df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTGUepm0ddAefpaILx5QR9eCBgvnY-st6FBfVf39W1meHwGGsXvb63iVhNFZ3DvwXCM9ZsFaVo4sdyp/pub?gid=1906853507&single=true&output=csv")

── Column specification ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  Tipo = col_character(),
  Tiempo = col_character(),
  `Viabilidad bacteriana` = col_number()
)

añadir una columna ID

Check

Outliers?

df %>% 
  ggplot(aes(x = `Viabilidad bacteriana`)) + 
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Cuál es outlier?

boxplot.stats(df$`Viabilidad bacteriana`)$out
[1] 21332
df %>% 
  ggplot(aes(x = `Viabilidad bacteriana`)) + 
  geom_histogram() + 
  facet_grid(Tipo ~ Tiempo)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

summary(df$`Viabilidad bacteriana`)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-7268.0   676.2  4802.5  4976.1  8922.2 21332.0 

chequear el valor negativo

Identificar outliers por cada grupo

Chequear esos valores

hay NAs?

any(is.na(df$`Viabilidad bacteriana`))
[1] FALSE

Verificar esfericidad

PENDIENTE

Análisis

df %>%
  group_by(Tipo, Tiempo) %>%
  summarise(n = n(), 
            mean = mean(`Viabilidad bacteriana`), 
            sd = sd(`Viabilidad bacteriana`))
`summarise()` has grouped output by 'Tipo'. You can override using the `.groups` argument.

Model

summary(anovaModelRM)

Error: ID
     Df    Sum Sq   Mean Sq
Tipo  1 175634105 175634105

Error: Within
             Df    Sum Sq   Mean Sq F value   Pr(>F)    
Tipo          1 2.684e+05    268378   0.015    0.904    
Tiempo        6 8.077e+08 134616667   7.376 1.18e-06 ***
Tipo:Tiempo   6 4.166e+07   6943169   0.380    0.890    
Residuals   111 2.026e+09  18251093                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The repeated-measures ANOVA (formula: Viabilidad bacteriana ~ Tipo * Tiempo + Error(ID)) suggests that:

Effect sizes were labelled following Field’s (2013) recommendations.

Plot

Pendiente

LS0tCnRpdGxlOiAiUmVwZWF0ZWQgbWVhc3VyZXMgQU5PVkEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpwYWNtYW46OnBfbG9hZCh0aWR5dmVyc2UpCmBgYAoKCmBgYHtyfQpkZiA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlRHVWVwbTBkZEFlZnBhSUx4NVFSOWVDQmd2blktc3Q2RkJmVmYzOVcxbWVId0dHc1h2YjYzaVZoTkZaM0R2d1hDTTlac0ZhVm80c2R5cC9wdWI/Z2lkPTE5MDY4NTM1MDcmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAphw7FhZGlyIHVuYSBjb2x1bW5hIElECgpgYGB7cn0KZGYgPC0gZGYgJT4lIAogIHJvd2lkX3RvX2NvbHVtbigiSUQiKQpgYGAKCmBgYHtyfQpoZWFkKGRmKQpgYGAKCiMjIENoZWNrCgojIyMgT3V0bGllcnM/CmBgYHtyfQpkZiAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKSArIAogIGdlb21faGlzdG9ncmFtKCkKYGBgCgpgYGB7cn0KZGYgJT4lIAogIGdncGxvdChhZXMoeCA9ICIiLCB5ID0gYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKSArIAogIGdlb21fYm94cGxvdCgpCmBgYApDdcOhbCBlcyBvdXRsaWVyPwoKYGBge3J9CmJveHBsb3Quc3RhdHMoZGYkYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApJG91dApgYGAKYGBge3J9CmRmICU+JSAKICBmaWx0ZXIoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgPiAyMTAwMCkKYGBgCgoKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkpICsgCiAgZ2VvbV9oaXN0b2dyYW0oKSArIAogIGZhY2V0X2dyaWQoVGlwbyB+IFRpZW1wbykKYGBgCgpgYGB7cn0Kc3VtbWFyeShkZiRgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkKYGBgCmNoZXF1ZWFyIGVsIHZhbG9yIG5lZ2F0aXZvCgoKYGBge3J9CmRmICU+JSAKICBmaWx0ZXIoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgPCAwKQpgYGAKCklkZW50aWZpY2FyIG91dGxpZXJzIHBvciBjYWRhIGdydXBvCmBgYHtyfQpwYWNtYW46OnBfbG9hZChyc3RhdGl4KQpgYGAKCgpgYGB7cn0KZGYgJT4lCiAgZ3JvdXBfYnkoVGlwbywgVGllbXBvKSAlPiUKICByc3RhdGl4OjppZGVudGlmeV9vdXRsaWVycyhgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkKYGBgCkNoZXF1ZWFyIGVzb3MgdmFsb3JlcwoKYGBge3J9CnBhY21hbjo6cF9sb2FkKGdncHVicikKYGBgCgoKYGBge3J9CgpgYGAKCgojIyMgaGF5IE5Bcz8KCmBgYHtyfQphbnkoaXMubmEoZGYkYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKQpgYGAKCgojIyMgVmVyaWZpY2FyIGVzZmVyaWNpZGFkCgpQRU5ESUVOVEUKCgojIyBBbsOhbGlzaXMKCgpgYGB7cn0KZGYgJT4lCiAgZ3JvdXBfYnkoVGlwbywgVGllbXBvKSAlPiUKICBzdW1tYXJpc2UobiA9IG4oKSwgCiAgICAgICAgICAgIG1lYW4gPSBtZWFuKGBWaWFiaWxpZGFkIGJhY3RlcmlhbmFgKSwgCiAgICAgICAgICAgIHNkID0gc2QoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKQogIAoKYGBgCgojIyBNb2RlbAoKYGBge3J9CmFub3ZhTW9kZWxSTSA8LSAgYW92KGBWaWFiaWxpZGFkIGJhY3RlcmlhbmFgIH4gVGlwbyogVGllbXBvICsgRXJyb3IoSUQpLCBkYXRhID0gZGYpCnN1bW1hcnkoYW5vdmFNb2RlbFJNKQpgYGAKClRoZSByZXBlYXRlZC1tZWFzdXJlcyBBTk9WQSAoZm9ybXVsYTogYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgfiBUaXBvICogVGllbXBvICsgRXJyb3IoSUQpKSBzdWdnZXN0cyB0aGF0OgoKICAtIFRoZSBtYWluIGVmZmVjdCBvZiBUaXBvIGlzIE5BIGFuZCB2ZXJ5IHNtYWxsIChGKDEsIDExMSkgPSAwLjAxLCBwID0gMC45MDQ7IEV0YTIgKHBhcnRpYWwpID0gMS4zMmUtMDQsIDkwJSBDSSBbMC4wMCwgMi45N2UtMDRdKQogIC0gVGhlIG1haW4gZWZmZWN0IG9mIFRpcG8gaXMgbm90IHNpZ25pZmljYW50IGFuZCBsYXJnZSAoRig2LCAxMTEpID0gNy4zOCwgcCA8IC4wMDE7IEV0YTIgKHBhcnRpYWwpID0gMC4yOSwgOTAlIENJIFswLjE1LCAwLjM3XSkKICAtIFRoZSBtYWluIGVmZmVjdCBvZiBUaWVtcG8gaXMgc2lnbmlmaWNhbnQgYW5kIHNtYWxsIChGKDYsIDExMSkgPSAwLjM4LCBwID0gMC44OTA7IEV0YTIgKHBhcnRpYWwpID0gMC4wMiwgOTAlIENJIFswLjAwLCAwLjAyXSkKICAtIFRoZSBpbnRlcmFjdGlvbiBiZXR3ZWVuIFRpcG8gYW5kIFRpZW1wbyBpcyBub3Qgc2lnbmlmaWNhbnQgYW5kIHZlcnkgc21hbGwgKEYoMSwgMTExKSA9IDAuMDEsIHAgPSAwLjkwNDsgRXRhMiAocGFydGlhbCkgPSAxLjMyZS0wNCwgOTAlIENJIFswLjAwLCAyLjk3ZS0wNF0pCgpFZmZlY3Qgc2l6ZXMgd2VyZSBsYWJlbGxlZCBmb2xsb3dpbmcgRmllbGQncyAoMjAxMykgcmVjb21tZW5kYXRpb25zLgoKCiMjIyBQbG90CgoKUGVuZGllbnRlCgo=