685 53.71
## 338 Goa 31-03-2016 5.11 615303 53.29
## 339 Goa 31-05-2016 16.04 590215 57.64
## 340 Goa 30-06-2016 13.91 586814 55.83
## 341 Goa 31-07-2016 5.25 623983 53.88
## Region Date unemp.rate employed part.rate
## 402 Gujarat 31-01-2016 3.44 21488124 46.35
## 403 Gujarat 29-02-2016 4.12 21120270 45.80
## 404 Gujarat 31-03-2016 4.07 21774339 47.10
## 405 Gujarat 30-04-2016 3.30 22470289 48.13
## 406 Gujarat 31-05-2016 2.63 23071104 48.98
## 407 Gujarat 30-06-2016 2.92 21713869 46.15
## Region Date unemp.rate employed part.rate
## 469 Haryana 31-01-2016 14.82 7990833 46.62
## 470 Haryana 29-02-2016 11.83 7984203 44.91
## 471 Haryana 31-03-2016 10.40 8061205 44.53
## 472 Haryana 30-04-2016 13.57 7932826 45.33
## 473 Haryana 31-05-2016 10.78 8213227 45.36
## 474 Haryana 30-06-2016 11.67 7666571 42.68
## Region Date unemp.rate employed part.rate
## 536 Himachal Pradesh 31-01-2016 3.16 2252583 41.60
## 537 Himachal Pradesh 29-02-2016 3.32 2220379 41.01
## 538 Himachal Pradesh 31-03-2016 5.54 2335451 44.08
## 539 Himachal Pradesh 30-04-2016 4.24 1982465 36.85
## 540 Himachal Pradesh 31-05-2016 4.11 2279919 42.25
## 541 Himachal Pradesh 30-06-2016 1.38 2270199 40.84
## Region Date unemp.rate employed part.rate
## 603 Jammu & Kashmir 31-01-2016 12.31 3377251 41.10
## 604 Jammu & Kashmir 29-02-2016 17.97 3197946 41.52
## 605 Jammu & Kashmir 31-03-2016 13.80 3393838 41.84
## 606 Jammu & Kashmir 30-04-2016 10.49 3720119 44.08
## 607 Jammu & Kashmir 31-05-2016 22.02 3330402 45.20
## 608 Jammu & Kashmir 30-06-2016 21.30 3301976 44.31
## Region Date unemp.rate employed part.rate
## 669 Jharkhand 31-01-2016 13.05 8064211 38.75
## 670 Jharkhand 29-02-2016 11.13 9382717 44.02
## 671 Jharkhand 31-03-2016 8.97 8987924 41.07
## 672 Jharkhand 30-04-2016 7.97 10355816 46.71
## 673 Jharkhand 31-05-2016 11.16 8368601 39.01
## 674 Jharkhand 30-06-2016 9.64 9580041 43.82
## Region Date unemp.rate employed part.rate
## 736 Karnataka 31-01-2016 6.38 23141471 49.05
## 737 Karnataka 29-02-2016 5.27 22647222 47.35
## 738 Karnataka 31-03-2016 3.26 22105452 45.17
## 739 Karnataka 30-04-2016 4.94 22235918 46.15
## 740 Karnataka 31-05-2016 11.49 23357728 51.96
## 741 Karnataka 30-06-2016 3.07 23269877 47.18
## Region Date unemp.rate employed part.rate
## 803 Kerala 31-01-2016 18.40 10188518 46.30
## 804 Kerala 29-02-2016 23.53 10223651 49.54
## 805 Kerala 31-03-2016 22.91 9605152 46.12
## 806 Kerala 30-04-2016 18.38 10078897 45.67
## 807 Kerala 31-05-2016 11.96 10320728 43.32
## 808 Kerala 30-06-2016 10.34 10135488 41.73
## Region Date unemp.rate employed part.rate
## 870 Madhya Pradesh 31-01-2016 4.07 25565126 48.60
## 871 Madhya Pradesh 29-02-2016 4.36 21964907 41.79
## 872 Madhya Pradesh 31-03-2016 6.62 20672491 40.20
## 873 Madhya Pradesh 30-04-2016 8.73 21505008 42.69
## 874 Madhya Pradesh 31-05-2016 6.63 25480320 49.33
## 875 Madhya Pradesh 30-06-2016 2.86 22389513 41.58
## Region Date unemp.rate employed part.rate
## 937 Maharashtra 31-01-2016 4.62 41175830 46.77
## 938 Maharashtra 29-02-2016 3.69 41947738 47.11
## 939 Maharashtra 31-03-2016 5.92 41426005 47.53
## 940 Maharashtra 30-04-2016 9.92 42200931 50.47
## 941 Maharashtra 31-05-2016 9.05 43656285 51.60
## 942 Maharashtra 30-06-2016 6.58 44556278 51.18
## Region Date unemp.rate employed part.rate
## 1005 Meghalaya 28-02-2018 7.92 1138690 56.50
## 1006 Meghalaya 31-03-2018 6.72 1067546 52.16
## 1007 Meghalaya 30-04-2018 4.04 1168761 55.38
## 1008 Meghalaya 31-05-2018 10.54 1149825 58.30
## 1009 Meghalaya 30-06-2018 6.73 1111337 53.91
## 1010 Meghalaya 31-07-2018 3.51 1178817 55.14
## Region Date unemp.rate employed part.rate
## 1047 Odisha 31-01-2016 7.06 15086246 49.41
## 1048 Odisha 29-02-2016 10.45 13815790 46.89
## 1049 Odisha 31-03-2016 12.64 15149389 52.62
## 1050 Odisha 30-04-2016 8.67 13731170 45.55
## 1051 Odisha 31-05-2016 7.85 14699097 48.25
## 1052 Odisha 30-06-2016 10.60 13928832 47.05
## Region Date unemp.rate employed part.rate
## 1114 Puducherry 31-01-2016 12.53 477055 49.91
## 1115 Puducherry 29-02-2016 16.32 520965 56.84
## 1116 Puducherry 31-03-2016 4.77 481553 46.05
## 1117 Puducherry 30-04-2016 1.42 527271 48.59
## 1118 Puducherry 31-05-2016 5.96 473039 45.59
## 1119 Puducherry 30-06-2016 13.55 521557 54.54
## Region Date unemp.rate employed part.rate
## 1181 Punjab 31-01-2016 7.66 9754023 46.27
## 1182 Punjab 29-02-2016 12.38 9262659 46.23
## 1183 Punjab 31-03-2016 8.32 9643108 45.92
## 1184 Punjab 30-04-2016 7.28 9656125 45.38
## 1185 Punjab 31-05-2016 5.07 10078832 46.19
## 1186 Punjab 30-06-2016 10.58 9560266 46.43
## Region Date unemp.rate employed part.rate
## 1248 Rajasthan 31-01-2016 6.72 19348695 40.49
## 1249 Rajasthan 29-02-2016 3.82 19918070 40.34
## 1250 Rajasthan 31-03-2016 7.56 18609185 39.12
## 1251 Rajasthan 30-04-2016 11.45 18644477 40.82
## 1252 Rajasthan 31-05-2016 8.82 18690639 39.65
## 1253 Rajasthan 30-06-2016 7.16 19780871 41.12
## Region Date unemp.rate employed part.rate
## 1315 Sikkim 30-09-2018 11.25 280884 58.62
## 1316 Sikkim 31-10-2018 12.14 207652 43.66
## 1317 Sikkim 30-11-2018 4.69 258027 49.87
## 1318 Sikkim 31-01-2019 13.24 274484 57.97
## 1319 Sikkim 28-02-2019 8.30 227220 45.28
## 1320 Sikkim 31-03-2019 6.80 265777 51.97
## Region Date unemp.rate employed part.rate
## 1347 Tamil Nadu 31-01-2016 7.59 30805567 55.23
## 1348 Tamil Nadu 29-02-2016 4.41 31278490 54.13
## 1349 Tamil Nadu 31-03-2016 11.60 30359801 56.73
## 1350 Tamil Nadu 30-04-2016 9.77 30660799 56.04
## 1351 Tamil Nadu 31-05-2016 9.11 30645647 55.52
## 1352 Tamil Nadu 30-06-2016 6.79 30171453 53.22
## Region Date unemp.rate employed part.rate
## 1413 Tamil Nadu 31-07-2021 4.78 24651814 38.66
## 1414 Telangana 31-01-2016 7.36 17815321 66.91
## 1415 Telangana 29-02-2016 4.67 16508460 60.14
## 1416 Telangana 31-03-2016 4.76 15830168 57.62
## 1417 Telangana 30-04-2016 6.49 17066847 63.15
## 1418 Telangana 31-05-2016 6.30 16361651 60.31
## Region Date unemp.rate employed part.rate
## 1481 Tripura 30-09-2017 19.41 1218132 49.47
## 1482 Tripura 31-10-2017 8.51 1468082 52.43
## 1483 Tripura 30-11-2017 8.35 1266700 45.08
## 1484 Tripura 31-01-2018 31.11 1399231 66.00
## 1485 Tripura 28-02-2018 30.23 1416297 65.85
## 1486 Tripura 31-03-2018 15.19 1301630 49.70
## Region Date unemp.rate employed part.rate
## 1527 Uttar Pradesh 31-01-2016 14.91 55745996 44.88
## 1528 Uttar Pradesh 29-02-2016 15.45 55421160 44.80
## 1529 Uttar Pradesh 31-03-2016 14.39 56956539 45.37
## 1530 Uttar Pradesh 30-04-2016 15.38 56075058 45.10
## 1531 Uttar Pradesh 31-05-2016 16.42 57530487 46.74
## 1532 Uttar Pradesh 30-06-2016 17.98 56695242 46.83
## Region Date unemp.rate employed part.rate
## 1594 Uttarakhand 31-01-2016 1.31 4445674 57.37
## 1595 Uttarakhand 29-02-2016 4.53 3639695 48.45
## 1596 Uttarakhand 31-03-2016 2.42 2979208 38.72
## 1597 Uttarakhand 30-04-2016 1.26 3983774 51.06
## 1598 Uttarakhand 31-05-2016 1.08 4800244 61.28
## 1599 Uttarakhand 30-06-2016 2.85 3465939 44.96
## Region Date unemp.rate employed part.rate
## 1661 West Bengal 31-01-2016 9.04 31812990 47.11
## 1662 West Bengal 29-02-2016 6.19 30811585 44.16
## 1663 West Bengal 31-03-2016 8.24 31201247 45.64
## 1664 West Bengal 30-04-2016 7.54 31812979 46.09
## 1665 West Bengal 31-05-2016 6.60 32086784 45.93
## 1666 West Bengal 30-06-2016 6.85 30067878 43.08
ind = seq(67,1794,67)#imbalanced
ind = c(67,134,201,268,335,401,468,535,602,668,735,802,869,936,1004,1046,1113,1180,1247,1314,1346,1412,1480,1526,1593,1660,1727)#hard-coded
data = viz_data[ind,c(1,2,3,4,5)]
head(data)
## Region Date unemp.rate employed part.rate
## 67 Andhra Pradesh 31-07-2021 8.72 15473355 38.51
## 134 Assam 31-07-2021 1.90 11247012 42.81
## 201 Bihar 31-07-2021 13.02 25373093 35.86
## 268 Chhattisgarh 31-07-2021 3.25 8798367 39.76
## 335 Delhi 31-07-2021 10.70 5013429 34.40
## 401 Goa 31-07-2021 21.43 398738 38.86
p1 = ggplot(data=data,aes(x=Region,y=unemp.rate))+
geom_bar(stat = "identity")+
labs(x="Region",y="Unemployment Rate",title = "Recent Unemployment rates of all states in India",subtitle = "31-7-21")+
theme(axis.text.x = element_text(angle = 60, hjust = 1,vjust = 1))
#there is huge imbalance in data so need to code it out in the hard way.
print(p1+theme(axis.text.x = element_text(angle = 60, hjust = 1, vjust = 1)))
p2 = ggplot(data=data,aes(x=Region,y=employed))+
geom_bar(stat = "identity")+
labs(x="Region",y="All employed",title = "Recent employed of all states in India",subtitle = "31-7-21")+
theme(axis.text.x = element_text(angle = 60, hjust = 1,vjust = 1))
#there is huge imbalance in data so need to code it out in the hard way.
print(p2+theme(axis.text.x = element_text(angle = 60, hjust = 1)))
p3 = ggplot(data=data,aes(x=Region,y=part.rate))+
geom_bar(stat = "identity")+
labs(x="Region",y="Participation Rate",title = "Recent Participation rates of all states in India",subtitle = "31-7-21")+
theme(axis.text.x = element_text(angle = 60, hjust = 1))
#there is huge imbalance in data so need to code it out in the hard way.
print(p3+theme(axis.text.x = element_text(angle = 60, hjust = 1)))
modeld$day = sapply(strsplit(as.character(modeld$Date), '-'), function(x) x[1])
modeld$month = sapply(strsplit(as.character(modeld$Date), '-'), function(x) x[2])
modeld$year = sapply(strsplit(as.character(modeld$Date), '-'), function(x) x[3])
modeld$day = as.numeric(modeld$day)
modeld$month = as.numeric(modeld$month)
modeld$year = as.numeric(modeld$year)
c = 1
for(eind in ind){
if(c == 1){
reg = modeld[c(1:eind),]
c = c+1
}
else{
reg = modeld[c((ind[[(c-1)]]+1):eind),]
c = c+1
}
unemp.rate.mod = lm(formula=unemp.rate~day+month+year,data = reg)
xtest = data.frame(Date=c("31-01-2022","28-02-2022","31-03-2022","30-04-2022","31-05-2022","30-06-2022","31-07-2022","31-08-2022","31-09-2022","30-10-2022","31-11-2022","30-12-2022","31-01-2023","28-02-2023","31-03-2023","30-04-2023","31-05-2023","30-06-2023","31-07-2023","31-08-2023","31-09-2023","30-10-2023","31-11-2023","30-12-2023","31-01-2024","29-02-2024","31-03-2024","30-04-2024","31-05-2024","30-06-2024","31-07-2024","31-08-2024","31-09-2024","30-10-2024","31-11-2024","30-12-2024","31-01-2025","28-02-2025","31-03-2025","30-04-2025","31-05-2025","30-06-2025","31-07-2025","31-08-2025","31-09-2025","30-10-2025","31-11-2025","30-12-2025","31-01-2026","28-02-2026","31-03-2026","30-04-2026","31-05-2026","30-06-2026","31-07-2026","31-08-2026","31-09-2026","30-10-2026","31-11-2026","30-12-2026","31-01-2027","28-02-2027","31-03-2027","30-04-2027","31-05-2027","30-06-2027","31-07-2027","31-08-2027","31-09-2027","30-10-2027","31-11-2027","30-12-2027"),
day = c(31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,29,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30),
month = c(1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12),
year = c(2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027))
reg1 = reg[,c(2,6,7,8)]
extest = bind_rows(reg1,xtest)
unemp.sy = data.frame(unemp.rate=predict(unemp.rate.mod,newdata = extest))
extest = bind_cols(extest,unemp.sy)
p1 = ggplot(data = extest,aes(x=Date,y=unemp.rate,group=1,colour=unemp.rate))+
geom_point()+
geom_line()+
labs(x="timeline",y="trajectory of unemployment rates",title=reg[c(1),c(1)],subtitle ="2016-2027" )
print(p1+theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 1)))
emp.mod = lm(formula=employed~day+month+year,data = reg)
xtest = data.frame(Date=c("31-01-2022","28-02-2022","31-03-2022","30-04-2022","31-05-2022","30-06-2022","31-07-2022","31-08-2022","31-09-2022","30-10-2022","31-11-2022","30-12-2022","31-01-2023","28-02-2023","31-03-2023","30-04-2023","31-05-2023","30-06-2023","31-07-2023","31-08-2023","31-09-2023","30-10-2023","31-11-2023","30-12-2023","31-01-2024","29-02-2024","31-03-2024","30-04-2024","31-05-2024","30-06-2024","31-07-2024","31-08-2024","31-09-2024","30-10-2024","31-11-2024","30-12-2024","31-01-2025","28-02-2025","31-03-2025","30-04-2025","31-05-2025","30-06-2025","31-07-2025","31-08-2025","31-09-2025","30-10-2025","31-11-2025","30-12-2025","31-01-2026","28-02-2026","31-03-2026","30-04-2026","31-05-2026","30-06-2026","31-07-2026","31-08-2026","31-09-2026","30-10-2026","31-11-2026","30-12-2026","31-01-2027","28-02-2027","31-03-2027","30-04-2027","31-05-2027","30-06-2027","31-07-2027","31-08-2027","31-09-2027","30-10-2027","31-11-2027","30-12-2027"),
day = c(31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,29,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30),
month = c(1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12),
year = c(2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027))
reg1 = reg[,c(2,6,7,8)]
extest = bind_rows(reg1,xtest)
emp = data.frame(emp=predict(emp.mod,newdata = extest))
extest = bind_cols(extest,emp)
p2 = ggplot(data = extest,aes(x=Date,y=emp,group=1,colour=emp))+
geom_point()+
geom_line()+
labs(x="timeline",y="trajectory of total employments",title=reg[c(1),c(1)],subtitle ="2016-2027" )
print(p2+theme(axis.text.x = element_text(angle = 90, hjust = 1,vjust = 1)))
part.mod = lm(formula=part.rate~day+month+year,data = reg)
xtest = data.frame(Date=c("31-01-2022","28-02-2022","31-03-2022","30-04-2022","31-05-2022","30-06-2022","31-07-2022","31-08-2022","31-09-2022","30-10-2022","31-11-2022","30-12-2022","31-01-2023","28-02-2023","31-03-2023","30-04-2023","31-05-2023","30-06-2023","31-07-2023","31-08-2023","31-09-2023","30-10-2023","31-11-2023","30-12-2023","31-01-2024","29-02-2024","31-03-2024","30-04-2024","31-05-2024","30-06-2024","31-07-2024","31-08-2024","31-09-2024","30-10-2024","31-11-2024","30-12-2024","31-01-2025","28-02-2025","31-03-2025","30-04-2025","31-05-2025","30-06-2025","31-07-2025","31-08-2025","31-09-2025","30-10-2025","31-11-2025","30-12-2025","31-01-2026","28-02-2026","31-03-2026","30-04-2026","31-05-2026","30-06-2026","31-07-2026","31-08-2026","31-09-2026","30-10-2026","31-11-2026","30-12-2026","31-01-2027","28-02-2027","31-03-2027","30-04-2027","31-05-2027","30-06-2027","31-07-2027","31-08-2027","31-09-2027","30-10-2027","31-11-2027","30-12-2027"),
day = c(31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,29,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30,31,28,31,30,31,30,31,31,31,30,31,30),
month = c(1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12),
year = c(2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2023,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2024,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2025,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2026,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027,2027))
reg1 = reg[,c(2,6,7,8)]
extest = bind_rows(reg1,xtest)
part = data.frame(part=predict(part.mod,newdata = extest))
extest = bind_cols(extest,part)
p3 = ggplot(data = extest,aes(x=Date,y=part,group=1,colour=part))+
geom_point()+
geom_line()+
labs(x="timeline",y="trajectory of Participation Rates",title=reg[c(1),c(1)],subtitle ="2016-2027" )
print(p3+theme(axis.text.x = element_text(angle = 90, hjust = 1,vjust = 1)))
}
This research was made so that we can accustom ourselves with the future. Mere numbers cannot decide whether we shall succeed or fail. The numbers are probabilistic. Our success lies in our skills but the future preperation is necessary. Let us work constantly to drive ourselves towards a brighter and better future. Thank you. Take care.