10-7
## [1] 3
27/3.0
## [1] 9
35.46 *1.18
## [1] 41.8428
1+3
## [1] 4
print('hello world')
## [1] "hello world"
99 + 1
## [1] 100
#3^2
3^2
## [1] 9
pi
## [1] 3.141593
pi^2
## [1] 9.869604
3.141593 * 3.141593
## [1] 9.869607
#square
3^2
## [1] 9
5-2
## [1] 3
5/2
## [1] 2.5
5*3
## [1] 15
#Q: 5 to the 3rd power?
5^3
## [1] 125
# * means times
5*5*5
## [1] 125
#natural log, No 'ln'
log10(100)
## [1] 2
#exponetial function
exp(pi)
## [1] 23.14069
exp(0)
## [1] 1
#square-root
sqrt(pi)
## [1] 1.772454
sqrt(100)
## [1] 10
#Q, 100 to the 1/2 power
100^0.5
## [1] 10
semicolon is not required, but is a good habit.
#these are arrays (vectors)
#x = seq(0,10, 0.1)
#x;
x <- 5:9; # = means assignment, x will stay in memory
x;
## [1] 5 6 7 8 9
1:15 #no assignment, no results stay in memory
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
z <- 1:15;
x[1]
## [1] 5
x = 3:10
x
## [1] 3 4 5 6 7 8 9 10
length(x) #length() is an function in R
## [1] 8
#Q what does length() do?
help(length)
?length
#look for helps
?seq
help(seq)
?length
x = 3:10
x+1 #no assignment
## [1] 4 5 6 7 8 9 10 11
x = x * 2; # what happens to x?
#The difference bw theese two lines is an important computing concept
# x =x+1, assign a new value from righthandside to the lefthandside.
x;
## [1] 6 8 10 12 14 16 18 20
y = x+4
#simple plot
plot( y ~ x, main= "y ~ x" );
plot( x ~ y, main= "x~y" )
x = 1:30;
y = x;
plot( y ~ x, pch=x);
## Warning in plot.xy(xy, type, ...): unimplemented pch value '26'
## Warning in plot.xy(xy, type, ...): unimplemented pch value '27'
## Warning in plot.xy(xy, type, ...): unimplemented pch value '28'
## Warning in plot.xy(xy, type, ...): unimplemented pch value '29'
## Warning in plot.xy(xy, type, ...): unimplemented pch value '30'
#plot( y ~ x, main="first plot" );
#plot( x ~ y, main="second plot" )
#?plot
#exercise
# modify plot( y ~ x ) to line plot
# by adding type into the command
# ... ...
#plot( y ~ x, main="line-point plot", type='b', pch=19 )
#this is another way of specifying an array
x = c( 0.1, 0.3, 1, 3, 5, 10, 0.001, 0.913 );
w = c(1, 3, 5, 7)
x[4:6]
## [1] 3 5 10
x[2]
## [1] 0.3
x[c(1,5,2)]
## [1] 0.1 5.0 0.3
y = log(x);
plot( y ~ x, pch=19 );
mycolors = c("red", "lightblue", "blue", "gold")
x = 1:4
y = x + 2
plot( y ~ x, col=mycolors, pch=19)