Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)
end <- dmy('01-08-2021')
symbol <-fredr_series_observations(series_id = "MRTSIM44000USN",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
253
|
2021-01-01
|
613040
|
254
|
2021-02-01
|
617796
|
255
|
2021-03-01
|
613942
|
256
|
2021-04-01
|
605024
|
257
|
2021-05-01
|
590741
|
258
|
2021-06-01
|
592066
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Retail (Excluding Food Services) (MRTSIM44000USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Retail (Excluding Food Services) _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)
symbol <-fredr_series_observations(series_id = "MRTSIM448USN",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
253
|
2021-01-01
|
46147
|
254
|
2021-02-01
|
47594
|
255
|
2021-03-01
|
47766
|
256
|
2021-04-01
|
48193
|
257
|
2021-05-01
|
47672
|
258
|
2021-06-01
|
47528
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Clothing and Clothing Accessory Stores (MRTSIM448USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-12-2020'), ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Clothing and Clothing Accessory Stores _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Retail Inventories: Department Stores (MRTSIM4521EUSS)
symbol <-fredr_series_observations(series_id = "MRTSIM4521EUSS",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
253
|
2021-01-01
|
20020
|
254
|
2021-02-01
|
19947
|
255
|
2021-03-01
|
19844
|
256
|
2021-04-01
|
20007
|
257
|
2021-05-01
|
20190
|
258
|
2021-06-01
|
20393
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Department Stores (MRTSIM4521EUSS)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Millions of dollars",
title = "Retail Inventories: Department Stores (MRTSIM4521EUSS) _ Short Term Trend",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

##Retail Sales: New Car Dealers (MRTSMPCSM44111USN)
symbol <-fredr_series_observations(series_id = "BUS5615TAXABL144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
65
|
2019-10-01
|
NA
|
66
|
2020-01-01
|
3688
|
67
|
2020-04-01
|
800
|
68
|
2020-07-01
|
1471
|
69
|
2020-10-01
|
1250
|
70
|
2021-01-01
|
1624
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Retail Sales: New Car Dealers (MRTSMPCSM44111USN)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)
symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
30
|
2019-10-01
|
9169
|
31
|
2020-01-01
|
8958
|
32
|
2020-04-01
|
7526
|
33
|
2020-07-01
|
8326
|
34
|
2020-10-01
|
8305
|
35
|
2021-01-01
|
8196
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = " Total Discharges for General Medical and Surgical Hospitals",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
258316
|
45
|
2020-01-01
|
244116
|
46
|
2020-04-01
|
214401
|
47
|
2020-07-01
|
244732
|
48
|
2020-10-01
|
262083
|
49
|
2021-01-01
|
247008
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Revenue for Outpatient Care Centers, All Establishments (REV6214ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "REV6214ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
48556
|
45
|
2020-01-01
|
46091
|
46
|
2020-04-01
|
41254
|
47
|
2020-07-01
|
45386
|
48
|
2020-10-01
|
49333
|
49
|
2021-01-01
|
47007
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Revenue for Outpatient Care Centers",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Outpatient Care Centers _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Revenue for Ambulatory Health Care Services, All Establishments (REV621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "REV621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
293152
|
45
|
2020-01-01
|
279294
|
46
|
2020-04-01
|
238837
|
47
|
2020-07-01
|
280055
|
48
|
2020-10-01
|
295599
|
49
|
2021-01-01
|
284895
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Revenue for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
11082
|
45
|
2020-01-01
|
11067
|
46
|
2020-04-01
|
7634
|
47
|
2020-07-01
|
9130
|
48
|
2020-10-01
|
10204
|
49
|
2021-01-01
|
9989
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=end, ymin = -Inf, ymax = Inf),
fill = "white", alpha = 0.04)+
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()
