Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)

end <- dmy('01-08-2021')
symbol <-fredr_series_observations(series_id = "MRTSIM44000USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
253 2021-01-01 613040
254 2021-02-01 617796
255 2021-03-01 613942
256 2021-04-01 605024
257 2021-05-01 590741
258 2021-06-01 592066
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Retail (Excluding Food Services) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)

symbol <-fredr_series_observations(series_id = "MRTSIM448USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
253 2021-01-01 46147
254 2021-02-01 47594
255 2021-03-01 47766
256 2021-04-01 48193
257 2021-05-01 47672
258 2021-06-01 47528
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-12-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Clothing and Clothing Accessory Stores _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Inventories: Department Stores (MRTSIM4521EUSS)

symbol <-fredr_series_observations(series_id = "MRTSIM4521EUSS", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
253 2021-01-01 20020
254 2021-02-01 19947
255 2021-03-01 19844
256 2021-04-01 20007
257 2021-05-01 20190
258 2021-06-01 20393
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Department Stores (MRTSIM4521EUSS)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Millions of dollars",
      title = "Retail Inventories: Department Stores (MRTSIM4521EUSS) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

##Retail Sales: New Car Dealers (MRTSMPCSM44111USN)

symbol <-fredr_series_observations(series_id = "BUS5615TAXABL144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
65 2019-10-01 NA
66 2020-01-01 3688
67 2020-04-01 800
68 2020-07-01 1471
69 2020-10-01 1250
70 2021-01-01 1624
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Retail Sales: New Car Dealers (MRTSMPCSM44111USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)

symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
30 2019-10-01 9169
31 2020-01-01 8958
32 2020-04-01 7526
33 2020-07-01 8326
34 2020-10-01 8305
35 2021-01-01 8196
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = " Total Discharges for General Medical and Surgical Hospitals",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Thousands of Patents",
      title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
44 2019-10-01 258316
45 2020-01-01 244116
46 2020-04-01 214401
47 2020-07-01 244732
48 2020-10-01 262083
49 2021-01-01 247008
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Expense for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Outpatient Care Centers, All Establishments (REV6214ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV6214ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
44 2019-10-01 48556
45 2020-01-01 46091
46 2020-04-01 41254
47 2020-07-01 45386
48 2020-10-01 49333
49 2021-01-01 47007
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Revenue for Outpatient Care Centers",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Outpatient Care Centers _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Ambulatory Health Care Services, All Establishments (REV621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
44 2019-10-01 293152
45 2020-01-01 279294
46 2020-04-01 238837
47 2020-07-01 280055
48 2020-10-01 295599
49 2021-01-01 284895
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
44 2019-10-01 11082
45 2020-01-01 11067
46 2020-04-01 7634
47 2020-07-01 9130
48 2020-10-01 10204
49 2021-01-01 9989
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()