df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTGUepm0ddAefpaILx5QR9eCBgvnY-st6FBfVf39W1meHwGGsXvb63iVhNFZ3DvwXCM9ZsFaVo4sdyp/pub?gid=1906853507&single=true&output=csv")
── Column specification ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
Tipo = col_character(),
Tiempo = col_character(),
`Viabilidad bacteriana` = col_number()
)
añadir una columna ID
Check
Outliers?
df %>%
ggplot(aes(x = `Viabilidad bacteriana`)) +
geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


Cuál es outlier?
boxplot.stats(df$`Viabilidad bacteriana`)$out
[1] 21332
df %>%
ggplot(aes(x = `Viabilidad bacteriana`)) +
geom_histogram() +
facet_grid(Tipo ~ Tiempo)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

summary(df$`Viabilidad bacteriana`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7268.0 676.2 4802.5 4976.1 8922.2 21332.0
chequear el valor negativo
Identificar outliers por cada grupo
Chequear esos valores
hay NAs?
any(is.na(df$`Viabilidad bacteriana`))
[1] FALSE
Verificar esfericidad
PENDIENTE
Análisis
df %>%
group_by(Tipo, Tiempo) %>%
summarise(n = n(),
mean = mean(`Viabilidad bacteriana`),
sd = sd(`Viabilidad bacteriana`))
`summarise()` has grouped output by 'Tipo'. You can override using the `.groups` argument.
Model
summary(anovaModelRM)
Error: ID
Df Sum Sq Mean Sq
Tipo 1 175634105 175634105
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Tipo 1 2.684e+05 268378 0.015 0.904
Tiempo 6 8.077e+08 134616667 7.376 1.18e-06 ***
Tipo:Tiempo 6 4.166e+07 6943169 0.380 0.890
Residuals 111 2.026e+09 18251093
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
The repeated-measures ANOVA (formula: Viabilidad bacteriana ~ Tipo * Tiempo + Error(ID)) suggests that:
- The main effect of Tipo is NA and very small (F(1, 111) = 0.01, p = 0.904; Eta2 (partial) = 1.32e-04, 90% CI [0.00, 2.97e-04])
- The main effect of Tipo is not significant and large (F(6, 111) = 7.38, p < .001; Eta2 (partial) = 0.29, 90% CI [0.15, 0.37])
- The main effect of Tiempo is significant and small (F(6, 111) = 0.38, p = 0.890; Eta2 (partial) = 0.02, 90% CI [0.00, 0.02])
- The interaction between Tipo and Tiempo is not significant and very small (F(1, 111) = 0.01, p = 0.904; Eta2 (partial) = 1.32e-04, 90% CI [0.00, 2.97e-04])
Effect sizes were labelled following Field’s (2013) recommendations.
LS0tCnRpdGxlOiAiUmVwZWF0ZWQgbWVhc3VyZXMgQU5PVkEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpwYWNtYW46OnBfbG9hZCh0aWR5dmVyc2UpCmBgYAoKCmBgYHtyfQpkZiA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlRHVWVwbTBkZEFlZnBhSUx4NVFSOWVDQmd2blktc3Q2RkJmVmYzOVcxbWVId0dHc1h2YjYzaVZoTkZaM0R2d1hDTTlac0ZhVm80c2R5cC9wdWI/Z2lkPTE5MDY4NTM1MDcmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAphw7FhZGlyIHVuYSBjb2x1bW5hIElECgpgYGB7cn0KZGYgPC0gZGYgJT4lIAogIHJvd2lkX3RvX2NvbHVtbigiSUQiKQpgYGAKCmBgYHtyfQpoZWFkKGRmKQpgYGAKCiMjIENoZWNrCgojIyMgT3V0bGllcnM/CmBgYHtyfQpkZiAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKSArIAogIGdlb21faGlzdG9ncmFtKCkKYGBgCgpgYGB7cn0KZGYgJT4lIAogIGdncGxvdChhZXMoeCA9ICIiLCB5ID0gYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKSArIAogIGdlb21fYm94cGxvdCgpCmBgYApDdcOhbCBlcyBvdXRsaWVyPwoKYGBge3J9CmJveHBsb3Quc3RhdHMoZGYkYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApJG91dApgYGAKYGBge3J9CmRmICU+JSAKICBmaWx0ZXIoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgPiAyMTAwMCkKYGBgCgoKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkpICsgCiAgZ2VvbV9oaXN0b2dyYW0oKSArIAogIGZhY2V0X2dyaWQoVGlwbyB+IFRpZW1wbykKYGBgCgpgYGB7cn0Kc3VtbWFyeShkZiRgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkKYGBgCmNoZXF1ZWFyIGVsIHZhbG9yIG5lZ2F0aXZvCgoKYGBge3J9CmRmICU+JSAKICBmaWx0ZXIoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgPCAwKQpgYGAKCklkZW50aWZpY2FyIG91dGxpZXJzIHBvciBjYWRhIGdydXBvCmBgYHtyfQpwYWNtYW46OnBfbG9hZChyc3RhdGl4KQpgYGAKCgpgYGB7cn0KZGYgJT4lCiAgZ3JvdXBfYnkoVGlwbywgVGllbXBvKSAlPiUKICByc3RhdGl4OjppZGVudGlmeV9vdXRsaWVycyhgVmlhYmlsaWRhZCBiYWN0ZXJpYW5hYCkKYGBgCkNoZXF1ZWFyIGVzb3MgdmFsb3JlcwoKYGBge3J9CnBhY21hbjo6cF9sb2FkKGdncHVicikKYGBgCgoKYGBge3J9CgpgYGAKCgojIyMgaGF5IE5Bcz8KCmBgYHtyfQphbnkoaXMubmEoZGYkYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKQpgYGAKCgojIyMgVmVyaWZpY2FyIGVzZmVyaWNpZGFkCgpQRU5ESUVOVEUKCgojIyBBbsOhbGlzaXMKCgpgYGB7cn0KZGYgJT4lCiAgZ3JvdXBfYnkoVGlwbywgVGllbXBvKSAlPiUKICBzdW1tYXJpc2UobiA9IG4oKSwgCiAgICAgICAgICAgIG1lYW4gPSBtZWFuKGBWaWFiaWxpZGFkIGJhY3RlcmlhbmFgKSwgCiAgICAgICAgICAgIHNkID0gc2QoYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWApKQogIAoKYGBgCgojIyBNb2RlbAoKYGBge3J9CmFub3ZhTW9kZWxSTSA8LSAgYW92KGBWaWFiaWxpZGFkIGJhY3RlcmlhbmFgIH4gVGlwbyogVGllbXBvICsgRXJyb3IoSUQpLCBkYXRhID0gZGYpCnN1bW1hcnkoYW5vdmFNb2RlbFJNKQpgYGAKClRoZSByZXBlYXRlZC1tZWFzdXJlcyBBTk9WQSAoZm9ybXVsYTogYFZpYWJpbGlkYWQgYmFjdGVyaWFuYWAgfiBUaXBvICogVGllbXBvICsgRXJyb3IoSUQpKSBzdWdnZXN0cyB0aGF0OgoKICAtIFRoZSBtYWluIGVmZmVjdCBvZiBUaXBvIGlzIE5BIGFuZCB2ZXJ5IHNtYWxsIChGKDEsIDExMSkgPSAwLjAxLCBwID0gMC45MDQ7IEV0YTIgKHBhcnRpYWwpID0gMS4zMmUtMDQsIDkwJSBDSSBbMC4wMCwgMi45N2UtMDRdKQogIC0gVGhlIG1haW4gZWZmZWN0IG9mIFRpcG8gaXMgbm90IHNpZ25pZmljYW50IGFuZCBsYXJnZSAoRig2LCAxMTEpID0gNy4zOCwgcCA8IC4wMDE7IEV0YTIgKHBhcnRpYWwpID0gMC4yOSwgOTAlIENJIFswLjE1LCAwLjM3XSkKICAtIFRoZSBtYWluIGVmZmVjdCBvZiBUaWVtcG8gaXMgc2lnbmlmaWNhbnQgYW5kIHNtYWxsIChGKDYsIDExMSkgPSAwLjM4LCBwID0gMC44OTA7IEV0YTIgKHBhcnRpYWwpID0gMC4wMiwgOTAlIENJIFswLjAwLCAwLjAyXSkKICAtIFRoZSBpbnRlcmFjdGlvbiBiZXR3ZWVuIFRpcG8gYW5kIFRpZW1wbyBpcyBub3Qgc2lnbmlmaWNhbnQgYW5kIHZlcnkgc21hbGwgKEYoMSwgMTExKSA9IDAuMDEsIHAgPSAwLjkwNDsgRXRhMiAocGFydGlhbCkgPSAxLjMyZS0wNCwgOTAlIENJIFswLjAwLCAyLjk3ZS0wNF0pCgpFZmZlY3Qgc2l6ZXMgd2VyZSBsYWJlbGxlZCBmb2xsb3dpbmcgRmllbGQncyAoMjAxMykgcmVjb21tZW5kYXRpb25zLgoKCiMjIyBQbG90CgoKUGVuZGllbnRlCgo=