library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(corrplot)
## corrplot 0.90 loaded
library(rio)
load("C:/Users/mtbor/Downloads/Base_de_dados-master/CARROS.RData")
load("C:/Users/mtbor/Downloads/Base_de_dados-master/df_pokemon.RData")
head(CARROS)
## Kmporlitro Cilindros Preco HP Amperagem_circ_eletrico Peso
## Mazda RX4 21.0 6 160 110 3.90 2.620
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875
## Datsun 710 22.8 4 108 93 3.85 2.320
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215
## Hornet Sportabout 18.7 8 360 175 3.15 3.440
## Valiant 18.1 6 225 105 2.76 3.460
## RPM Tipodecombustivel TipodeMarcha NumdeMarchas
## Mazda RX4 16.46 0 1 4
## Mazda RX4 Wag 17.02 0 1 4
## Datsun 710 18.61 1 1 4
## Hornet 4 Drive 19.44 1 0 3
## Hornet Sportabout 17.02 0 0 3
## Valiant 20.22 1 0 3
## NumdeValvulas
## Mazda RX4 4
## Mazda RX4 Wag 4
## Datsun 710 1
## Hornet 4 Drive 1
## Hornet Sportabout 2
## Valiant 1
head(df)
## # A tibble: 6 x 22
## id pokemon species_id height weight base_experience type_1 type_2 attack
## <dbl> <chr> <int> <int> <int> <int> <chr> <chr> <int>
## 1 1 bulbasaur 1 7 69 64 grass poison 49
## 2 2 ivysaur 2 10 130 142 grass poison 62
## 3 3 venusaur 3 20 1000 236 grass poison 82
## 4 4 charmander 4 6 85 62 fire <NA> 52
## 5 5 charmeleon 5 11 190 142 fire <NA> 64
## 6 6 charizard 6 17 905 240 fire flying 84
## # ... with 13 more variables: defense <int>, hp <int>, special_attack <int>,
## # special_defense <int>, speed <int>, color_1 <chr>, color_2 <chr>,
## # color_f <chr>, egg_group_1 <chr>, egg_group_2 <chr>, url_image <chr>,
## # x <dbl>, y <dbl>
par(bg="lightyellow")
plot(CARROS$HP, CARROS$Preco,pch=19,col="blue",main = "Gráfico 1",ylab = "Preço do carro")
abline(lsfit(CARROS$HP,CARROS$Preco),col="red")
par(bg="lightyellow")
plot(CARROS$Peso, CARROS$Preco,pch=19,col="blue",main = "Gráfico 2",ylab = "Preço do carro")
abline(lsfit(CARROS$Peso,CARROS$Preco),col="red")
par(bg="lightyellow")
plot(CARROS$Kmporlitro, CARROS$Preco,pch=19,col="blue",main = "Gráfico 3",ylab = "Preço do carro")
abline(lsfit(CARROS$Kmporlitro,CARROS$Preco),col="red")
dados <-data.frame(x=c(2,3,4,5,5,6,7,8),
y=c(4,7,9,10,11,11,13,15))
cor(dados$x,dados$y)
## [1] 0.980871
cor(CARROS$Preco,CARROS$HP)
## [1] 0.7909486
cor(CARROS$Preco,CARROS$Peso)
## [1] 0.8879799
cor(CARROS$Preco,CARROS$Kmporlitro)
## [1] -0.8475514
par(bg="lightyellow")
plot(df$hp, df$speed,pch=19,col="blue",main = "Gráfico 4",ylab = "velocidade dos Pokemón")
abline(lsfit(df$hp,df$speed),col="red")
cor(df$hp,df$speed)
## [1] 0.1694177
par(bg="lightyellow")
plot(df$base_experience, df$special_attack,pch=19,col="blue",main = "Gráfico 5")
abline(lsfit(df$base_experience,df$special_attack),col="red")
cor(df$base_experience,df$special_attack)
## [1] 0.6630866
par(bg="lightyellow")
plot(df$special_defense, df$special_attack,pch=19,col="blue",main = "Gráfico 6")
abline(lsfit(df$special_defense,df$special_attack),col="red")
cor(df$special_defense,df$special_attack)
## [1] 0.48673
#————————————————–
names(CARROS)
## [1] "Kmporlitro" "Cilindros"
## [3] "Preco" "HP"
## [5] "Amperagem_circ_eletrico" "Peso"
## [7] "RPM" "Tipodecombustivel"
## [9] "TipodeMarcha" "NumdeMarchas"
## [11] "NumdeValvulas"
CARROS <- CARROS %>% rename(ACE=Amperagem_circ_eletrico)
MC<-CARROS %>% select(Kmporlitro,Preco,HP,
ACE,
Peso,RPM) %>% cor()
MC
## Kmporlitro Preco HP ACE Peso RPM
## Kmporlitro 1.0000000 -0.8475514 -0.7761684 0.68117191 -0.8676594 0.41868403
## Preco -0.8475514 1.0000000 0.7909486 -0.71021393 0.8879799 -0.43369788
## HP -0.7761684 0.7909486 1.0000000 -0.44875912 0.6587479 -0.70822339
## ACE 0.6811719 -0.7102139 -0.4487591 1.00000000 -0.7124406 0.09120476
## Peso -0.8676594 0.8879799 0.6587479 -0.71244065 1.0000000 -0.17471588
## RPM 0.4186840 -0.4336979 -0.7082234 0.09120476 -0.1747159 1.00000000
corrplot(MC)
corrplot(MC,method="square")
corrplot.mixed(MC)