IAT: absolute d of 0.15, 0.35, and 0.65 are considered small, medium, and large level of bias for individual scores. Positive d means bias towards arts / against Math.
iat = read_csv(here::here(params$arquivo_dados), col_types = "cccdc")
iat = iat %>%
mutate(sex = factor(sex, levels = c("m", "f"), ordered = TRUE))
glimpse(iat)
## Rows: 80
## Columns: 5
## $ session_id <chr> "2430718", "2430722", "2430809", "2430815", "2430817", "24…
## $ referrer <chr> "charles", "charles", "charles", "charles", "charles", "ch…
## $ sex <ord> m, f, f, f, f, f, f, f, f, f, m, f, f, f, f, m, f, m, f, f…
## $ d_art <dbl> 0.97678057, 0.92033888, 1.18732483, 1.36211139, 1.05197469…
## $ iat_exclude <chr> "Include", "Include", "Include", "Include", "Include", "In…
iat %>%
ggplot(aes(x = d_art, fill = sex, color = sex)) +
geom_histogram(binwidth = .2, alpha = .4, boundary = 0) +
geom_rug() +
facet_grid(sex ~ ., scales = "free_y") +
labs(title = "Distribuição de d_art") +
theme(legend.position = "None")
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1)
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1) +
stat_summary(geom = "point", fun = "mean", color = "red", size = 5) +
labs(title = "Distribuição e média (ponto vermelho) de d_art na amostra")
agrupado = iat %>%
group_by(sex) %>%
summarise(media = mean(d_art),
.groups = "drop")
agrupado
## # A tibble: 2 × 2
## sex media
## <ord> <dbl>
## 1 m 0.340
## 2 f 0.735
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
## [1] -0.394923
library(boot)
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(sex) %>%
summarise(media = mean(d_art), .groups = "drop")
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
}
booted <- boot(data = iat,
statistic = theta,
R = 2000)
ci = tidy(booted,
conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
glimpse(ci)
## Rows: 1
## Columns: 5
## $ statistic <dbl> -0.394923
## $ bias <dbl> 0.0009134011
## $ std.error <dbl> 0.108138
## $ conf.low <dbl> -0.6064252
## $ conf.high <dbl> -0.1692561
ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
scale_y_continuous(limits = c(-1.5, 1.5)) +
labs(x = "Diferença das médias",
y = "IAT homens - mulheres")
p1 = iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1, alpha = .7) +
stat_summary(geom = "point", fun = "mean", color = "red", size = 5)
p2 = ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
ylim(-1, 1) +
labs(x = "Diferença",
y = "IAT homens - mulheres")
grid.arrange(p1, p2, ncol = 2)
Em média, as mulheres que participaram do experimento tiveram uma associação implícita (medida pelo IAT) com a matemática negativa e mais forte, com média de 0.735132 o que significa que elas tem preferência por Arte à matemática. Analisando o gráfico de pontos, vemos qu apenas 3 mulheres possuem valores negativos, ou seja, apenas 3 possuem preferência por matemática. Homens tiveram uma associação também mais negativa com a matemática, indicando que também preferem Arte à matemática. Porém, menor que a das mulheres, com média de 0.340209. Houve uma considerável diferença entre homens e mulheres, com um valor de mais de 0.3. No gráfico, podemos verificar que o intervalo de confiança está totalmente em números negativos. Isso se dá porque a média masculina é menor que a feminina. O intervalo de confiança mostra que realmente os homens preferem mais matemática do que as mulheres, já que ele está totalmente inserido em valores negativos. O interessante nessa observação é que, analisando o gráfico de pontos, o numero de homens que preferem matemática em relação ao número de mulheres nem é grande. O que influencia fortemente nesse valor é justamente a amostra masculina que, apesar de ser menor e sua maioria preferir Arte, possui valor negativo e concentração de pontos maior em números negativos que mulheres, fazendo com que a preferencia masculina em matemática seja maior que a feminina. Os dados de nosso experimento portanto apontam que, nessa universidade, mulheres têm uma associação negativa consideravelmente mais forte e homens também têm uma associação negativa mais forte, porém, comparando os dois gêneros, homens podem ter atitudes negativas moderadamente mais fortes mas, em média, ainda preferem Artes.